
Extracting Kolmogorov Complexity with

Applications to Dimension Zero-One Laws

Lance Fortnow
Department of Computer Science

University of Chicago
fortnow@cs.uchicago.edu

John M. Hitchcock∗

Department of Computer Science
University of Wyoming
jhitchco@cs.uwyo.edu

A. Pavan†

Department of Computer Science
Iowa State University

pavan@cs.iastate.edu

N. V. Vinodchandran‡

Department of Computer Science and Engineering
University of Nebraska-Lincoln

vinod@cse.unl.edu

Fengming Wang§

Department of Computer Science
Rutgers University

fengming@cs.rutgers.edu

Abstract

We apply results on extracting randomness from independent sources to “extract” Kol-
mogorov complexity. For any α, ε > 0, given a string x with K(x) > α|x|, we show how to
use a constant number of advice bits to efficiently compute another string y, |y| = Ω(|x|),
with K(y) > (1− ε)|y|. This result holds for both unbounded and space-bounded Kolmogorov
complexity.

We use the extraction procedure for space-bounded complexity to establish zero-one laws for
the strong dimension of complexity classes within ESPACE. We also obtain a similar result for
constructive strong dimension.

1 Introduction

Kolmogorov complexity quantifies the amount of randomness in an individual string. If a string
x has Kolmogorov complexity m, then x is often said to contain m bits of randomness. Can we
efficiently extract the Kolmogorov randomness from a string? That is, given x, is it possible to
compute a string of length m that is Kolmogorov-random?

Vereshchagin and Vyugin showed that this is not possible in general [27], i.e., they showed that
there is no algorithm that can extract Kolmogorov complexity. Buhrman, Fortnow, Newman and
Vereshchagin [4] showed that if one allows a small amount of extra information then Kolmogorov

∗This research was supported in part by NSF grant 0515313.
†This research was supported in part by NSF grant 0430807.
‡This research was supported in part by NSF grant 0430991.
§Work done while the author was at Iowa State University. Research supported in part by NSF grant 0430807.

1

extraction is indeed possible. More specifically, they showed there is an efficient procedure A such
that for every x with Kolmogorov complexity αn, there exists a string ax, such that A(x, ax)
outputs a nearly Kolmogorov random string whose length is close to αn. Moreover, the length of
ax is O(log |x|), and contents of ax depend on x.

In this paper we show that we can extract Kolmogorov complexity with only constant bits
of additional information. We give a polynomial-time computable procedure which takes x with an
additional constant amount of advice and outputs a nearly Kolmogorov-random string whose length
is linear in m. Formally, for any α, ε > 0, given a string x with K(x) > α|x|, we show how to use a
constant number of advice bits to compute another string y, |y| = Ω(|x|), in polynomial-time that
satisfies K(y) > (1 − ε)|y|. The number of advice bits depends only on α and ε, but the content
of the advice depends on x. This computation needs only polynomial time, and yet it extracts
unbounded Kolmogorov complexity.

Our proofs use a construction of a multi-source extractor. Traditional extractor results [17, 28,
24, 16, 26, 20, 21, 25, 10, 23, 22, 5] show how to take a distribution with high min-entropy and
some truly random bits to create a close to uniform distribution. A multi-source extractor takes
several independent distributions with high min-entropy and creates a close to uniform distribution.
Thus multi-source extractors eliminate the need for a truly random source. Substantial progress
has been made recently in the construction of efficient multi-source extractors [2, 3, 19, 18]. In this
paper we use the construction due to Barak, Impagliazzo, and Wigderson [2] for our main result
on extracting Kolmogorov complexity.

To make the connection, consider the uniform distribution on the set of strings x whose Kol-
mogorov complexity is at most m. This distribution has min-entropy about m and x acts like a ran-
dom member of this set. We can define a set of strings x1, . . . , xk to be independent if K(x1 · · ·xk) ≈
K(x1) + · · · + K(xk). By symmetry of information this implies K(xi|x1, . . . , xi−1, xi+1, . . . , xk) ≈
K(xi). Suppose we are given independent Kolmogorov random strings x1, . . . xk, whose Kolmogorov
complexity is m. We view them as arising from k independent distributions each with min-entropy
m. We then argue that a multi-source extractor with small error can be used to output a nearly
Kolmogorov random string.

To extract the randomness from a single string x, we break x into a number of substrings
x1, . . . , xl, and view each substring xi as coming from a different random source. Of course, these
substrings may not be independently random in the Kolmogorov sense, thus we can not view these
strings as coming from independent sources. A useful concept is to quantify the dependency within
x as

∑l
i=1 K(xi)−K(x). We show that if the dependency within x is small, then the output of the

multi-source extractor on its substrings is a nearly Kolmogorov random string. Another technical
problem is that the randomness in x may not be nicely distributed among the substrings; for this
we need to use a small (constant) number of nonuniform advice bits.

This result about extracting Kolmogorov-randomness also holds for polynomial-space bounded
Kolmogorov complexity. We apply this to obtain zero-one laws for the strong dimensions of certain
complexity classes. Resource-bounded dimension and strong dimension [11, 1] were developed
as extensions of the classical Hausdorff and packing fractal dimensions to study the structure of
complexity classes. Dimension and strong dimension both refine resource-bounded measure and are
duals of each other in many ways. Strong dimension is also related to resource-bounded category
[8]. In this paper we focus on strong dimension.

The strong dimension of each complexity class is a real number between zero and one inclusive.
While there are examples of nonstandard complexity classes with fractional dimensions [1], we

2

do not know of a standard complexity class with this property. Can a natural complexity class
have a fractional dimension? In particular consider the class E. Determining its strong dimension
within ESPACE would imply a major separation. However, we are able to use our Kolmogorov-
randomness extraction procedure to obtain a zero-one law ruling out the intermediate fractional
possibility. Formally, we show that the strong dimension Dim(E | ESPACE) is either 0 or 1. The
zero-one law also holds for various other complexity classes.

Our techniques also apply in the constructive dimension setting [12]. Miller and Nies [14] asked
if it is possible to compute a set of higher constructive dimension from an arbitrary set of positive
constructive dimension. We answer the strong dimension variant of this question.

2 Preliminaries

2.1 Kolmogorov Complexity

Let M be a Turing machine. Let f : N → N. For any x ∈ {0, 1}∗, define

KM (x) = min{|π| | M(π) prints x}

and
KSf

M (x) = min{|π| | M(π) prints x using at most f(|x|) space}.

There is a universal machine U such that for every machine M , there is some constant c such that
for all x, KU (x) ≤ KM (x)+c and KScf+c

U (x) ≤ KSf
M (x)+c [9]. We fix such a machine U and drop

the subscript, writing K(x) and KSf (x), which are called the (plain) Kolmogorov complexity of x
and f-bounded (plain) Kolmogorov complexity of x. While we use plain complexity in this paper,
our results also hold for prefix-free complexity.

The following definition quantifies the fraction of randomness in a string.

Definition. For a string x, the rate of x is rate(x) = K(x)/|x|. For a polynomial g, the g-rate of
x is rateg(x) = KSg(x)/|x|.

We denote the uniform distribution over Σn with Un. Two distributions X and Y over Σn, are
ε-close if

1
2

∑
x∈Σn

|X(x)− Y (x)| ≤ ε.

Definition. Let X be a distribution over Σn and Sup(X) denotes the set {x ∈ Σn | Pr[X = x] 6= 0}.
The min-entropy of X is

min
x∈Sup(X)

log
1

Pr[X = x]
.

2.2 Polynomial-Space Dimension

We now review the definitions of polynomial-space dimension [11] and strong dimension [1]. For
more background we refer to these papers and the survey paper [7].

Let s > 0. An s-gale is a function d : {0, 1}∗ → [0,∞) satisfying 2sd(w) = d(w0) + d(w1) for
all w ∈ {0, 1}∗.

For a language A, we write A�n for the first n bits of A’s characteristic sequence (according to
the standard enumeration of {0, 1}∗) and A� [i, j] for the subsequence beginning from the ith bit and

3

ending at the jth bit. An s-gale d succeeds on a language A if lim sup
n→∞

d(A�n) = ∞ and d succeeds

strongly on A if lim inf
n→∞

d(A �n) = ∞. The success set of d is S∞[d] = {A | d succeeds on S}. The

strong success set of d is S∞
str[d] = {A | d succeeds strongly on S}.

Definition. Let X be a class of languages.

1. The pspace-dimension of X is

dimpspace(X) = inf
{

s

∣∣∣∣ there is a polynomial-space computable
s-gale d such that X ⊆ S∞[d]

}
.

2. The strong pspace-dimension of X is

Dimpspace(X) = inf
{

s

∣∣∣∣ there is a polynomial-space computable
s-gale d such that X ⊆ S∞

str[d]

}
.

For every X, 0 ≤ dimpspace(X) ≤ Dimpspace(X) ≤ 1. An important fact is that ESPACE has
pspace-dimension 1, which suggests the following definitions.

Definition. Let X be a class of languages.

1. The dimension of X within ESPACE is

dim(X | ESPACE) = dimpspace(X ∩ ESPACE).

2. The strong dimension of X within ESPACE is

Dim(X | ESPACE) = Dimpspace(X ∩ ESPACE).

In this paper we will use an equivalent definition of these dimensions in terms of space-bounded
Kolmogorov complexity.

Definition. Given a language L and a polynomial g the g-rate of L is

rateg(L) = lim inf
n→∞

rateg(L�n).

strong g-rate of L is
Rateg(L) = lim sup

n→∞
rateg(L�n).

Theorem 2.1. ([13, 6]) Let poly denote all polynomials. For every class X of languages,

dimpspace(X) = inf
g∈poly

sup
L∈X

rateg(L).

and
Dimpspace(X) = inf

g∈poly
sup
L∈X

Rateg(L).

4

3 Extracting Kolmogorov Complexity

Barak, Impagliazzo, and Wigderson [2] gave an explicit multi-source extractor.

Theorem 3.1. ([2]) For every constant 0 < σ < 1, and c > 1 there exist l = poly(1/σ, c), a
constant r and a computable function E : Σ`n → Σn such that if H1, · · · ,Hl are independent
distributions over Σn, each with min entropy at least σn, then E(H1, · · · ,Hl) is 2−cn-close to Un,
where Un is the uniform distribution over Σn. Moreover, E runs in time nr.

We show that this extractor can be used to produce nearly Kolmogorov-random strings from
strings with high enough complexity. The following notion of dependency is useful for quantifying
the performance of the extractor.

Definition. Let x = x1x2 · · ·xk, where each xi is an n-bit string. The dependency within x, dep(x),
is defined as

∑k
i=1 K(xi)−K(x).

Theorem 3.2. For every 0 < σ < 1 and large enough n, there exist a constant l > 1, and a
polynomial-time computable function E such that if x1, x2, · · ·xl are n-bit strings with K(xi) ≥ σn,
1 ≤ i ≤ l, then

K(E(x1, · · · , xl)) ≥ n− 10l log n− dep(x),

where x = x1x2 · · ·xl.

Proof. Let 0 < σ′ < σ. By Theorem 3.1, there is a constant l and a polynomial-time computable
multi-source extractor E such that if H1, · · · ,Hl are independent sources each with min-entropy
at least σ′n, then E(H1, · · · ,Hl) is 2−5n close to Un.

We show that this extractor also extracts Kolmogorov complexity. We prove by contradiction.
Suppose the conclusion is false, i.e,

K(E(x1, · · ·xl)) < n− 10l log n− dep(x).

Let K(xi) = mi, 1 ≤ i ≤ l. Define the following sets:

Ii = {y | y ∈ Σn,K(y) ≤ mi},

Z = {z ∈ Σn | K(z) < n− 10l log n− dep(x)},

Small = {〈y1, · · · , yl〉 | yi ∈ Ii, and E(y1, · · · yl) ∈ Z}.

By our assumption 〈x1, · · ·xl〉 belongs to Small. We use this to arrive at a contradiction
regarding the Kolmogorov complexity of x = x1x2 · · ·xl. We first calculate an upper bound on the
size of Small.

Observe that the set {xy |x ∈ Σσ′n, y = 0n−σ′n} is a subset of each of Ii. Thus the cardinality
of each of Ii is at least 2σ′n. Let Hi be the uniform distribution on Ii. Thus the min-entropy of Hi

is at least σ′n.
Since Hi’s have min-entropy at least σ′n, E(H1, · · · ,Hl) is 2−5n-close to Un. Then∣∣∣P [E(H1, . . . ,Hl) ∈ Z]− P [Un ∈ Z]

∣∣∣ ≤ 2−5n. (1)

5

Note that the cardinality of Ii is at most 2mi+1, as there are at most 2mi+1 strings with Kolmogorov
complexity at most mi. Thus Hi places a weight of at least 2−mi−1 on each string from Ii. Thus
H1 × · · · ×Hl places a weight of at least 2−(m1+···+ml+l) on each element of Small. Therefore,

P [E(H1, . . . ,Hl) ∈ Z] = P [(H1, . . . ,Hl) ∈ Small] ≥ |Small| · 2−(m1+···+ml+l),

and since |Z| ≤ 2n−10l log n−dep(x), from (1) we obtain

|Small| < 2m1+1 × · · · × 2ml+1 ×

(
2n−10l log n−dep(x)

2n
+ 2−5n

)

Without loss of generality we can take dep(x) < n, otherwise the theorem is trivially true. Thus
2−5n < 2−10l log n−dep(x). Using this and the fact that l is a constant independent of n, we obtain

|Small| < 2m1+···+ml−dep(x)−8l log n,

when n is large enough. Since K(x) = K(x1) + · · ·+ K(xl)− dep(x),

|Small| < 2K(x)−8l log n.

We first observe that there is a program Q that, given the values of mi’s, n, l, and dep(x)
as auxiliary inputs, recognizes the set Small. This program works as follows: Let z = z1 · · · zl,
where |zi| = n. For each program Pi of length at most mi check whether Pi outputs zi, by running
the Pi’s in a dovetail fashion. If it is discovered that for each of zi, K(zi) ≤ mi, then compute
y = E(z1, · · · , zl). Now verify that K(y) is at most n− dep(x)− 10l log n. This again can be done
by running programs of the length at most n − dep(x) − 10l log n in a dovetail manner. If it is
discovered that K(y) is at most n− dep(x)− 10l log n, then accept z.

So given the values of parameters n, dep(x), l and mis, there is a program P that enumerates
all elements of Small. Since by our assumption x belongs to Small, x appears in this enumeration.
Let i be the position of x in this enumeration. Since |Small| is at most 2K(x)−8l log n, i can be
described using K(x)− 8l log n bits.

Thus there is a program P ′ based on P that outputs x. This program takes i, dep(x), n,
m1, · · · ,ml, and l, as auxiliary inputs. Since the mi’s and dep(x) are bounded by n,

K(x) ≤ K(x)− 8l log n + 2 log n + l log n + O(1)
≤ K(x)− 5l log n + O(1),

which is a contradiction.

If x1, · · ·xl are independent strings with K(xi) ≥ σn, then E(x1, · · · , xl) is a Kolmogorov
random string of length n.

Corollary 3.3. For every constant 0 < σ < 1, there exists a constant l, and a polynomial-time
computable function E such that if x1, · · ·xl are n-bit strings such K(xi) ≥ σn, and K(x1x2 · · ·xl) =∑

K(xi)−O(log n), then E(x1, · · · , xl) is Kolmogorov random, i.e.,

K(E(x1, · · · , xl)) > n−O(log n).

6

This theorem says that given x ∈ Σln, if each piece xi has high enough complexity and the
dependency with x is small, then we can output a string y whose Kolmogorov rate is higher than
the Kolmogorov rate of x, i.e, y is relatively more random than x. What if we only knew that
x has high enough complexity but knew nothing about the complexity of individual pieces or the
dependency within x? Our next theorem states that in this case also there is a procedure producing
a string whose rate is higher than the rate of x. However, this procedure needs constant bits of
advice.

Theorem 3.4. For all real numbers 0 < α < β < 1 there exist a constant 0 < γ < 1, constants
c, l, n0 ≥ 1, and a procedure R such that the following holds. For any string x with |x| ≥ n0 and
rate(x) ≥ α, there exists an advice string ax such that

rate(R(x, ax)) ≥ min{rate(x) + γ, β}

where |ax| = c. Moreover, R runs in polynomial time, and |R(x, ax)| = b|x|/lc.
The number c depends only on α, β and is independent of x. However, the contents of ax depend

on x.

Proof. Let α′ < α and ε < min{1−β, α′}. Let σ = (1−ε)α′. Using parameter σ in Theorem 3.2, we
obtain a constant l > 1 and a polynomial-time computable function E that extracts Kolmogorov
complexity.

Let β′ = 1− ε
2 , and γ = ε2

2l . Observe that γ ≤ 1−β′

l and γ < α′−σ
l .

Let x have rate(x) = ν ≥ α. Let n, k ≥ 0 such that |x| = ln + k and k < l. We strip the last
k bits from x and write x = x1 · · ·xl where each |xi| = n. Let ν ′ = rate(x) after this change. We
have ν ′ > ν − γ/2 and ν ′ > α′ if |x| is sufficiently large.

We consider three cases.
Case 1. There exists j, 1 ≤ j ≤ l such that K(xj) < σn.
Case 2. Case 1 does not hold and dep(x) ≥ γln.
Case 3. Case 1 does not hold and dep(x) < γln.

We have two claims about Cases 1 and 2:

Claim 3.4.1. Assume Case 1 holds. There exists i, 1 ≤ i ≤ l, such that rate(xi) ≥ ν ′ + γ.

Proof of Claim 3.4.1. Suppose not. Then for every i 6= j, 1 ≤ i ≤ l, K(xi) ≤ (ν ′ + γ)n. We can
describe x by describing xj which takes σn bits, and all the xi’s, i 6= j. Thus the total complexity
of x would be at most

(ν ′ + γ)(l − 1)n + σn + O(log n)

Since γ < α′−σ
l and α′ < ν ′ this quantity is less than ν ′ln. Since the rate of x is ν ′, this is a

contradiction. � Claim 3.4.1

Claim 3.4.2. Assume Case 2 holds. There exists i, 1 ≤ i ≤ l, rate(xi) ≥ ν ′ + γ.

Proof of Claim 3.4.2. By definition,

K(x) =
l∑

i=1

K(xi)− dep(x)

7

Since dep(x) ≥ γln and K(x) ≥ ν ′ln,

l∑
i=1

K(xi) ≥ (ν ′ + γ)ln.

Thus there exists i such that rate(xi) ≥ ν ′ + γ. � Claim 3.4.2

We can now describe the constant number of advice bits. The advice ax contains the following
information: which of the three cases described above holds, and

• If Case 1 holds, then from Claim 3.4.1 the index i such that rate(xi) ≥ ν ′ + γ.

• If Case 2 holds, then from Claim 3.4.2 the index i such that rate(xi) ≥ ν ′ + γ.

Since 1 ≤ i ≤ l, the number of advice bits is bounded by O(log l). We now describe procedure
R. When R takes an input x, it first examines the advice ax. If Case 1 or Case 2 holds, then R
simply outputs xi. Otherwise, Case 3 holds, and R outputs E(x). Since E runs in polynomial time,
R runs in polynomial time.

If Case 1 or Case 2 holds, then

rate(R(x, ax)) ≥ ν ′ + γ ≥ ν + γ
2 .

If Case 3 holds, we have R(x, ax) = E(x) and by Theorem 3.2, K(E(x)) ≥ n−10 log n−γln. Since
γ ≤ 1−β′

l , in this case
rate(R(x, ax)) ≥ β′ − 10 log n

n .

For large enough n, this value is at least β. Therefore in all three cases, the rate increases by at
least γ/2 or reaches β.

We now prove our main theorem.

Theorem 3.5. Let α and β be constants with 0 < α < β < 1. There exist a polynomial-time
procedure P (·, ·) and constants C1, C2, n1 such that for every x with |x| ≥ n1 and rate(x) ≥ α there
exists a string ax with |ax| = C1 such that

rate(P (x, ax)) ≥ β

and |P (x, ax)| ≥ |x|/C2.

Proof. We apply the procedure R from Theorem 3.4 iteratively. Each application of R outputs a
string whose rate is at least β or is at least γ more than the rate of the input string. Applying R
at most k = d(β − α)/γe times, we obtain a string whose rate is at least β.

Note that R(y, ay) has output length |R(y, ay)| = b|y|/lc and increases the rate of y if |y| ≥ n0.
If we take n1 = (n0 +1)kl, we ensure that in each application of R we have a string whose length is
at least n0. Each iteration of R requires c bits of advice, so the total number of advice bits needed
is C1 = kc. Thus C1 depends only on α and β. Each application of R decreases the length by a
constant fraction, so there is a constant C2 such that the length of the final outputs string is at
least |x|/C2.

8

The proofs in this section also work for space-bounded Kolmogorov complexity. For this we
need a space-bounded version of dependency.

Definition. Let x = x1x2 · · ·xk where each xi is an n-bit string, let f and g be two space bounds.
The (f, g)-bounded dependency within x, depf

g (x), is defined as
∑k

i=1 KSg(xi)−KSf (x).

We obtain the following version of Theorem 3.2.

Theorem 3.6. For every polynomial g there exists a polynomial f such that for every 0 < σ < 1,
there exist a constant l > 1, and a polynomial-time computable function E such that if x1, · · · , xl

are n-bit strings with KSf (xi) ≥ σn, 1 ≤ i ≤ l, then

KSg(E(x1, · · · , xl)) ≥ n− 10l log n− depf
g (x).

Similarly we obtain the following extension of Theorem 3.5.

Theorem 3.7. Let g be a polynomial and let α and β be constants with 0 < α < β < 1. There
exist a polynomial f , polynomial-time procedure R(·, ·), and constants C1, C2, n1 such that for every
x with |x| ≥ n1 and ratef (x) ≥ α there exists a string ax with |ax| = C1 such that

rateg(R(x, ax)) ≥ β

and |R(x, ax)| ≥ |x|/C2.

4 Zero-One Laws for Complexity Classes

In this section we establish a zero-one law for the strong dimensions of certain complexity classes.

Lemma 4.1. Let g be any polynomial and α, θ be rational numbers with 0 < α < θ < 1. Then
there is a polynomial f such that if there exists L ∈ E with Ratef (L) ≥ α, then there exists L′ ∈ E
with Rateg(L′) ≥ θ.

Proof. Let β be a real number bigger than θ and smaller than 1 and f = ω(g). Pick positive
integers C and K such that (C − 1)/K < 3α/4, and (C−1)β

C > θ. Let n1 = 1, ni+1 = Cni.
We now define strings y1, y2, · · · such that each yi is a substring of the characteristic sequence of

L or is in 0∗, and |yi| = (C − 1)ni/K. While defining these strings we will ensure that for infinitely
many i, ratef (yi) ≥ α/4.

We now define yi. We consider three cases.
Case 1. ratef (L�ni) ≥ α/4. Divide L�ni in to K/(C − 1) segments such that the length of each
segment is (C − 1)ni/K. It is easy to see that at least for one segment the f -rate is at least α/4.
Define yi to be a segment with ratef (yi) ≥ α/4.
Case 2. Case 1 does not hold and for every j, ni < j < ni+1, ratef (L � j) < α. In this case we

punt and define yi = 0
(C−1)ni

K .
Case 3. Case 1 does not hold and there exists j, ni < j < ni+1 such that ratef (L�j) > α. Divide
L� [ni, ni+1] into K segments. Since ni+1 = Cni, length of each segment is (C − 1)ni/K.

Then it is easy to show that some segment has f -rate at least α/4. We define yi to be this
segment.

9

Since for infinitely many j, ratef (L�j) ≥ α, for infinitely many i either Case 1 or Case 3 holds.
Thus for infinitely many i, ratef (yi) ≥ α/4.

By Theorem 3.7, there is a procedure R with such that given a string x with ratef (x) ≥ α/4,
and the advice ax, rateg(R(x, ax)) ≥ β.

Let wi = R(yi, ayi). Since for infinitely many i, ratef (yi) ≥ α/4, for infinitely many i,
rateg(wi) ≥ β. Also recall that |wi| = |yi|/C2 for an absolute constant C2.

Claim 4.1.1. |wi+1| ≥ (C − 1)
∑i

j=1 |wj |.

Proof of Claim 4.1.1. We have

i∑
j=1

|wj | ≤
C − 1
KC2

i∑
j=1

nj =
C − 1
KC2

(Ci − 1)n1

C − 1
,

with the equality holding because nj+1 = Cnj . Also,

|wi+1| =
(C − 1)ni+1

KC2
≥ (C − 1)Cin1

KC2

Thus
|wi+1|∑i
j=1 |wj |

> (C − 1).

� Claim 4.1.1

Claim 4.1.2. For infinitely many i, rateg(w1 · · ·wi) ≥ θ.

Proof of Claim 4.1.2. For infinitely many i, rateg(wi) ≥ β, which means KSg(wi) ≥ β|wi| and
therefore

KSg(w1 · · ·wi) ≥ β|wi| −O(1).

By Claim 4.1.1, |wi| ≥ (C − 1)(|w1| + · · · + |wi−1|). Thus for infinitely many i, rateg(w1 · · ·wi) ≥
(C−1)β

C − o(1) ≥ θ. � Claim 4.1.2

We define w1w2 · · · to be the characteristic sequence of L′. Then by Claim 4.1.2, Rateg(L′) ≥ θ.
Next, we argue that if L is in E, then L′ is in E/O(1). Observe that wi depends on yi and ayi ,

thus each bit of wi can be computed by knowing yi and ayi . Recall that yi is either a subsegment
of the characteristic sequence of L or 0ni . We will know yi if we know which of the three cases
mentioned above hold. This can be given as advice. Also observe that yi is a subsequence of
L � ni+1. Also recall that wi can be computed from yi in time polynomial in |yi| using constant
bits of advice ayi . Since |wi| = |yi|/C2 for some absolute constant C2, the running time needed to
compute wi is also polynomial in |wi|. Since L is in E, this places L′ in E/O(1).

Finally, we observe that the advice can be removed to obtain a language in E. Let I be the
set of all i such that rateg(w1 · · ·wi) ≥ θ. Let A be the set of all advice strings that are used in
computing wi from L�ni+1 for i ∈ I. Since I is infinite and A is finite, there must be some advice
string a ∈ A that can be used to compute infinitely many of the wi’s. We hardcode a into the
algorithm for computing L′. Call the new language we get L′′. We have L′′ ∈ E. Infinitely often,
L′′ will be the same as L′ on a wi stretch, and it can be different elsewhere. Observe that in the
proof of Claim 4.1.2 changing the strings w1, . . . , wi−1 has no effect. It follows that Rateg(L′′) ≥ θ.
This completes the proof of Lemma 4.1.

10

Theorem 4.2. Dim(E | ESPACE) is either 0 or 1.

Proof. Because E ⊆ ESPACE, Dim(E | ESPACE) = Dimpspace(E). We will show that if Dimpspace(E) >
0, then Dimpspace(E) = 1. For this, it suffices to show that for every polynomial g and real number
0 < θ < 1, there is a language L′ in E with Rateg(L′) ≥ θ. By Theorem 2.1, this will show that
the strong pspace-dimension of E is 1.

The assumption states that the strong pspace-dimension of E is greater than 0. If the strong
pspace-dimension of E is actually one, then we are done. If not, let α be a positive rational number
that is less than Dimpspace(E). By Theorem 2.1, for every polynomial f , there exists a language
L ∈ E with Ratef (L) ≥ α.

By Lemma 4.1, from such a language L we obtain a language L′ in E with Rateg(L′) ≥ θ. Thus
the strong pspace-dimension of E is 1.

The zero-one law in Theorem 4.2 also holds for many other complexity classes.

Theorem 4.3. Let C be a class that is closed under exponential-time truth-table reductions. Then
Dim(C | ESPACE) is either 0 or 1.

Therefore additional examples of classes the zero-one law holds for include NE ∩ coNE, BPE, and
ENP.

Remark. Theorem 4.2 concerns strong dimension. For dimension, the situation is considerably
more complicated. With our techniques we can prove that if dimpspace(E) > 0, then dimpspace(E/O(1)) ≥
1/2. It appears that a different method is needed to eliminate the advice or increase the dimension
past 1/2.

5 Increasing Constructive Strong Dimension

Miller and Nies [14] asked if every set of positive constructive dimension computes (by way of a
Turing reduction) a set of higher constructive dimension. Our techniques yield a positive answer
for the variant of this question using strong dimension instead of dimension. For a set S, the
constructive strong dimension [1] of S is defined by

Dim(S) = lim sup
n→∞

K(S �n)
n

.

Theorem 5.1. If Dim(S) > 0, then for every ε > 0, there exists R ≤T S such that Dim(R) > 1−ε.

The proof of Theorem 5.1 is the same as Lemma 4.1, except instead of Theorem 3.7 we use
Theorem 3.5. The reduction we obtain is actually an exponential-time truth-table reduction, so
in particular it is a weak truth-table reduction. In contrast, Nies and Reimann [15] showed that
this is sometimes impossible for constructive dimension: there exists S with dim(S) > 0 such that
every set which weak truth-table reduces to S has dim(R) ≤ dim(S).

Acknowledgments

We thank Xiaoyang Gu and Philippe Moser for several helpful discussions.

11

References

[1] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimen-
sion in algorithmic information and computational complexity. SIAM Journal on Computing,
37(3):671–705, 2007.

[2] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness using few independent
sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 384–393. IEEE Computer Society, 2004.

[3] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:
new constructions of condensers, ramsey graphs, dispersers, and extractors. In Proceedings of
the 37th ACM Symposium on Theory of Computing, pages 1–10, 2005.

[4] H. Buhrman, L. Fortnow, I. Newman, and N. Vereshchagin. Increasing Kolmogorov complexity.
In Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science, volume
3404 of Lecture Notes in Computer Science, pages 412–421, 2005.

[5] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. In Proceedings of the 26th Annual IEEE Conference on Founda-
tions of Computer Science, pages 429–442, 1985.

[6] J. M. Hitchcock. Effective Fractal Dimension: Foundations and Applications. PhD thesis,
Iowa State University, 2003.

[7] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity classes.
SIGACT News, 36(3):24–38, September 2005.

[8] J. M. Hitchcock and A. Pavan. Resource-bounded strong dimension versus resource-bounded
category. Information Processing Letters, 95(3):377–381, 2005.

[9] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications.
Springer-Verlag, Berlin, 1997. Second Edition.

[10] C-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to a constant
factor. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
602–611, 2003.

[11] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236–1259,
2003.

[12] J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation,
187(1):49–79, 2003.

[13] E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimen-
sion. Information Processing Letters, 84(1):1–3, 2002.

[14] J. S. Miller and A. Nies. Randomness and computability: open questions. Bulletin of Symbolic
Logic, 12(3):390–410, 2006.

12

[15] A. Nies and J. Reimann. A lower cone in the wtt degrees of non-integral effective dimension.
In Proceedings of IMS Workshop on Computational Prospects of Infinity. To appear.

[16] N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructions. Journal
of Computer and System Sciences, 42(2):149–167, 1999.

[17] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System
Sciences, 52(1):43–52, 1996.

[18] A. Rao. Extractors for a constant number of polynomially small min-entropy independent
sources. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages
497–506, 2006.

[19] R. Raz. Extractors with weak random seeds. In Proceedings of the 37th ACM Symposium on
Theory of Computing, pages 11–20, 2005.

[20] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing.
In Proceedings of the 41st Annual Conference on Foundations of Computer science, 2000.

[21] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new
constant-degree expanders and extractors. In Proceedings of the 41st Annual IEEE Conference
on Foundations of Computer Science, 2000.

[22] M. Santha and U. Vazirani. Generating quasi-random sequences from slightly random sources.
In Proceedings of the 25th Annual IEEE Conference on Foundations of Computer Science,
pages 434–440, 1984.

[23] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random
generator. In Proceedings of the 42nd Annual Conference on Foundations of Computer Science,
2001.

[24] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. SIAM Journal
on Computing, 28(4):1433–1459, 1999.

[25] A. Ta-Shma, D. Zuckerman, and M. Safra. Extractors from reed-muller codes. In Proceedings
of the 42nd Annual Conference on Foundations of Computer Science, 2001.

[26] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(1):860–879,
2001.

[27] N. Vereshchagin and M. Vyugin. Independent minimum length programs to translate between
given strings. Theoretical Computer Science, 271:131–143, 2002.

[28] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algorithms,
11:345–367, 1997.

13

