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Here is a real gift to the field from David Johnson: After a thirteen year intermis-
sion, David is restarting his NP-completeness column. His column will now appear about
twice yearly in ACM Transactions on Algorithms. Welcome back David, and thanks!
And for those for whom a diet of two per year won’t do, meals past can be found at
http://www.research.att.com/˜dsj/columns.html.

As to the Complexity Theory Column, warmest thanks to Elvira, Jack, and John for their
wonderful guest column on The Fractal Geometry of Complexity Classes in this issue. Upcoming
articles include Neil Immerman on Recent Progress in Descriptive Complexity, Piotr Faliszewski
and me on Open Questions in the Theory of Semifeasible Computation, and Omer Reingold on a
topic TBA.

Guest Column: The Fractal Geometry of Complexity Classes1

John M. Hitchcock2 Jack H. Lutz3 Elvira Mayordomo4

1 Introduction

Research developments since early 2000 have transformed powerful methods from geometric mea-
sure theory into high-precision quantitative tools for investigating the structure of complexity
classes. This column gives an overview of the very early days (i.e., all the days so far) of this
line of inquiry, along with a little bit of its prehistory.

We begin our story not at the beginning (Euclid), but in 1918, when the mathematician Felix
Hausdorff [22] showed how to assign each subset X of an arbitrary metric space a dimension
that is now called the Hausdorff dimension of X, denoted by dimH(X). For “smooth” sets X,
Hausdorff dimension agrees with our most basic intuitions (e.g., smooth curves are 1-dimensional;
smooth surfaces are 2-dimensional), but Hausdorff noted at the outset that many sets X have
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“fractional dimension,” by which he meant that dimH(X) may be any nonnegative real number,
not necessarily an integer. Hausdorff dimension has become one of the most powerful tools of
fractal geometry, an extensively developed subfield of geometric measure theory with applications
throughout the sciences [17, 63, 14, 16, 15, 12, 13, 57]. In the 1980s Tricot [75] and Sullivan [74]
independently developed a dual of Hausdorff dimension called packing dimension and denoted by
dimP(X), that now rivals Hausdorff dimension’s importance in such investigations. In general,
dimH(X) ≤ dimP(X), with equality if X is sufficiently “regular.”

The connection between these fractal dimensions and computational complexity was made via
martingales. A martingale is a strategy for betting on the successive bits of infinite binary sequences
with fair payoffs. Martingales were introduced by Ville [77] in 1939 (having been implicit in earlier
works of Lévy [42, 43]). In the early 1970s, following Martin-Löf’s use of constructive measure theory
to give the first satisfactory definition of the randomness of individual infinite binary sequences [56],
Schnorr [66, 67, 68, 69] used martingales extensively in his investigations of randomness.5 Of some
relevance to our story here, Schnorr used the growth rates of computable martingales (rates at
which their capital grows as they bet on various sequences) to investigate the relationships among
various randomness notions.

The first observations connecting growth rates of martingales to fractal dimensions were made
by Ryabko [64, 65] and Staiger [72] in the 1990s. These observations were quantitative theorems
relating the Hausdorff dimension of a set X of binary sequences to the growth rates achievable by
computable martingales betting on the sequences in X.6

The precise and general nature of the relationship suggested by Ryabko and Staiger’s theorems
became clear in 2000, when Lutz proved the gale characterization of Hausdorff dimension [50, 52].
Briefly, if s is a nonnegative real number (most interesting when 0 < s ≤ 1), an s-gale is a function
d of the form d(w) = 2(s−1)|w|d′(w), where d′ is a martingale [51]. A martingale is thus a 1-gale.
The gale characterization says that the Hausdorff dimension of a set X of infinite binary sequences
is simply the infimum s for which there exists an s-gale d that, when betting on any element of X,
wins unbounded money. This is exactly the infimum s such that the above-mentioned martingale d′

grows, in an infinitely-often sense, at least as fast as 2(1−s)|w| on prefixes w of sequences in X.7 Thus
the gale characterization gives an exact relationship between the Hausdorff dimension of X and
the growth rates achievable by (not necessarily computable) martingales betting on the sequences
in X. In 2004, Athreya, Lutz, Hitchcock, and Mayordomo [4] proved that packing dimension also
admits a gale characterization, the only difference being that the s-gale’s money is now required to
converge to infinity.

The most important benefit of the gale characterization of fractal dimension is that it enables
one to define effective versions of fractal dimension by imposing various computability and com-
plexity constraints on the gales. For example, the feasible dimension of a set X (written dimp(X),
the p-dimension of X) is the infimum s for which there exists a polynomial-time computable s-gale d
that wins unbounded money on every sequence in X. Other effective dimensions that are useful in
complexity theory include p2-dimension (quasipolynomial-time dimension) and pspace-dimension.
Effective dimensions that have been useful outside of complexity theory include constructive di-
mension, introduced in [51, 53] and surveyed in the forthcoming book by Downey and Hirschfeldt

5Doob [10] modified Ville’s definition, and the resulting notion is now a central notion of probability theory.
Schnorr’s investigations of randomness, Lutz’s development of resource-bounded measure [47, 49], and the effective
fractal dimensions discussed in this column all use Ville’s definition rather than Doob’s. The necessity of this choice
is explained in [30].

6See pages 72-73 of [53] for a more detailed review of the above-mentioned work of Schnorr, Ryabko, and Staiger,
including work by the latter two and Cai and Hartmanis [8] relating Kolmogorov complexity to Hausdorff dimension.

7By this we mean that each sequence in X has infinitely many prefixes w at which d′(w) ≥ 2(1−s)|w|.
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[11]; computable dimension, introduced in [52] and discussed in [11]; and finite-state dimension [9].
Our objective here is to survey applications of effective dimension in computational complexity.

We do this in two stages. In Part I (Sections 2-7) we discuss applications of feasible dimension
and other resource-bounded dimensions to questions about circuit-size complexity, polynomial-time
degrees, the dimension of NP, zero-one laws, and oracle classes. Part II (Sections 8-11) concerns
scaled dimensions. As their name suggests, these are versions of resource-bounded dimension
that have been “rescaled” to better fit the phenomena that they are measuring. Applications
of scaled dimensions to circuit-size complexity, polynomial-time degrees, and the dimension of NP
are discussed.

Both parts of this survey begin by introducing the fundamental properties of the fractal dimen-
sions to be discussed.

I. Dimension

2 Foundations

Formally, if s ∈ [0,∞), then an s-gale is a function d : {0, 1}∗ → [0,∞) satisfying the condition

d(w) = 2−s[d(w0) + d(w1)] (2.1)

for all w ∈ {0, 1}∗ [52]. A martingale is a 1-gale.
Intuitively, we think of a gale d as a strategy for betting on the successive bits of a sequence

S. (All sequences here are infinite and binary.) The quantity d(w) is interpreted as the capital
(amount of money) that a gambler using the strategy d has after betting on the successive bits of
the prefix w of S. The parameter s regulates the fairness of the payoffs via identity (2.1). If s = 1,
the payoffs are fair in the usual sense that the conditional expectation of the gambler’s capital
d(wb), given that w has occurred, is precisely d(w), the gambler’s actual capital before betting on
the last bit of wb. If s < 1, then the payoffs are unfair, and the smaller s is, the more unfair the
payoffs are.

A gale d succeeds on a sequence S if

lim sup
w→S

d(w) = ∞

and succeeds strongly on S if
lim inf
w→S

d(w) = ∞.

The success set S∞[d] of a gale d is the set of all sequences on which d succeeds. The strong success
set S∞str[d] is the set of all sequences on which d succeeds strongly.

The original definitions of Hausdorff dimension [22] and packing dimension [75, 74] are ingenious,
but the following characterizations are usually more convenient for work in the theory of computing.

Theorem 2.1. (gale characterization of fractal dimension) Let X be a set of sequences.

1. (Lutz [52]) dimH(X) = inf{s | there is an s-gale d such that X ⊆ S∞[d]}.

2. (Athreya et al. [4]) dimP(X) = inf{s | there is an s-gale d such that X ⊆ S∞str[d]}.
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Intuitively, Theorem 2.1 says that the fractal dimension of a set X of sequences is the most
hostile environment (i.e., most unfair payoff parameter s) in which a gambler can win on every
sequence in X. Of course, the word “win” here means “succeed” in the case of Hausdorff dimension
and “succeed strongly” in the case of packing dimension.

It is easy to see that 0 ≤ dimH(X) ≤ dimP(X) ≤ 1 holds in any case. Both of these frac-
tal dimensions are monotone (i.e., X ⊆ Y implies dim(X) ≤ dim(Y )), countably stable (i.e.,
dim(

⋃∞
i=0 Xi) = supi dim(Xi)), and nonatomic (i.e., dim({S}) = 0 for each sequence S) [16].

In particular, every countable set of sequences has Hausdorff and packing dimension 0.
We say that a gale d : {0, 1}∗ → [0,∞) is p-computable if there is a function d̂ : {0, 1}∗×N → Q

such that d̂(w, r) is computable in time polynomial in |w|+ r and |d̂(w, r)− d(w)| ≤ 2−r holds for
all w and r. Gales that are pspace-computable, p2-computable, p3-computable, etc., are defined
analogously, with d̂(w, r) required to be computable in space polynomial in |w| + r (with output
included as space) in the case of pspace-computability, computable in 2(log(|w|+r))O(1)

time in the

case of p2-computability, and computable in 22(log log(|w|+r))O(1)

time in the case of p3-computability.
We are finally ready to bring this all home to complexity classes. We identify each language (i.e.,

decision problem) A ⊆ {0, 1}∗ with its characteristic sequence, whose nth bit is 1 if the nth string in
{0, 1}∗ (in the standard enumeration λ, 0, 1, 00, 01, . . .) is an element of A, and 0 otherwise. We say
that a gale succeeds on A if it succeeds on the characteristic sequence of A and similarly for strong
success. We now show how to define fractal dimension in the complexity classes E = TIME(2linear),
E2 = EXP = TIME(2polynomial), E3 = TIME(2quasipolynomial), and ESPACE = SPACE(2linear).

Definition. ([52, 4]) Let X be a set of languages.

1. If ∆ is any of the resource bounds p, p2 , p3 , or pspace, then the ∆-dimension of X is

dim∆(X) = inf{s | there is a ∆-computable s-gale d such that X ⊆ S∞[d] },

and the strong ∆-dimension of X is

Dim∆(X) = inf{s | there is a ∆-computable s-gale d such that X ⊆ S∞str[d]}.

2. The dimension of X in E is dim(X | E) = dimp(X ∩ E).

3. The dimension of X in EXP is dim(X | EXP) = dimp2
(X ∩ EXP).

4. The dimension of X in E3 is dim(X | E3) = dimp3
(X ∩ E3).

5. The dimension of X in ESPACE is dim(X | ESPACE) = dimpspace(X ∩ ESPACE).

6. The strong dimensions Dim(X | E), Dim(X | EXP), Dim(X | E3), and Dim(X | ESPACE)
are defined analogously.

By Theorem 2.1, dim(X | C) and Dim(X | C) are analogs of Hausdorff and packing dimension,
respectively. It was shown in [52, 4] that these analogs are in fact well-behaved, internal dimensions
in the classes C that we have mentioned. In all these classes, 0 ≤ dim(X | C) ≤ Dim(X | C) ≤ 1
hold, with dim(C | C) = 1.

A crucial property of fractal dimensions in complexity classes is that they are robust, meaning
that they admit several equivalent formulations. Although space does not permit us to elaborate, we
mention two of these. First, Hitchcock [26] proved that, for any of the above-mentioned resource
bounds ∆, ∆-dimension is precisely unpredictability by ∆-computable predictors in the log-loss
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model of prediction, and it was shown in [4] that strong ∆-dimension admits a dual unpredictability
characterization. When combined with results by Fortnow and Lutz [19], this characterization also
yielded new relationships between log-loss prediction and linear-loss prediction.

Resource-bounded fractal dimensions have also been characterized in terms of data compres-
sion. Hitchcock [25, 35] obtained a characterization of pspace-dimension in terms of space-bounded
Kolmogorov complexity that is closely analogous to Mayordomo’s Kolmogorov complexity char-
acterization of constructive dimension [59]. Obtaining a data compression characterization of p-
dimension was more problematic, but López-Valdés and Mayordomo [45] have recently achieved
this.

We briefly mention the relationships between resource-bounded dimension and two of its fore-
runners: resource-bounded measure [47, 49] and resource-bounded category [46]. For measure, the
relationship is straightforward: a set X has ∆-measure 0 if there is a ∆-computable martingale
(i.e., a 1-gale) that succeeds on all of its elements, so dim(X | C) < 1 implies µ(X | C) = 0 in any
case, but the converse has many counterexamples. For resource-bounded category, the situation
is different for dimension and strong dimension. It is easy to see that a set X can be meager in
C while satisfying either dim(X | C) = 0 or dim(X | C) = 1 and that X can also be comeager
in C while satisfying either of these conditions, so resource-bounded dimension is independent of
resource-bounded category. On the other hand, Hitchcock and Pavan [33] have recently shown that
Dim(X | C) < 1 implies that X is meager in C, i.e., that there is a definite relationship between
resource-bounded strong dimension and resource-bounded category.

3 Circuit-Size Complexity I

The relationship between uniform and nonuniform complexity measures is one of the most impor-
tant issues in computational complexity. One approach to this issue is to investigate the sizes of
(nonuniform) circuit-size complexity classes in time- and space-complexity classes. Lutz initiated
this approach in [47] by showing that the Boolean circuit-size complexity class SIZEi.o.(2n

n ) has
measure 0 in ESPACE, thereby improving Shannon’s [71] lower bound of α2n

n for every α < 1 on
almost every language.

In this section we use fractal dimensions in complexity classes to obtain more quantitative
results along these lines. To make our notation precise, the circuit-size complexity of a language
A ⊆ {0, 1}∗ is the function CSA : N → N, where CSA(n) is the number of gates in the smallest
n-input Boolean circuit that decides A ∩ {0, 1}n. For each function f : N → N, we define the
circuit-size complexity classes

SIZE(f) = {A ⊆ {0, 1}∗ | (∀∞n)CSA(n) ≤ f(n)},

SIZEi.o.(f) = {A ⊆ {0, 1}∗ | (∃∞n)CSA(n) ≤ f(n)}.

Then P/poly =
⋃

k∈N SIZE(nk) is the class of languages decidable by polynomial-size circuits, and
similarly P/polyi.o. =

⋃
k∈N SIZEi.o.(nk).

The following theorem shows how the dimension of a circuit-size complexity class varies with
the bound that defines it.

Theorem 3.1. ([52, 4]) For every α ∈ [0, 1],

dim
(
SIZE

(
α2n

n

)∣∣ ESPACE
)

= Dim
(
SIZE

(
α2n

n

)∣∣ ESPACE
)

= α.
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For time-complexity classes, the main uniform versus nonuniform complexity separations are
open. For example, it is not known whether EXP is contained in P/poly. Lutz [47] showed that
P/polyi.o. has measure 0 in the larger class E3, and that for each fixed k ≥ 1, SIZEi.o.(nk) has
measure 0 in EXP. This result was improved to dimension 0, but only for the almost-everywhere
versions of these classes.

Theorem 3.2. (Hitchcock and Vinodchandran [35]) P/poly has dimension 0 in E3. For fixed
k ≥ 1, SIZE(nk) has dimension 0 in EXP.

More recently, Gu used relationships between Kolmogorov complexity and circuit-size complex-
ity [1] to handle the infinitely-often classes, and to consider strong dimension.

Theorem 3.3. (Gu [21])

1. Dim(P/poly | E3) = 0. For fixed k ≥ 1, Dim(SIZE(nk) | EXP) = 0.

2. dim(P/polyi.o. | E3) = 1/2. For fixed k ≥ 1, dim(SIZEi.o.(nk) | EXP) = 1/2.

3. Dim(P/polyi.o. | EXP) = Dim(P/polyi.o. | E3) = 1.

Part of the proof of Theorem 3.3 is that any infinitely-often defined class must have dimension at
least 1/2 and strong dimension 1.

Mayordomo [58] used Stockmeyer’s approximate counting of #P functions [73] to show that
P/poly has measure 0 in ∆E

3 = EΣP
2 . The following result used Köbler, Schöning, and Torán’s

approximate counting of SpanP functions [41] to substantially sharpen this technique, yielding a
simultaneous improvement of Mayordomo’s theorem and Theorem 3.1.

Theorem 3.4. (Hitchcock and Vinodchandran [35]) For all α ∈ [0, 1], dim∆p
3
(SIZE(α2n

n )) = α.

In particular, dim(P/poly | ∆E
3 ) = 0. Another resource-bounded measure result regarding P/poly

is a conditional one: Köbler and Lindner [40] showed that if µp(NP) 6= 0, then P/poly has measure
0 in EXPNP. The full version of [35] uses derandomized approximate counting [70] to improve this
to dim(P/poly | ENP) = 0 under the same hypothesis.

4 Polynomial-Time Degrees I

In this section we look at degrees and spans of languages under polynomial-time reductions. For
a reducibility ≤p

r and any language A, the ≤p
r -lower span of A is the class Pr(A) of all languages

that are ≤p
r -reducible to A; the ≤p

r -upper span of A is the class P−1
r (A) of all languages to which

A is ≤p
r -reducible; and the ≤p

r -degree of A is the class degp
r (A) = Pr(A) ∩ P−1

r (A).
Juedes and Lutz [38] proved a small span theorem for ≤p

m-reductions in E and EXP. In EXP,
this theorem says that, for every A ∈ EXP, at least one of the lower and upper spans must be small,
in the sense that µ(Pm(A) | EXP) = 0 or µ(P−1

m (A) | EXP) = 0. Juedes and Lutz also noted that
extending this result to ≤p

T-reductions (or even ≤p
tt-reductions [3]) would separate BPP from EXP.

Subsequent improvements by Lindner [44], Ambos-Spies, Neis, and Terwijn [3], and Buhrman and
van Melkebeek [7] extended the small span theorem to ≤p

1−tt-reductions, ≤p
k−tt-reductions, and

≤p
nα−tt-reductions (α < 1), respectively.

Is there a small span theorem for dimension? That is, must at least one of the lower and upper
spans have dimension 0 in E? The first work to consider this yielded negative results. Ambos-Spies,
Merkle, Reimann, and Stephan [2] proved that there is no small span theorem for dimension in the
case of exponential time. Their main result states that the dimension of the lower span coincides
with that of the degree for every language in E.
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Theorem 4.1. (Ambos-Spies et al. [2]) For every A ∈ E, dim(Pm(A) | E) = dim(degp
m(A) | E).

If a set C is ≤p
m-complete for E, then Pm(C) has dimension 1 in E. Theorem 4.1 says that degp

m(C)
also has dimension 1 in E. Since the upper span contains the degree, the upper span also has
dimension 1 in E. Therefore the small span theorem fails in a very strong way to extend to
dimension.

Theorem 4.1 has some other interesting consequences. For example, if A ≤p
m B, then

dim(degp
m(A) | E) ≤ dim(degp

m(B) | E),

even though the degrees are disjoint if B 6≤p
m A. And for many complexity classes the dimension of

the class coincides with the dimension of the class’s complete sets. Let NPC denote the NP-complete
sets. Then applying the theorem to SAT, we have dim(NP | E) = dim(NPC | E).

We remark that Theorem 4.1 and its corollaries admit extensions in three different ways: to
more general polynomial-time reductions (such as ≤p

T) [2], to dimension in larger classes (such as
EXP) [28], and to strong dimension [4].

Ambos-Spies et al. also show that the dimension of the many-one degree of a set can take
essentially any value (out of a dense subset of (0,1)). In the following, H is Shannon’s binary
entropy function H(β) = −β log β − (1− β) log(1− β).

Theorem 4.2. (Ambos-Spies et al. [2]) For every computable β ∈ [0, 1] there is a set A ∈ E such
that dim(degp

m(A) | E) = H(β).

Therefore, by Theorem 4.1, the lower spans can take virtually any value. The same proof shows
that Theorem 4.2 also holds for strong dimension. In fact, the idea can be extended to show that
there are degrees in E with essentially any possible pair of values for the dimension and strong
dimension.

Theorem 4.3. (Athreya et al. [4]) For every pair of computable numbers α ≤ β ∈ [0, 1] there is a
set A ∈ E such that dim(degp

m(A) | E) = H(α) and Dim(degp
m(A) | E) = H(β).

While Theorem 4.1 tells us that there is no small span theorem for dimension, Moser has
shown that a small span theorem holds using a mixture of strong dimension and resource-bounded
measure, even with reductions that make a fixed number of nonadaptive queries.

Theorem 4.4. (Moser [61]) For every A ∈ E and k ≥ 1, Dim(Pk−tt(A) | E) = 0 or µ(P−1
k−tt(A) |

E) = 0.

5 Zero-One Laws

In the 1990s, van Melkebeek [76] used Impagliazzo and Wigderson’s then-new partial derandom-
ization techniques [37] to prove that either BPP has measure 0 in EXP or else BPP = EXP. In
his 2004 Ph.D. thesis, Moser strengthened this measure zero-one law to the following dimension
zero-one law.

Theorem 5.1. (Moser [60]) dim(BPP | EXP) = 0 or BPP = EXP.

It is an open question whether zero-one laws hold for the dimensions of ZPP or RP, although
measure zero-one laws are known for these classes [76, 36].
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6 The Dimension of NP I

What is the dimension of NP in EXP? If dim(NP | EXP) > 0, then P 6= NP, since dim(P | EXP) =
0 [52]. If dim(NP | EXP) < 1, then NP 6= EXP, since dim(EXP | EXP) = 1 [52]. Calculating the
dimension of NP in EXP may therefore be difficult. Notwithstanding this, it should be possible to
obtain partial results that shed some light on the matter.

The strong hypothesis that µ(NP | EXP) 6= 0 (i.e., NP does not have measure 0 in EXP) is
known to have many plausible consequences that are not known to follow from P 6= NP or other
qualitative hypotheses [48, 55].

Hitchcock [24] has proven that MAX3SAT is exponentially hard to approximate if dim(NP |
EXP) > 0. This is ostensibly a weaker hypothesis than µ(NP | EXP) 6= 0 since

µ(NP | EXP) 6= 0 ⇒ dim(NP | EXP) = 1 ⇒ dim(NP | EXP) > 0 (6.1)

and neither implication’s converse is known to hold.
There is an oracle relative to which the first converse in (6.1) fails to hold. Regarding the second

converse, the second author has conjectured that for every α ∈ [0, 1], there is an oracle A such that
dimA(NPA | EXPA) = α. In contrast, Fortnow [18] has conjectured that we can relativizably prove
a zero-one law for NP, stating that dim(NP | EXP) is either 0 or 1. Any progress on these questions
would be interesting.

Most of the aforementioned consequences of µ(NP | EXP) 6= 0 are not known to follow from
a dimension hypothesis on NP. It seems a challenging problem to derive more consequences of
dim(NP | EXP) > 0.

7 Dimensions of Oracle Classes

Bennett and Gill [6] initiated the study of random oracles in complexity theory. One of their
theorems says that PR 6= NPR relative to a random oracle R. More precisely, this result says that
the set

O[P=NP] = {A | PA = NPA}

of oracles has Lebesgue measure 0. Since then random oracles for complexity theory have been
often investigated.

As Hausdorff dimension is capable of distinguishing among the measure 0 sets, it is interesting
to consider the dimensions of oracles classes from random oracle results. The following theorem
implies that O[P=NP] and many other oracle classes arising in complexity theory all have Hausdorff
dimension 1.

Theorem 7.1. (Hitchcock [27]) If there exists a paddable and relativizable oracle construction
for a complexity-theoretic statement Φ, then the oracle class O[Φ] = {A | ΦA holds} has Hausdorff
dimension 1.

It is not known whether the polynomial-time hierarchy is infinite relative to a random oracle,
or whether P = NP ∩ coNP relative to a random oracle. By the Kolmogorov zero-one law, one of
the complementary oracle classes O[PH collapses] and O[PH is infinite] has measure 1, and the other has
measure 0. The same is true for the pair O[P=NP∩coNP] and O[P6=NP∩coNP]. While we do not know
which has measure 1 in either case, it is shown in [27] that all four of these classes have Hausdorff
dimension 1.
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II. Scaled Dimension

8 Foundations

Scaled dimension [31] was first introduced by the authors of this survey using scaled gales, which
are generalizations of gales. An equivalent, convenient way to define scaled dimension uses growth
rates of martingales.

Recall that dim∆(X) ≤ s if there exists a ∆-computable martingale d such that for all A ∈ X,

(∃∞n) d(A�n) ≥ 2n−sn.

Scaled dimension arises using other growth rates in place of n− sn. In the general theory, there is
a natural hierarchy of growth rates ri(s, n), one for each integer i ∈ Z, built around the standard
growth rate

r0(s, n) = n− sn.

The ith growth rate gives us ith-order scaled dimension. For computational complexity, the most
useful orders appear to be i ∈ {−3,−2, 0, 1, 2}. (Surprisingly, there has not yet been a compelling
application of the −1st order.) In the 1st and 2nd orders of scaled dimension, we use the more
rapidly increasing growth rates

r1(s, n) = n− ns and r2(s, n) = n− 2(log n)s
.

The negative orders of scaled dimension use growth rates that increase much more slowly. In the
−2nd and −3rd orders, we use

r−2(s, n) = 2(log n)1−s
and r−3(s, n) = 22(log log n)1−s

.

Definition. The ith-order scaled ∆-dimension of a class X, written dim(i)
∆ (X), is the infimum of

all s where there exists a ∆-computable martingale d such that for all A ∈ X,

(∃∞n) d(A�n) ≥ 2ri(s,n). (8.1)

The ith-order scaled strong ∆-dimension of X, written Dim(i)
∆ (X), is defined in the same way, instead

requiring that (8.1) hold for all but finitely many n. We also define dim(i)(X | E) = dim(i)
p (X ∩E),

dim(i)(X | EXP) = dim(i)
p2

(X ∩ EXP), etc. (analogously to the definitions in Section 2).

The 0th-order scaled dimension is the standard (unscaled) dimension. The other scaled dimen-
sions have similar properties. For example, 0 ≤ dim(i)

∆ (X) ≤ Dim(i)
∆ (X) ≤ 1 and if dim(i)

∆ (X) < 1,
then X has ∆-measure 0. The following theorem states two important facts about the scaled
dimensions.

Theorem 8.1. ([31]) The scaled dimension dim(i)
∆ (X) is nondecreasing in the order i. There is at

most one order i for which dim(i)
∆ (X) is not 0 or 1.

In particular, the sequence of scaled dimensions must have one of the following four forms.

9



(i) For all i, dim(i)
∆ (X) = 0. (ii) For all i, dim(i)

∆ (X) = 1.

(iii)
There is an order i∗ such that
– dim(i)

∆ (X) = 0 for all i ≤ i∗ and
– dim(i)

∆ (X) = 1 for all i > i∗.
(iv)

There is an order i∗ such that
– dim(i)

∆ (X) = 0 for all i < i∗,
– 0 < dim(i∗)

∆ (X) < 1, and
– dim(i)

∆ (X) = 1 for all i > i∗.

We find (iv) to be the most interesting case. Then i∗ is the “best” order at which to measure
the ∆-dimension of X because dim(i∗)

∆ (X) provides much more quantitative information about X

than is provided by dim(i)
∆ (X) for i 6= i∗.

9 Circuit-Size Complexity II

Theorem 3.1 says that SIZE(α2n

n ) has dimension α in ESPACE. However, in complexity theory,
circuit-size bounds such as 2αn and 2nα

are of more interest than α2n

n . Theorem 3.1 implies that
SIZE(2αn) and SIZE(2nα

) have dimension 0 for all α ∈ (0, 1). This is where we find our first
application of scaled dimension. The 1st and 2nd orders capture these circuit-size bounds.

Theorem 9.1. (Hitchcock, Lutz, and Mayordomo [31]) For all α ∈ [0, 1],

dim(1)(SIZE(2αn) | ESPACE) = dim(2)(SIZE(2nα
) | ESPACE) = α.

Proof sketch. We only sketch the upper bound for the 1st-order result. For each n ≥ 0, let

Cn = {v ∈ {0, 1}2n | v has a circuit of size at most 2αn }.

Here we are viewing a v ∈ {0, 1}2n
as the characteristic string of some subset of {0, 1}n. Let α′ > α.

A counting argument [31] shows that for some n0, for all n ≥ n0, |Cn| ≤ 22α′n
.

We define a martingale inductively. We start with d(w) = 1 for all w ∈ {0, 1}≤2n0−1. Let
n ≥ n0 and assume that d(w) has been defined for all w ∈ {0, 1}≤2n−1. For any w ∈ {0, 1}2n−1 and
u ∈ {0, 1}≤2n

, we define

d(wu) = 2|u| · |{v ∈ {0, 1}2n | u v v and v ∈ Cn}|
|Cn|

d(w).

Then d is a pspace-computable martingale. The martingale can be viewed as betting its money
according to how likely a random extension of the current characteristic string will have a circuit
of size at most 2αn. Observe that if u ∈ Cn, then

d(wu) = 22n · 1
|Cn|

d(w) ≥ 22n−2α′n
d(w)

by the bound on |Cn| above. Letting α′′ > α′, it follows that for all A ∈ SIZE(α2n

n ),

d(A�2n − 1) ≥ 2(2n−1)−(2n−1)α′′

for all sufficiently large n. Therefore dimpspace(SIZE(α2n

n )) ≤ α′′. Since α′′ > α is arbitrarily close
to α, dim(1)(SIZE(2αn) | ESPACE) ≤ α follows.
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We remark that Theorem 9.1 also holds for strong scaled dimension. Also, parts of Theorem 3.3
extend to strong scaled dimension: Gu [21] showed that for every order i ∈ Z, Dim(i)(SIZE(nk) |
EXP) = 0 for all k and Dim(i)(P/poly | E3) = 0.

10 Polynomial-Time Degrees II

Recall from Section 4 that there is no small span theorem for resource-bounded dimension. The
reason is that degrees have the same dimension as their lower spans. Does this also hold in scaled
dimension? The proof of Theorem 4.1 extends to show that it does for the first few orders.

Theorem 10.1. (Hitchcock [28]) For every A ∈ E and i ∈ {−2,−1, 0, 1, 2},

dim(i)(Pm(A) | E) = dim(i)(degp
m(A) | E).

There is an interesting contrast between the −2nd and −3rd orders. The proof of Theorem
4.1/10.1 uses a padding technique that breaks down in the −3rd order. Here is a sketch of the reason
why. Suppose we want to show that dim(i)(Pm(A)) ≤ dim(i)(degp

m(A)). (The other inequality is
trivial by monotonicity.) Letting s > dim(i)(degp

m(A)), we have a martingale d that achieves

(∃∞n)d(D �n) ≥ 2ri(s,n) (10.1)

for all D ∈ degp
m(A). We would like to obtain a martingale d′ that achieves the same for all

B ∈ Pm(A). To accomplish this the idea is to modify B slightly, encoding A very sparsely into
it, to obtain a set D ∈ degp

m(A). Precisely, we let k ≥ 2, use the padding function f defined by
f(x) = 0|x|

k−|x|x, and let
D = B − f({0, 1}∗) ∪ f(A).

Now D is in the degree of A, so d succeeds on D as in (10.1). Since D is different from B only on
the easily identifiable subset R = f({0, 1}∗), it is easy to modify d to obtain a martingale d′ that
bets like d outside of R and does not bet at all on strings in R. Of course, d′ may not do as well
as d if d makes a substantial part of its winnings on strings in R. How much of a hit does d′ take?
Up to length nk, there are Nk = 2nk+1− 1 strings while R has N = 2n+1− 1 strings. Suppose that
(10.1) holds for Nk, that is, d(D �Nk) ≥ 2ri(s,Nk). Then we have

d′(B �Nk) ≥ 2ri(s,Nk)−N ,

since d bets like d′ except for the strings in R. If N is much smaller than ri(s,Nk), this decrease
will not be a problem for our dimension calculation. In the −2nd order, we have

r−2(s,Nk) = 2(log Nk)(1−s) ≈ 2nk(1−s)

and in the −3rd order we have

r−3(s,Nk) = 22(log log Nk)(1−s)

≈ 22(k log n)(1−s)

.

For the −2nd order, we can choose k large enough so that N = o(r−2(s,Nk)). Therefore the N
factor does not affect the growth of the martingale much, and d′ shows that dim(−2)(Pm(A)) ≤
dim(−2)(degp

m(A)). However, for the −3rd order, r−3(s,Nk) is always o(N) no matter how large k
is. In this case, the N factor is very significant, and d′ does not win fast enough to give a −3rd-order
dimension bound.

Not only does the above proof technique fail in the −3rd order; it is impossible to extend
Theorem 10.1 to i = −3. Indeed, the following small span theorem for scaled dimension yields that
every degree has −3rd-order dimension 0.
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Theorem 10.2. (Hitchcock [28]) For every A ∈ E,

dim(1)(Pm(A) | E) = 0 or dim(−3)(P−1
m (A) | E) = 0.

In particular, dim(−3)(degp
m(A) | E) = 0.

Theorem 10.2 was proved by extending the arguments of Juedes and Lutz [38] involving in-
compressibility by reductions. In another paper, Juedes and Lutz [39] used more probabilistic
arguments to establish small span theorems within ESPACE for P/poly-Turing reductions. These
are reductions computed by a nonuniform family of polynomial-size oracle circuits. This has also
been extended to scaled dimension by Hitchcock, López-Valdés, and Mayordomo [29].

11 The Dimension of NP II

From Theorems 10.1 and 10.2, we learn that scaled dimension gives us two types of dimension for
studying complexity classes such as NP. For example,

dim(−2)(NP | E) = dim(−2)(NPC | E),

while in the −3rd order, NPC unconditionally has dimension 0.
The question of whether Turing completeness is different from many-one completeness for NP is

an intriguing one that dates back to the first papers of Cook, Karp, and Levin on NP completeness.
No hypothesis on NP was known to imply a separation of these completeness notions until Lutz
and Mayordomo [54] used the “NP is not small” hypothesis from resource-bounded measure. A
hypothesis on the p-dimension of NP such as “dimp(NP) > 0” or even “dimp(NP) = 1” is not known
to imply this separation. However, recently it has been shown that a −3rd-order positive-dimension
hypothesis on NP suffices.

Theorem 11.1. (Hitchcock, Pavan, and Vinodchandran [34]) If dim(−3)
p (NP) > 0, then Turing

completeness and many-one completeness are different for NP.

Impagliazzo and Moser [36] showed that the measure hypothesis on NP implies a full deran-
domization of Arthur-Merlin games: NP = AM. Their proof also relies on the almost-everywhere
hardness guaranteed by µp(NP) 6= 0. Weakening this to dimension seems challenging. However,
taking the stronger −3rd-order hypothesis achieves the derandomization when sublinear advice is
given.

Theorem 11.2. (Hitchcock and Pavan [32]) If dim(−3)
p (NP) > 0, then AM ⊆ NP/nε for all ε > 0.

12 Conclusion

Fractal dimensions in complexity classes are precise quantitative tools that bring complexity-
theoretic and information-theoretic ideas together in new ways. We have surveyed some of the
applications of these tools to date, but our survey is incomplete in two ways.

First, due to space constraints, our survey is far from comprehensive. We have omitted Moser’s
beautiful work on dimension in small complexity classes [62], and work of several authors on di-
mension and autoreducibility [2, 5, 20]. Even within the topics we have discussed, we have omitted
many nice results.

Second, due to a conjectured time constraint [23], our survey omits research that has not yet
occurred. We hope that your forthcoming theorems obsolesce our survey soon.

12



References

[1] E. Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov complexity. In Proceedings
of the 21st Conference on Foundations of Software Technology and Theoretical Computer Science, pages 1–15.
Springer-Verlag, 2001.

[2] K. Ambos-Spies, W. Merkle, J. Reimann, and F. Stephan. Hausdorff dimension in exponential time. In Pro-
ceedings of the 16th IEEE Conference on Computational Complexity, pages 210–217. IEEE Computer Society,
2001.

[3] K. Ambos-Spies, H.-C. Neis, and S. A. Terwijn. Genericity and measure for exponential time. Theoretical
Computer Science, 168(1):3–19, 1996.

[4] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension in algorithmic
information and computational complexity. In Proceedings of the 21st Annual Symposium on Theoretical Aspects
of Computer Science, pages 632–643. Springer-Verlag, 2004. To appear in SIAM Journal on Computing.

[5] R. Beigel, L. Fortnow, and F. Stephan. Infinitely-often autoreducible sets. In Proceedings of the 14th Annual
International Symposium on Algorithms and Computation, pages 98–107. Springer-Verlag, 2003.

[6] C. H. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= co-NPA with probability 1. SIAM
Journal on Computing, 10:96–113, 1981.

[7] H. Buhrman and D. van Melkebeek. Hard sets are hard to find. Journal of Computer and System Sciences,
59(2):327–345, 1999.

[8] J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the Kolmogorov complexity of the real
line. Journal of Computer and Systems Sciences, 49:605–619, 1994.

[9] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theoretical Computer Science,
310(1–3):1–33, 2004.

[10] J. L. Doob. Regularity properties of certain families of chance variables. Transactions of the American Mathe-
matical Society, 47:455–486, 1940.

[11] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Book draft, 2005.

[12] G. A. Edgar. Measure, Topology, and Fractal Geometry. Springer-Verlag, 1990.

[13] G. A. Edgar. Integral, Probability, and Fractal Measures. Springer-Verlag, 1998.

[14] K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.

[15] K. Falconer. Techniques in Fractal Geometry. John Wiley & Sons, 1997.

[16] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, second edition,
2003.

[17] H. Federer. Geometric Measure Theory. Springer-Verlag, 1969.

[18] L. Fortnow. Personal communication, 2001.

[19] L. Fortnow and J. H. Lutz. Prediction and dimension. Journal of Computer and System Sciences, 70(4):570–589,
2005.

[20] C. Glaßer, M. Ogihara, A. Pavan, A. Selman, and L. Zhang. Autoreducibility, mitoticity, and immunity. In
Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science. Springer-
Verlag, 2005.

[21] X. Gu. A note on dimensions of polynomial size circuits. Technical Report TR04-047, Electronic Colloquium
on Computational Complexity, 2004.
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