Resource-Bounded Measure Bibliography

John M. Hitchcock
jhitchco@cs.uwyo.edu

[1] E. Allender. Circuit complexity before the dawn of the new millennium. In Proceedings of the 16th Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pages 1-18. Springer-Verlag, 1996.
[2] E. Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov complexity. In Proceedings of the 21st Conference on Foundations of Software Technology and Theoretical Computer Science, pages 1-15. Springer-Verlag, 2001.
[3] E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP. In Proceedings of the 35th Symposium on Foundations of Computer Science, pages 807-818. IEEE Computer Society, 1994.
[4] E. Allender and M. Strauss. Measure on P : Robustness of the notion. In Proceedings of the 20th International Symposium on Mathematical Foundations of Computer Science, pages 129-138. Springer-Verlag, 1995.
[5] K. Ambos-Spies. Measure theoretic completeness notions for the exponential time classes. In Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science, pages 152-161. Springer-Verlag, 2000.
[6] K. Ambos-Spies and L. Bentzien. Separating NP-completeness notions under strong hypotheses. Journal of Computer and System Sciences, 61(3):335-361, 2000.
[7] K. Ambos-Spies, S. Lempp, and G. Mainhardt. Randomness vs. completeness: On the diagonalization strength of resource-bounded random sets. In Proceedings of the 23rd International Symposium on Mathematical Foundations of Computer Science, pages 465-473. SpringerVerlag, 1998.
[8] K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In A. Sorbi, editor, Complexity, Logic and Recursion Theory, Lecture Notes in Pure and Applied Mathematics, pages 1-47. Marcel Dekker, New York, N.Y., 1997.
[9] K. Ambos-Spies, E. Mayordomo, Y. Wang, and X. Zheng. Resource-bounded balanced genericity, stochasticity, and weak randomness. In Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science, pages 63-74. Springer-Verlag, 1996.
[10] K. Ambos-Spies, E. Mayordomo, and X. Zheng. A comparison of weak completeness notions. In Proceedings of the Eleventh IEEE Conference on Computational Complexity, pages 171178. IEEE Computer Society, 1996.
[11] K. Ambos-Spies, W. Merkle, J. Reimann, and S. A. Terwijn. Almost complete sets. Theoretical Computer Science, 306(1-3):177-194, 2003.
[12] K. Ambos-Spies, H.-C. Neis, and S. A. Terwijn. Genericity and measure for exponential time. Theoretical Computer Science, 168(1):3-19, 1996.
[13] K. Ambos-Spies, S. A. Terwijn, and X. Zheng. Resource bounded randomness and weakly complete problems. Theoretical Computer Science, 172(1-2):195-207, 1997.
[14] V. Arvind and J. Köbler. On pseudorandomness and resource-bounded measure. Theoretical Computer Science, 255(1-2):205-221, 2001.
[15] R. V. Book and J. H. Lutz. On languages with very high space-bounded Kolmogorov complexity. SIAM Journal on Computing, 22(2):395-402, 1993.
[16] R. V. Book and E. Mayordomo. On the robustness of ALMOST-R. Rairo Informatique Thorique et Applications, 30(2):123-133, 1996.
[17] J. M. Breutzmann and J. H. Lutz. Equivalence of measures of complexity classes. SIAM Journal on Computing, 29(1):302-326, 2000.
[18] H. Buhrman, S. Fenner, and L. Fortnow. Results on resource-bounded measure. In Proceedings of the 24th International Colloquium on Automata, Languages and Programming, pages 188194. Springer-Verlag, 1997.
[19] H. Buhrman and L. Fortnow. Two queries. Journal of Computer and System Sciences, 59(2):182-194, 1999.
[20] H. Buhrman, B. Hescott, S. Homer, and L. Torenvliet. Non-uniform reductions. Theory of Computing Systems. To appear.
[21] H. Buhrman and L. Longpré. Compressibility and resource bounded measure. SIAM Journal on Computing, 31(3):876-886, 2002.
[22] H. Buhrman and E. Mayordomo. An excursion to the Kolmogorov random strings. Journal of Computer and System Sciences, 54(3):393-399, 1997.
[23] H. Buhrman and L. Torenvliet. On the structure of complete sets. In Proceedings of the Ninth Annual Structure in Complexity Theory Conference, pages 118-133. IEEE Computer Society, 1994.
[24] H. Buhrman and L. Torenvliet. Complete sets and structure in subrecursive classes. In Logic Colloquium '96, volume 12 of Lecture Notes in Logic, pages 45-78. Association for Symbolic Logic, 1998.
[25] H. Buhrman and D. van Melkebeek. Hard sets are hard to find. Journal of Computer and System Sciences, 59(2):327-345, 1999.
[26] H. Buhrman, D. van Melkebeek, K. W. Regan, D. Sivakumar, and M. Strauss. A generalization of resource-bounded measure, with application to the BPP vs. EXP problem. SIAM Journal on Computing, 30(2):576-601, 2001.
[27] J. Cai and A. L. Selman. Fine separation of average time complexity classes. SIAM Journal on Computing, 28(4):1310-1325, 1999.
[28] J. Cai, D. Sivakumar, and M. Strauss. Constant-depth circuits and the Lutz hypothesis. In Proceedings of the 38th Symposium on Foundations of Computer Science, pages 595-604. IEEE Computer Society, 1997.
[29] C. Calude and M. Zimand. Effective category and measure in abstract complexity theory. Theoretical Computer Science, 154(2):307-327, 1996.
[30] R. Chang and S. Purini. Bounded queries and the NP machine hypothesis. In Proceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity, pages 52-59. IEEE Computer Society, 2007.
[31] J. J. Dai. A stronger Kolmogorov zero-one law for resource-bounded measure. Theoretical Computer Science, 292(3):723-732, 2003.
[32] J. J. Dai. An outer-measure approach for resource-bounded measure. Theory of Computing Systems, 45(1):64-73, 2009.
[33] J. J. Dai and J. H. Lutz. Query order and NP-completeness. In Proceedings of the 14th IEEE Conference on Computational Complexity, pages 142-148. IEEE Computer Society, 1999.
[34] D. Doty and P. Moser. Feasible depth. In Proceedings of the 3rd Conference on Computability in Europe. Springer-Verlag, 2007. To appear.
[35] T. Ebert, W. Merkle, and H. Vollmer. On the autoreducibility of random sequences. SIAM Journal on Computing, 32(6):1542-1569, 2003.
[36] S. A. Fenner, J. H. Lutz, E. Mayordomo, and P. Reardon. Weakly useful sequences. Information and Computation, 197(1-2):41-54, 2005.
[37] L. Fortnow. Relativized worlds with an infinite hierarchy. Information Processing Letters, 69(6):309-313, 1999.
[38] L. Fortnow and M. Kummer. On resource-bounded instance complexity. Theoretical Computer Science, 161(1-2):123-140, 1996.
[39] L. Fortnow, J. H. Lutz, and E. Mayordomo. Inseparability and strong hypotheses for disjoint np pairs. Technical Report TR09-022, Electronic Colloquium on Computational Complexity, 2009.
[40] L. Fortnow, A. Pavan, and A. L. Selman. Distributionally hard languages. Theory of Computing Systems, 34(3):245-261, 2001.
[41] E. Grädel and A. Malmström. 0-1 laws for recursive structures. Archive for Mathematical Logic, 38(4):205-215, 1999.
[42] R. C. Harkins and J. M. Hitchcock. Upward separations and weaker hypotheses in resourcebounded measure. Theoretical Computer Science, 389(1-2), 2007.
[43] R. C. Harkins, J. M. Hitchcock, and A. Pavan. Stronger reductions and isomorphism of complete sets. In Proceedings of the 27th International Conference on Foundations of Software Technology and Theoretical Computer Science, pages 168-178. Springer-Verlag, 2007.
[44] M. Hauptmann. The measure hypothesis and efficiency of polynomial time approximation schemes. In Proceedings of the Tenth Italian Conference on Theoretical Computer Science, pages 151-163. World Scientific, 2007.
[45] L. A. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse sets? In Proceedings of the Seventh Annual Structure in Complexity Theory Conference, pages 222-238. IEEE Computer Society Press, 1992.
[46] J. M. Hitchcock. The size of SPP. Theoretical Computer Science, 320(2-3):495-503, 2004.
[47] J. M. Hitchcock and J. H. Lutz. Why computational complexity requires stricter martingales. Theory of Computing Systems, 39(2):277-296, 2006.
[48] J. M. Hitchcock and A. Pavan. Comparing reductions to NP-complete sets. Information and Computation, 205(5):694-706, 2007.
[49] R. Impagliazzo and P. Moser. A zero-one law for RP and derandomization of AM if NP is not small. Information and Computation, 207(7):787-792, 2009.
[50] G. Istrate. Resource-bounded measure and autoreducibility. Technical Report 644, Department of Computer Science, University of Rochester, December 1996.
[51] D. W. Juedes. The Complexity and Distribution of Computationally Useful Problems. PhD thesis, Iowa State University, 1994.
[52] D. W. Juedes. Weakly complete problems are not rare. Computational Complexity, 5(3/4):267-283, 1995.
[53] D. W. Juedes, J. I. Lathrop, and J. H. Lutz. Computational depth and reducibility. Theoretical Computer Science, 132(1-2):37-70, 1994.
[54] D. W. Juedes and J. H. Lutz. Kolmogorov complexity, complexity cores, and the distribution of hardness. In O. Watanabe, editor, Kolmogorov Complexity and Computational Complexity, pages 43-65. Springer-Verlag, 1992.
[55] D. W. Juedes and J. H. Lutz. The complexity and distribution of hard problems. SIAM Journal on Computing, 24(2):279-295, 1995.
[56] D. W. Juedes and J. H. Lutz. Weak completeness in E and E2. Theoretical Computer Science, 143(1):149-158, 1995.
[57] D. W. Juedes and J. H. Lutz. Completeness and weak completeness under polynomial-size circuits. Information and Computation, 125(1):13-31, 1996.
[58] S. M. Kautz. Resource-bounded randomness and compressibility with respect to nonuniform measures. In Proceedings of the International Workshop on Randomization and Approximation Techniques in Computer Science, pages 197-211. Springer-Verlag, 1997.
[59] S. M. Kautz and P. B. Miltersen. Relative to a random oracle, NP is not small. Journal of Computer and System Sciences, 53(2):235-250, 1996.
[60] J. Köbler and W. Lindner. On the resource bounded measure of P/poly. In Proceedings of the 13th IEEE Conference on Computational Complexity, pages 182-185. IEEE Computer Society, 1998.
[61] J. Köbler and W. Lindner. On distribution-specific learning with membership queries versus pseudorandom generation. In Proceedings of the 20th Conference on Foundations of Software Technology and Theoretical Computer Science, pages 336-347. Springer-Verlag, 2000.
[62] J. Köbler, W. Lindner, and R. Schuler. Derandomizing RP if Boolean circuits are not learnable. Technical Report UIB-1999-05, Universität Ulm, 1999.
[63] J. Köbler and R. Schuler. Average-case intractability vs. worst-case intractability. In Proceedings of the 23rd International Symposium on Mathematical Foundations of Computer Science, pages 493-502. Springer-Verlag, 1998.
[64] J. I. Lathrop and J. H. Lutz. Recursive computational depth. Information and Computation, 153(2):139-172, 1999.
[65] W. Lindner. On the polynomial time bounded measure of one-truth-table degrees and pselectivity. Diplomarbeit, Technische Universität Berlin, 1993.
[66] W. Lindner and R. Schuler. A small span theorem within P. Technical Report UIB-1997-02, Universität Ulm, 1997.
[67] W. Lindner, R. Schuler, and O. Watanabe. Resource-bounded measure and learnability. Theory of Computing Systems, 33(2):151-170, 2000.
[68] A. K. Lorentz and J. H. Lutz. Genericity and randomness over feasible probability measures. Theoretical Computer Science, 207(1):245-259, 1998.
[69] J. H. Lutz. One-way functions and balanced NP. Theoretical Computer Science. To appear.
[70] J. H. Lutz. Resource-Bounded Category and Measure in Exponential Complexity Classes. PhD thesis, California Institute of Technology, 1987.
[71] J. H. Lutz. Category and measure in complexity classes. SIAM Journal on Computing, 19(6):1100-1131, 1990.
[72] J. H. Lutz. Pseudorandom sources for BPP. Journal of Computer and System Sciences, 41(3):307-320, 1990.
[73] J. H. Lutz. An upward measure separation theorem. Theoretical Computer Science, 81(1):127135, 1991.
[74] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44(2):220-258, 1992.
[75] J. H. Lutz. On independent random oracles. Theoretical Computer Science, 92:301-307, 1992.
[76] J. H. Lutz. A pseudorandom oracle characterization of BPP. SIAM Journal on Computing, 22(5):1075-1086, 1993.
[77] J. H. Lutz. A small span theorem for P/Poly-Turing reductions. In Proceedings of the Tenth Annual Structure in Complexity Theory Conference, pages 324-330. IEEE Computer Society, 1995.
[78] J. H. Lutz. Weakly hard problems. SIAM Journal on Computing, 24(6):1170-1189, 1995.
[79] J. H. Lutz. Observations on measure and lowness for Δ_{2}^{P}. Theory of Computing Systems, 30(4):429-442, 1997.
[80] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L. Selman, editors, Complexity Theory Retrospective II, pages 225-254. Springer-Verlag, 1997.
[81] J. H. Lutz. Resource-bounded measure. In Proceedings of the 13th IEEE Conference on Computational Complexity, pages 236-248. IEEE Computer Society, 1998.
[82] J. H. Lutz. Computability versus exact computability of martingales. Information Processing Letters, 92(5):235-237, 2004.
[83] J. H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard languages. SIAM Journal on Computing, 23(4):762-779, 1994.
[84] J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions if NP is not small. Theoretical Computer Science, 164(1-2):141-163, 1996.
[85] J. H. Lutz and E. Mayordomo. Twelve problems in resource-bounded measure. Bulletin of the European Association for Theoretical Computer Science, 68:64-80, 1999. Also in Current Trends in Theoretical Computer Science: Entering the 21st Century, pages 83-101, World Scientific Publishing, 2001.
[86] J. H. Lutz, V. Mhetre, and S. Srinivasan. Hard instances of hard problems. In Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science, pages 324-333. Springer-Verlag, 2000.
[87] J. H. Lutz and W. J. Schmidt. Circuit size relative to pseudorandom oracles. Theoretical Computer Science, 107(1):95-120, March 1993.
[88] J. H. Lutz and D. L. Schweizer. Feasible reductions to kolmogorov-loveland stochastic sequences. Theoretical Computer Science, 225(1-2):185-194, 1999.
[89] J. H. Lutz and M. Strauss. Bias invariance of small upper spans. In Proceedings of the 1^{77} th Annual Symposium on Theoretical Aspects of Computer Science, pages 74-86. SpringerVerlag, 2000.
[90] J. H. Lutz and Y. Zhao. The density of weakly complete problems under adaptive reductions. SIAM Journal on Computing, 30(4):1197-1210, 2000.
[91] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Computer Science, 136(2):487-506, 1994.
[92] E. Mayordomo. Contributions to the study of resource-bounded measure. PhD thesis, Universitat Politècnica de Catalunya, 1994.
[93] E. Mayordomo. Measuring in PSPACE. In Proceedings of the 7th International Meeting of Young Computer Scientists, volume 6 of Topics in Computer Science, pages 93-100. Gordon and Breach, 1994.
[94] W. Merkle. The global power of additional queries to p-random oracles. SIAM Journal on Computing, 31(2):483-495, 2001.
[95] W. Merkle and N. Mihailovíc. On the construction of effective random sets. Journal of Symbolic Logic, 69(3):862-878, 2004.
[96] W. Merkle, N. Mihailovíc, and T. A. Slaman. Some results on effective randomness. Theory of Computing Systems, 39(5):707-721, 2006.
[97] P. Moser. A generalization of Lutz's measure to probabilistic classes. Technical Report TR02-058, Electronic Colloquium on Computational Complexity, 2002.
[98] P. Moser. ZPP is hard unless RP is small. Technical Report TR02-015, Electronic Colloquium on Computational Complexity, 2002.
[99] P. Moser. RP is small in SUBEXP else ZPP equals PSPACE and NP equals EXP. Technical Report TR03-040, Electronic Colloquium on Computational Complexity, 2003.
[100] P. Moser. Baire categories on small complexity classes and meager-comeager laws. Information and Computation, 206(1):15-33, 2008.
[101] P. Moser. Resource-bounded measure on probabilistic classes. Information Processing Letters, 106(6):241-245, 2008.
[102] A. V. Naik, K. W. Regan, and D. Sivakumar. On quasilinear-time complexity theory. Theoretical Computer Science, 148(2):325-349, 1995.
[103] A. Pavan. Comparison of reductions and completeness notions. SIGACT News, 34(2):27-41, June 2003.
[104] A. Pavan and A. L. Selman. Complete distributional problems, hard languages, and resourcebounded measure. Theoretical Computer Science, 234(1-2):273-286, 2000.
[105] O. Powell. Measure on P revisited. Technical Report TR02-065, Electronic Colloquium on Computational Complexity, 2002.
[106] O. Powell. PSPACE contains almost complete problems. Technical Report TR03-028, Electronic Colloquium on Computational Complexity, 2003.
[107] O. Powell. A note on measuring in P. Theoretical Computer Science, 320(2-3):229-246, 2004.
[108] O. Powell. Almost completeness in small complexity classes. Technical Report TR05-010, Electronic Colloquium on Computational Complexity, 2005.
[109] K. W. Regan and D. Sivakumar. Improved resource-bounded Borel-Cantelli and stochasticity theorems. Technical Report UB-CS-TR 95-08, Computer Science Department, University at Buffalo, 1995.
[110] K. W. Regan and D. Sivakumar. Probabilistic martingales and BPTIME classes. In Proceedings of the 13th Annual IEEE Conference on Computational Complexity, pages 186-200. IEEE Computer Society, 1998.
[111] K. W. Regan, D. Sivakumar, and J. Cai. Pseudorandom generators, measure theory, and natural proofs. In Proceedings of the 36th Symposium on Foundations of Computer Science, pages 26-35. IEEE Computer Society, 1995.
[112] D. Ronneberger. Kolmogorov Complexity and Derandomization. PhD thesis, Rutgers University, 2004.
[113] M. Schaefer and F. Stephan. Strong reductions and immunity for exponential time. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, pages 559-570. Springer-Verlag, 2003.
[114] R. Schuler. Truth-table closure and turing closure of average polynomial time have different measures in EXP. In Proceedings of the Eleventh Annual IEEE Conference on Computational Complexity, pages 190-197. IEEE Computer Society, 1996.
[115] R. Schuler and T. Yamakami. Sets computable in polynomial time on average. In Proceedings of the 1st Annual International Computing and Combinatorics Conference, pages 400-409. Springer-Verlag, 1995.
[116] D. Sivakumar. Probabilistic Techniques in Structural Complexity Theory. PhD thesis, SUNY at Buffalo, 1996.
[117] M. Strauss. Measure on P: Strength of the notion. Information and Computation, 136(1):123, 1997.
[118] M. Strauss. Normal numbers and sources for BPP. Theoretical Computer Science, 178(1-2):155-169, 1997.
[119] S. A. Terwijn. Computability and Measure. PhD thesis, University of Amsterdam, 1998.
[120] S. A. Terwijn. On the quantitative structure of Δ_{2}^{0}. In U. Berger, H. Osswald, and P. Schuster, editors, Reuniting the Antipodes: Constructive and Nonstandard Views of the Continuum, pages 271-283. Kluwer Academic Press, 2000.
[121] S. A. Terwijn and L. Torenvliet. Arithmetical measure. Mathematical Logic Quarterly, 44(4):277-286, 1998.
[122] D. van Melkebeek. Randomness and Completeness in Computational Complexity. ACM Doctoral Dissertation Award Series. Springer-Verlag, 2000.
[123] D. van Melkebeek. The zero-one law holds for BPP. Theoretical Computer Science, 244(1-2):283-288, 2000.
[124] Y. Wang. The law of the iterated logarithm for p-random sequences. In Proceedings of the Eleventh Annual IEEE Conference on Computational Complexity, pages 180-189. IEEE Computer Society, 1996.
[125] Y. Wang. Randomness and Complexity. PhD thesis, Department of Mathematics, University of Heidelberg, 1996.
[126] Y. Wang. NP-hard sets are superterse unless NP is small. Information Processing Letters, 61(1):1-6, 1997.
[127] Y. Wang. Genericity, randomness, and polynomial-time approximations. SIAM Journal on Computing, 28(2):394-408, 1999.
[128] Y. Wang. Randomness, stochasticity, and approximations. Theory of Computing Systems, 32:517-529, 1999.
[129] Y. Wang. A separation of two randomness concepts. Information Processing Letters, 69(3):115-118, 1999.
[130] Y. Wang. Resource bounded randomness and computational complexity. Theoretical Computer Science, 237(1-2):33-55, 2000.
[131] T. Yamakami. Average Case Computational Complexity Theory. PhD thesis, University of Toronto, 1997.
[132] M. Zimand. Existential Theorems in Computational Complexity Theory: Size and Robustness. PhD thesis, University of Rochester, 1996.
[133] M. Zimand. How to privatize random bits. Technical Report 616, Department of Computer Science, University of Rochester, April 1996.
[134] M. Zimand. On the size of classes with weak membership properties. Theoretical Computer Science, 209(1-2):225-235, 1998.
[135] M. Zimand. Relative to a random oracle, P/Poly is not measurable in EXP. Information Processing Letters, 69(2):83-86, 1999.
[136] M. Zimand. Computational Complexity: A Quantitative Perspective. Elsevier, 2004.

