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Abstract

We apply results on extracting randomness from independent sources to “extract” Kol-
mogorov complexity. For any α, ε > 0, given a string x with K(x) > α|x|, we show how to
use a constant number of advice bits to efficiently compute another string y, |y| = Ω(|x|),
with K(y) > (1− ε)|y|. This result holds for both unbounded and space-bounded Kolmogorov
complexity.

We use the extraction procedure for space-bounded complexity to establish zero-one laws for
the strong dimension of complexity classes within ESPACE. We also obtain a similar result for
constructive strong dimension.

1 Introduction

Kolmogorov complexity quantifies the amount of randomness in an individual string. If a string
x has Kolmogorov complexity m, then x is often said to contain m bits of randomness. Can we
efficiently extract the Kolmogorov randomness from a string? That is, given x, is it possible to
compute a string of length m that is Kolmogorov-random?

Vereshchagin and Vyugin showed that this is not possible in general [27], i.e., they showed that
there is no algorithm that can extract Kolmogorov complexity. Buhrman, Fortnow, Newman and
Vereshchagin [4] showed that if one allows a small amount of extra information then Kolmogorov
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extraction is indeed possible. More specifically, they showed there is an efficient procedure A such
that for every x with Kolmogorov complexity αn, there exists a string ax, such that A(x, ax)
outputs a nearly Kolmogorov random string whose length is close to αn. Moreover, the length of
ax is O(log |x|), and contents of ax depend on x.

In this paper we show that we can extract Kolmogorov complexity with only constant bits
of additional information. We give a polynomial-time computable procedure which takes x with an
additional constant amount of advice and outputs a nearly Kolmogorov-random string whose length
is linear in m. Formally, for any α, ε > 0, given a string x with K(x) > α|x|, we show how to use a
constant number of advice bits to compute another string y, |y| = Ω(|x|), in polynomial-time that
satisfies K(y) > (1 − ε)|y|. The number of advice bits depends only on α and ε, but the content
of the advice depends on x. This computation needs only polynomial time, and yet it extracts
unbounded Kolmogorov complexity.

Our proofs use a construction of a multi-source extractor. Traditional extractor results [17, 28,
24, 16, 26, 20, 21, 25, 10, 23, 22, 5] show how to take a distribution with high min-entropy and
some truly random bits to create a close to uniform distribution. A multi-source extractor takes
several independent distributions with high min-entropy and creates a close to uniform distribution.
Thus multi-source extractors eliminate the need for a truly random source. Substantial progress
has been made recently in the construction of efficient multi-source extractors [2, 3, 19, 18]. In this
paper we use the construction due to Barak, Impagliazzo, and Wigderson [2] for our main result
on extracting Kolmogorov complexity.

To make the connection, consider the uniform distribution on the set of strings x whose Kol-
mogorov complexity is at most m. This distribution has min-entropy about m and x acts like a ran-
dom member of this set. We can define a set of strings x1, . . . , xk to be independent if K(x1 · · ·xk) ≈
K(x1) + · · · + K(xk). By symmetry of information this implies K(xi|x1, . . . , xi−1, xi+1, . . . , xk) ≈
K(xi). Suppose we are given independent Kolmogorov random strings x1, . . . xk, whose Kolmogorov
complexity is m. We view them as arising from k independent distributions each with min-entropy
m. We then argue that a multi-source extractor with small error can be used to output a nearly
Kolmogorov random string.

To extract the randomness from a single string x, we break x into a number of substrings
x1, . . . , xl, and view each substring xi as coming from a different random source. Of course, these
substrings may not be independently random in the Kolmogorov sense, thus we can not view these
strings as coming from independent sources. A useful concept is to quantify the dependency within
x as

∑l
i=1 K(xi)−K(x). We show that if the dependency within x is small, then the output of the

multi-source extractor on its substrings is a nearly Kolmogorov random string. Another technical
problem is that the randomness in x may not be nicely distributed among the substrings; for this
we need to use a small (constant) number of nonuniform advice bits.

This result about extracting Kolmogorov-randomness also holds for polynomial-space bounded
Kolmogorov complexity. We apply this to obtain zero-one laws for the strong dimensions of certain
complexity classes. Resource-bounded dimension and strong dimension [11, 1] were developed
as extensions of the classical Hausdorff and packing fractal dimensions to study the structure of
complexity classes. Dimension and strong dimension both refine resource-bounded measure and are
duals of each other in many ways. Strong dimension is also related to resource-bounded category
[8]. In this paper we focus on strong dimension.

The strong dimension of each complexity class is a real number between zero and one inclusive.
While there are examples of nonstandard complexity classes with fractional dimensions [1], we
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do not know of a standard complexity class with this property. Can a natural complexity class
have a fractional dimension? In particular consider the class E. Determining its strong dimension
within ESPACE would imply a major separation. However, we are able to use our Kolmogorov-
randomness extraction procedure to obtain a zero-one law ruling out the intermediate fractional
possibility. Formally, we show that the strong dimension Dim(E | ESPACE) is either 0 or 1. The
zero-one law also holds for various other complexity classes.

Our techniques also apply in the constructive dimension setting [12]. Miller and Nies [14] asked
if it is possible to compute a set of higher constructive dimension from an arbitrary set of positive
constructive dimension. We answer the strong dimension variant of this question.

2 Preliminaries

2.1 Kolmogorov Complexity

Let M be a Turing machine. Let f : N → N. For any x ∈ {0, 1}∗, define

KM (x) = min{|π| | M(π) prints x}

and
KSf

M (x) = min{|π| | M(π) prints x using at most f(|x|) space}.

There is a universal machine U such that for every machine M , there is some constant c such that
for all x, KU (x) ≤ KM (x)+c and KScf+c

U (x) ≤ KSf
M (x)+c [9]. We fix such a machine U and drop

the subscript, writing K(x) and KSf (x), which are called the (plain) Kolmogorov complexity of x
and f-bounded (plain) Kolmogorov complexity of x. While we use plain complexity in this paper,
our results also hold for prefix-free complexity.

The following definition quantifies the fraction of randomness in a string.

Definition. For a string x, the rate of x is rate(x) = K(x)/|x|. For a polynomial g, the g-rate of
x is rateg(x) = KSg(x)/|x|.

We denote the uniform distribution over Σn with Un. Two distributions X and Y over Σn, are
ε-close if

1
2

∑
x∈Σn

|X(x)− Y (x)| ≤ ε.

Definition. Let X be a distribution over Σn and Sup(X) denotes the set {x ∈ Σn | Pr[X = x] 6= 0}.
The min-entropy of X is

min
x∈Sup(X)

log
1

Pr[X = x]
.

2.2 Polynomial-Space Dimension

We now review the definitions of polynomial-space dimension [11] and strong dimension [1]. For
more background we refer to these papers and the survey paper [7].

Let s > 0. An s-gale is a function d : {0, 1}∗ → [0,∞) satisfying 2sd(w) = d(w0) + d(w1) for
all w ∈ {0, 1}∗.

For a language A, we write A�n for the first n bits of A’s characteristic sequence (according to
the standard enumeration of {0, 1}∗) and A� [i, j] for the subsequence beginning from the ith bit and
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ending at the jth bit. An s-gale d succeeds on a language A if lim sup
n→∞

d(A�n) = ∞ and d succeeds

strongly on A if lim inf
n→∞

d(A �n) = ∞. The success set of d is S∞[d] = {A | d succeeds on S}. The

strong success set of d is S∞
str[d] = {A | d succeeds strongly on S}.

Definition. Let X be a class of languages.

1. The pspace-dimension of X is

dimpspace(X) = inf
{

s

∣∣∣∣ there is a polynomial-space computable
s-gale d such that X ⊆ S∞[d]

}
.

2. The strong pspace-dimension of X is

Dimpspace(X) = inf
{

s

∣∣∣∣ there is a polynomial-space computable
s-gale d such that X ⊆ S∞

str[d]

}
.

For every X, 0 ≤ dimpspace(X) ≤ Dimpspace(X) ≤ 1. An important fact is that ESPACE has
pspace-dimension 1, which suggests the following definitions.

Definition. Let X be a class of languages.

1. The dimension of X within ESPACE is

dim(X | ESPACE) = dimpspace(X ∩ ESPACE).

2. The strong dimension of X within ESPACE is

Dim(X | ESPACE) = Dimpspace(X ∩ ESPACE).

In this paper we will use an equivalent definition of these dimensions in terms of space-bounded
Kolmogorov complexity.

Definition. Given a language L and a polynomial g the g-rate of L is

rateg(L) = lim inf
n→∞

rateg(L�n).

strong g-rate of L is
Rateg(L) = lim sup

n→∞
rateg(L�n).

Theorem 2.1. ([13, 6]) Let poly denote all polynomials. For every class X of languages,

dimpspace(X) = inf
g∈poly

sup
L∈X

rateg(L).

and
Dimpspace(X) = inf

g∈poly
sup
L∈X

Rateg(L).
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3 Extracting Kolmogorov Complexity

Barak, Impagliazzo, and Wigderson [2] gave an explicit multi-source extractor.

Theorem 3.1. ([2]) For every constant 0 < σ < 1, and c > 1 there exist l = poly(1/σ, c), a
constant r and a computable function E : Σ`n → Σn such that if H1, · · · ,Hl are independent
distributions over Σn, each with min entropy at least σn, then E(H1, · · · ,Hl) is 2−cn-close to Un,
where Un is the uniform distribution over Σn. Moreover, E runs in time nr.

We show that this extractor can be used to produce nearly Kolmogorov-random strings from
strings with high enough complexity. The following notion of dependency is useful for quantifying
the performance of the extractor.

Definition. Let x = x1x2 · · ·xk, where each xi is an n-bit string. The dependency within x, dep(x),
is defined as

∑k
i=1 K(xi)−K(x).

Theorem 3.2. For every 0 < σ < 1 and large enough n, there exist a constant l > 1, and a
polynomial-time computable function E such that if x1, x2, · · ·xl are n-bit strings with K(xi) ≥ σn,
1 ≤ i ≤ l, then

K(E(x1, · · · , xl)) ≥ n− 10l log n− dep(x),

where x = x1x2 · · ·xl.

Proof. Let 0 < σ′ < σ. By Theorem 3.1, there is a constant l and a polynomial-time computable
multi-source extractor E such that if H1, · · · ,Hl are independent sources each with min-entropy
at least σ′n, then E(H1, · · · ,Hl) is 2−5n close to Un.

We show that this extractor also extracts Kolmogorov complexity. We prove by contradiction.
Suppose the conclusion is false, i.e,

K(E(x1, · · ·xl)) < n− 10l log n− dep(x).

Let K(xi) = mi, 1 ≤ i ≤ l. Define the following sets:

Ii = {y | y ∈ Σn,K(y) ≤ mi},

Z = {z ∈ Σn | K(z) < n− 10l log n− dep(x)},

Small = {〈y1, · · · , yl〉 | yi ∈ Ii, and E(y1, · · · yl) ∈ Z}.

By our assumption 〈x1, · · ·xl〉 belongs to Small. We use this to arrive at a contradiction
regarding the Kolmogorov complexity of x = x1x2 · · ·xl. We first calculate an upper bound on the
size of Small.

Observe that the set {xy |x ∈ Σσ′n, y = 0n−σ′n} is a subset of each of Ii. Thus the cardinality
of each of Ii is at least 2σ′n. Let Hi be the uniform distribution on Ii. Thus the min-entropy of Hi

is at least σ′n.
Since Hi’s have min-entropy at least σ′n, E(H1, · · · ,Hl) is 2−5n-close to Un. Then∣∣∣P [E(H1, . . . ,Hl) ∈ Z]− P [Un ∈ Z]

∣∣∣ ≤ 2−5n. (1)
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Note that the cardinality of Ii is at most 2mi+1, as there are at most 2mi+1 strings with Kolmogorov
complexity at most mi. Thus Hi places a weight of at least 2−mi−1 on each string from Ii. Thus
H1 × · · · ×Hl places a weight of at least 2−(m1+···+ml+l) on each element of Small. Therefore,

P [E(H1, . . . ,Hl) ∈ Z] = P [(H1, . . . ,Hl) ∈ Small] ≥ |Small| · 2−(m1+···+ml+l),

and since |Z| ≤ 2n−10l log n−dep(x), from (1) we obtain

|Small| < 2m1+1 × · · · × 2ml+1 ×

(
2n−10l log n−dep(x)

2n
+ 2−5n

)

Without loss of generality we can take dep(x) < n, otherwise the theorem is trivially true. Thus
2−5n < 2−10l log n−dep(x). Using this and the fact that l is a constant independent of n, we obtain

|Small| < 2m1+···+ml−dep(x)−8l log n,

when n is large enough. Since K(x) = K(x1) + · · ·+ K(xl)− dep(x),

|Small| < 2K(x)−8l log n.

We first observe that there is a program Q that, given the values of mi’s, n, l, and dep(x)
as auxiliary inputs, recognizes the set Small. This program works as follows: Let z = z1 · · · zl,
where |zi| = n. For each program Pi of length at most mi check whether Pi outputs zi, by running
the Pi’s in a dovetail fashion. If it is discovered that for each of zi, K(zi) ≤ mi, then compute
y = E(z1, · · · , zl). Now verify that K(y) is at most n− dep(x)− 10l log n. This again can be done
by running programs of the length at most n − dep(x) − 10l log n in a dovetail manner. If it is
discovered that K(y) is at most n− dep(x)− 10l log n, then accept z.

So given the values of parameters n, dep(x), l and mis, there is a program P that enumerates
all elements of Small. Since by our assumption x belongs to Small, x appears in this enumeration.
Let i be the position of x in this enumeration. Since |Small| is at most 2K(x)−8l log n, i can be
described using K(x)− 8l log n bits.

Thus there is a program P ′ based on P that outputs x. This program takes i, dep(x), n,
m1, · · · ,ml, and l, as auxiliary inputs. Since the mi’s and dep(x) are bounded by n,

K(x) ≤ K(x)− 8l log n + 2 log n + l log n + O(1)
≤ K(x)− 5l log n + O(1),

which is a contradiction.

If x1, · · ·xl are independent strings with K(xi) ≥ σn, then E(x1, · · · , xl) is a Kolmogorov
random string of length n.

Corollary 3.3. For every constant 0 < σ < 1, there exists a constant l, and a polynomial-time
computable function E such that if x1, · · ·xl are n-bit strings such K(xi) ≥ σn, and K(x1x2 · · ·xl) =∑

K(xi)−O(log n), then E(x1, · · · , xl) is Kolmogorov random, i.e.,

K(E(x1, · · · , xl)) > n−O(log n).
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This theorem says that given x ∈ Σln, if each piece xi has high enough complexity and the
dependency with x is small, then we can output a string y whose Kolmogorov rate is higher than
the Kolmogorov rate of x, i.e, y is relatively more random than x. What if we only knew that
x has high enough complexity but knew nothing about the complexity of individual pieces or the
dependency within x? Our next theorem states that in this case also there is a procedure producing
a string whose rate is higher than the rate of x. However, this procedure needs constant bits of
advice.

Theorem 3.4. For all real numbers 0 < α < β < 1 there exist a constant 0 < γ < 1, constants
c, l, n0 ≥ 1, and a procedure R such that the following holds. For any string x with |x| ≥ n0 and
rate(x) ≥ α, there exists an advice string ax such that

rate(R(x, ax)) ≥ min{rate(x) + γ, β}

where |ax| = c. Moreover, R runs in polynomial time, and |R(x, ax)| = b|x|/lc.
The number c depends only on α, β and is independent of x. However, the contents of ax depend

on x.

Proof. Let α′ < α and ε < min{1−β, α′}. Let σ = (1−ε)α′. Using parameter σ in Theorem 3.2, we
obtain a constant l > 1 and a polynomial-time computable function E that extracts Kolmogorov
complexity.

Let β′ = 1− ε
2 , and γ = ε2

2l . Observe that γ ≤ 1−β′

l and γ < α′−σ
l .

Let x have rate(x) = ν ≥ α. Let n, k ≥ 0 such that |x| = ln + k and k < l. We strip the last
k bits from x and write x = x1 · · ·xl where each |xi| = n. Let ν ′ = rate(x) after this change. We
have ν ′ > ν − γ/2 and ν ′ > α′ if |x| is sufficiently large.

We consider three cases.
Case 1. There exists j, 1 ≤ j ≤ l such that K(xj) < σn.
Case 2. Case 1 does not hold and dep(x) ≥ γln.
Case 3. Case 1 does not hold and dep(x) < γln.

We have two claims about Cases 1 and 2:

Claim 3.4.1. Assume Case 1 holds. There exists i, 1 ≤ i ≤ l, such that rate(xi) ≥ ν ′ + γ.

Proof of Claim 3.4.1. Suppose not. Then for every i 6= j, 1 ≤ i ≤ l, K(xi) ≤ (ν ′ + γ)n. We can
describe x by describing xj which takes σn bits, and all the xi’s, i 6= j. Thus the total complexity
of x would be at most

(ν ′ + γ)(l − 1)n + σn + O(log n)

Since γ < α′−σ
l and α′ < ν ′ this quantity is less than ν ′ln. Since the rate of x is ν ′, this is a

contradiction. � Claim 3.4.1

Claim 3.4.2. Assume Case 2 holds. There exists i, 1 ≤ i ≤ l, rate(xi) ≥ ν ′ + γ.

Proof of Claim 3.4.2. By definition,

K(x) =
l∑

i=1

K(xi)− dep(x)
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Since dep(x) ≥ γln and K(x) ≥ ν ′ln,

l∑
i=1

K(xi) ≥ (ν ′ + γ)ln.

Thus there exists i such that rate(xi) ≥ ν ′ + γ. � Claim 3.4.2

We can now describe the constant number of advice bits. The advice ax contains the following
information: which of the three cases described above holds, and

• If Case 1 holds, then from Claim 3.4.1 the index i such that rate(xi) ≥ ν ′ + γ.

• If Case 2 holds, then from Claim 3.4.2 the index i such that rate(xi) ≥ ν ′ + γ.

Since 1 ≤ i ≤ l, the number of advice bits is bounded by O(log l). We now describe procedure
R. When R takes an input x, it first examines the advice ax. If Case 1 or Case 2 holds, then R
simply outputs xi. Otherwise, Case 3 holds, and R outputs E(x). Since E runs in polynomial time,
R runs in polynomial time.

If Case 1 or Case 2 holds, then

rate(R(x, ax)) ≥ ν ′ + γ ≥ ν + γ
2 .

If Case 3 holds, we have R(x, ax) = E(x) and by Theorem 3.2, K(E(x)) ≥ n−10 log n−γln. Since
γ ≤ 1−β′

l , in this case
rate(R(x, ax)) ≥ β′ − 10 log n

n .

For large enough n, this value is at least β. Therefore in all three cases, the rate increases by at
least γ/2 or reaches β.

We now prove our main theorem.

Theorem 3.5. Let α and β be constants with 0 < α < β < 1. There exist a polynomial-time
procedure P (·, ·) and constants C1, C2, n1 such that for every x with |x| ≥ n1 and rate(x) ≥ α there
exists a string ax with |ax| = C1 such that

rate(P (x, ax)) ≥ β

and |P (x, ax)| ≥ |x|/C2.

Proof. We apply the procedure R from Theorem 3.4 iteratively. Each application of R outputs a
string whose rate is at least β or is at least γ more than the rate of the input string. Applying R
at most k = d(β − α)/γe times, we obtain a string whose rate is at least β.

Note that R(y, ay) has output length |R(y, ay)| = b|y|/lc and increases the rate of y if |y| ≥ n0.
If we take n1 = (n0 +1)kl, we ensure that in each application of R we have a string whose length is
at least n0. Each iteration of R requires c bits of advice, so the total number of advice bits needed
is C1 = kc. Thus C1 depends only on α and β. Each application of R decreases the length by a
constant fraction, so there is a constant C2 such that the length of the final outputs string is at
least |x|/C2.
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The proofs in this section also work for space-bounded Kolmogorov complexity. For this we
need a space-bounded version of dependency.

Definition. Let x = x1x2 · · ·xk where each xi is an n-bit string, let f and g be two space bounds.
The (f, g)-bounded dependency within x, depf

g (x), is defined as
∑k

i=1 KSg(xi)−KSf (x).

We obtain the following version of Theorem 3.2.

Theorem 3.6. For every polynomial g there exists a polynomial f such that for every 0 < σ < 1,
there exist a constant l > 1, and a polynomial-time computable function E such that if x1, · · · , xl

are n-bit strings with KSf (xi) ≥ σn, 1 ≤ i ≤ l, then

KSg(E(x1, · · · , xl)) ≥ n− 10l log n− depf
g (x).

Similarly we obtain the following extension of Theorem 3.5.

Theorem 3.7. Let g be a polynomial and let α and β be constants with 0 < α < β < 1. There
exist a polynomial f , polynomial-time procedure R(·, ·), and constants C1, C2, n1 such that for every
x with |x| ≥ n1 and ratef (x) ≥ α there exists a string ax with |ax| = C1 such that

rateg(R(x, ax)) ≥ β

and |R(x, ax)| ≥ |x|/C2.

4 Zero-One Laws for Complexity Classes

In this section we establish a zero-one law for the strong dimensions of certain complexity classes.

Lemma 4.1. Let g be any polynomial and α, θ be rational numbers with 0 < α < θ < 1. Then
there is a polynomial f such that if there exists L ∈ E with Ratef (L) ≥ α, then there exists L′ ∈ E
with Rateg(L′) ≥ θ.

Proof. Let β be a real number bigger than θ and smaller than 1 and f = ω(g). Pick positive
integers C and K such that (C − 1)/K < 3α/4, and (C−1)β

C > θ. Let n1 = 1, ni+1 = Cni.
We now define strings y1, y2, · · · such that each yi is a substring of the characteristic sequence of

L or is in 0∗, and |yi| = (C − 1)ni/K. While defining these strings we will ensure that for infinitely
many i, ratef (yi) ≥ α/4.

We now define yi. We consider three cases.
Case 1. ratef (L�ni) ≥ α/4. Divide L�ni in to K/(C − 1) segments such that the length of each
segment is (C − 1)ni/K. It is easy to see that at least for one segment the f -rate is at least α/4.
Define yi to be a segment with ratef (yi) ≥ α/4.
Case 2. Case 1 does not hold and for every j, ni < j < ni+1, ratef (L � j) < α. In this case we

punt and define yi = 0
(C−1)ni

K .
Case 3. Case 1 does not hold and there exists j, ni < j < ni+1 such that ratef (L�j) > α. Divide
L� [ni, ni+1] into K segments. Since ni+1 = Cni, length of each segment is (C − 1)ni/K.

Then it is easy to show that some segment has f -rate at least α/4. We define yi to be this
segment.
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Since for infinitely many j, ratef (L�j) ≥ α, for infinitely many i either Case 1 or Case 3 holds.
Thus for infinitely many i, ratef (yi) ≥ α/4.

By Theorem 3.7, there is a procedure R with such that given a string x with ratef (x) ≥ α/4,
and the advice ax, rateg(R(x, ax)) ≥ β.

Let wi = R(yi, ayi). Since for infinitely many i, ratef (yi) ≥ α/4, for infinitely many i,
rateg(wi) ≥ β. Also recall that |wi| = |yi|/C2 for an absolute constant C2.

Claim 4.1.1. |wi+1| ≥ (C − 1)
∑i

j=1 |wj |.

Proof of Claim 4.1.1. We have

i∑
j=1

|wj | ≤
C − 1
KC2

i∑
j=1

nj =
C − 1
KC2

(Ci − 1)n1

C − 1
,

with the equality holding because nj+1 = Cnj . Also,

|wi+1| =
(C − 1)ni+1

KC2
≥ (C − 1)Cin1

KC2

Thus
|wi+1|∑i
j=1 |wj |

> (C − 1).

� Claim 4.1.1

Claim 4.1.2. For infinitely many i, rateg(w1 · · ·wi) ≥ θ.

Proof of Claim 4.1.2. For infinitely many i, rateg(wi) ≥ β, which means KSg(wi) ≥ β|wi| and
therefore

KSg(w1 · · ·wi) ≥ β|wi| −O(1).

By Claim 4.1.1, |wi| ≥ (C − 1)(|w1| + · · · + |wi−1|). Thus for infinitely many i, rateg(w1 · · ·wi) ≥
(C−1)β

C − o(1) ≥ θ. � Claim 4.1.2

We define w1w2 · · · to be the characteristic sequence of L′. Then by Claim 4.1.2, Rateg(L′) ≥ θ.
Next, we argue that if L is in E, then L′ is in E/O(1). Observe that wi depends on yi and ayi ,

thus each bit of wi can be computed by knowing yi and ayi . Recall that yi is either a subsegment
of the characteristic sequence of L or 0ni . We will know yi if we know which of the three cases
mentioned above hold. This can be given as advice. Also observe that yi is a subsequence of
L � ni+1. Also recall that wi can be computed from yi in time polynomial in |yi| using constant
bits of advice ayi . Since |wi| = |yi|/C2 for some absolute constant C2, the running time needed to
compute wi is also polynomial in |wi|. Since L is in E, this places L′ in E/O(1).

Finally, we observe that the advice can be removed to obtain a language in E. Let I be the
set of all i such that rateg(w1 · · ·wi) ≥ θ. Let A be the set of all advice strings that are used in
computing wi from L�ni+1 for i ∈ I. Since I is infinite and A is finite, there must be some advice
string a ∈ A that can be used to compute infinitely many of the wi’s. We hardcode a into the
algorithm for computing L′. Call the new language we get L′′. We have L′′ ∈ E. Infinitely often,
L′′ will be the same as L′ on a wi stretch, and it can be different elsewhere. Observe that in the
proof of Claim 4.1.2 changing the strings w1, . . . , wi−1 has no effect. It follows that Rateg(L′′) ≥ θ.
This completes the proof of Lemma 4.1.
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Theorem 4.2. Dim(E | ESPACE) is either 0 or 1.

Proof. Because E ⊆ ESPACE, Dim(E | ESPACE) = Dimpspace(E). We will show that if Dimpspace(E) >
0, then Dimpspace(E) = 1. For this, it suffices to show that for every polynomial g and real number
0 < θ < 1, there is a language L′ in E with Rateg(L′) ≥ θ. By Theorem 2.1, this will show that
the strong pspace-dimension of E is 1.

The assumption states that the strong pspace-dimension of E is greater than 0. If the strong
pspace-dimension of E is actually one, then we are done. If not, let α be a positive rational number
that is less than Dimpspace(E). By Theorem 2.1, for every polynomial f , there exists a language
L ∈ E with Ratef (L) ≥ α.

By Lemma 4.1, from such a language L we obtain a language L′ in E with Rateg(L′) ≥ θ. Thus
the strong pspace-dimension of E is 1.

The zero-one law in Theorem 4.2 also holds for many other complexity classes.

Theorem 4.3. Let C be a class that is closed under exponential-time truth-table reductions. Then
Dim(C | ESPACE) is either 0 or 1.

Therefore additional examples of classes the zero-one law holds for include NE ∩ coNE, BPE, and
ENP.

Remark. Theorem 4.2 concerns strong dimension. For dimension, the situation is considerably
more complicated. With our techniques we can prove that if dimpspace(E) > 0, then dimpspace(E/O(1)) ≥
1/2. It appears that a different method is needed to eliminate the advice or increase the dimension
past 1/2.

5 Increasing Constructive Strong Dimension

Miller and Nies [14] asked if every set of positive constructive dimension computes (by way of a
Turing reduction) a set of higher constructive dimension. Our techniques yield a positive answer
for the variant of this question using strong dimension instead of dimension. For a set S, the
constructive strong dimension [1] of S is defined by

Dim(S) = lim sup
n→∞

K(S �n)
n

.

Theorem 5.1. If Dim(S) > 0, then for every ε > 0, there exists R ≤T S such that Dim(R) > 1−ε.

The proof of Theorem 5.1 is the same as Lemma 4.1, except instead of Theorem 3.7 we use
Theorem 3.5. The reduction we obtain is actually an exponential-time truth-table reduction, so
in particular it is a weak truth-table reduction. In contrast, Nies and Reimann [15] showed that
this is sometimes impossible for constructive dimension: there exists S with dim(S) > 0 such that
every set which weak truth-table reduces to S has dim(R) ≤ dim(S).
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