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Chapter 1

Introduction

The dimension of an object is a measure of its complexity. Effective fractal dimension makes this
idea more precise and useful for theoretical computer science.

Intuitively, in Euclidean space, the dimension of a set is the amount of information that is
necessary and sufficient to identify any point in the set. Traditionally, points have dimension 0 as
there is nothing to specify, curves have dimension 1 because they can be parametrized by a single
real coordinate, and surfaces have dimension 2 since two coordinates describe every point on a
surface. However, this intuitive concept of dimension is not completely adequate. For example, a
Peano space filling curve includes every point in the unit square, but the unit square should be
2-dimensional.

In 1919, Hausdorff [17] used measure theory to give a mathematically sophisticated notion of
dimension that is now most commonly called Hausdorff dimension. This dimension agrees with
our intuition for simple sets. Points have Hausdorff dimension 0, simple curves have dimension 1,
and simple surfaces have dimension 2. It is possible for complex curves to have dimension larger
than 1 and for complex surfaces to have dimension larger than 2. In fact, the Peano space filling
curve has Hausdorff dimension 2. The Hausdorff dimension of a set need not be an integer; it can
be an arbitrary real number.

Hausdorff dimension has become a powerful tool in fractal geometry [13]. Fractals are sets
that typically have simple definitions but still exhibit complex properties. Fractals often have
non-integral dimension. One of the simplest examples of a fractal is the Cantor middle-thirds set,
an uncountable, totally disconnected, measure 0 subset of the unit interval that has Hausdorff
dimension log 2

log 3 . The von Koch curve has Hausdorff dimension log 4
log 3 and is an example of a fractal

in the plane. These dimensions capture the similarity ratios of the Cantor set and von Koch curve
and can be thought of as a measure of their complexity.

The definition of Hausdorff dimension is sufficiently general to work in any metric space. The
Cantor space, consisting of all infinite binary sequences, is a metric space that is of central impor-
tance to theoretical computer science. For example, it is standard to identify a decision problem,
a subset of the finite binary strings, with the element of Cantor space that is its characteristic
sequence. In this way, complexity classes, classes of decision problems, can be viewed as subsets
of Cantor space. However, most interesting complexity classes are countable and all countable
sets have Hausdorff dimension 0, so Hausdorff dimension is not a useful measure of complexity for
studying these classes.

This problem of countability also occurs when Lebesgue measure is used as a notion of size
for complexity classes – all interesting classes have measure 0. Lutz [33] overcame this when he
introduced resource-bounded measure, an effective version of Lebesgue measure. The basis for
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this effectivization is Ville’s theorem [62] that gives an equivalent way to define the Lebesgue
measure 0 sets using martingales, functions which represent a gambler’s capital in a fair game.
Martingales were introduced by Lévy [27] and Ville [62] and have also been used extensively by
Schnorr [52, 53, 54] and others in the investigation of algorithmic randomness and constructive
measure.

Lutz defined the notion of resource-bounded measure 0 by imposing appropriate computability
and complexity constraints on the martingales from Ville’s theorem. The resource bound is a
parameter in the definition; the special cases of computable measure, polynomial-space measure,
and polynomial-time measure are of particular interest. These measures define a reasonable and
interesting notion of size within the class DEC of decidable problems and also within various
countable complexity classes including the class ESPACE of problems decidable in exponential
space and the class E of problems decidable in exponential time. In particular, DEC does not
have computable measure 0, ESPACE does not have polynomial-space measure, and E does not
have polynomial-time measure 0. On the other hand, subclasses of these classes can have resource-
bounded measure 0.

More recently, Lutz [30, 31] has also effectivized Hausdorff dimension in much the same way.
The key is an analogue of Ville’s theorem that characterizes Hausdorff dimension using gales,
generalizations of martingales where the gambling game is not fair. This yields a new, simpler
definition of Hausdorff dimension for Cantor space. Computability and complexity constraints
are placed on these gales to define a variety of effective fractal dimensions including constructive
dimension and resource-bounded dimension. Constructive dimension is fundamentally related to
algorithmic randomness and provides a definition of dimension for individual elements of Cantor
space. Resource-bounded dimension is defined using a general resource bound as a parameter (just
like resource-bounded measure) and includes computable dimension, polynomial-space dimension,
and polynomial-time dimension as special cases. These dimensions have the same relationship with
resource-bounded measure as Hausdorff dimension has with Lebesgue measure.

These effective dimensions serve as a useful notion of complexity for theoretical computer sci-
ence. They have been shown to be closely related to several measures of complexity including
Kolmogorov complexity [43, 31, 23], Boolean circuit-size complexity [30, 23], and predictability
[15]. Applications have also been given to the study of polynomial-time degrees [2] and approxi-
mate optimization [19].

In Chapter 3 we present the theory of effective fractal dimension and make several contributions
to it. Chapter 4 investigates relationships between constructive dimension and the arithmetical hier-
archy. Classes involving polynomial-time reductions are studied using resource-bounded dimension
in Chapter 5. The remainder of this introduction is a summary of the main contributions of this
dissertation.

1.1 Foundations of Effective Fractal Dimension

In Chapter 3 we define the effective fractal dimensions and present their basic properties. Along
the way, several foundational results are proved. We now highlight some of them.

1.1.1 Effective Strong Dimension

In the 1980s, a new concept of fractal dimension, called the packing dimension, was introduced
independently by Tricot [61] and Sullivan [59]. Packing dimension shares with Hausdorff dimension
the mathematical advantage of being based on a measure. Over the past two decades, despite its
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greater complexity (requiring an extra optimization over all countable decompositions of a set in
its definition), packing dimension has become, next to Hausdorff dimension, the most important
notion of fractal dimension, yielding extensive applications [13]. Packing dimension agrees with
Hausdorff dimension for sets that are sufficiently regular, but the two dimensions can be different.

After reviewing Lutz’s gale characterization of Hausdorff dimension, we prove that packing
dimension can also be characterized using gales in Section 3.1.1. Moreover, notwithstanding the
greater complexity of packing dimension’s definition (and the greater complexity of its behavior
on compact sets, as established by Mattila and Mauldin [41]), our gale characterization of packing
dimension is an exact dual of – and every bit as simple as – the gale characterization of Hausdorff
dimension. (This duality and simplicity are in the statement of our gale characterization; its proof
is more involved than its counterpart for Hausdorff dimension.)

Effectivizing our gale characterization of packing dimension produces for each of Lutz’s effective
dimensions an effective strong dimension that is its exact dual. Just as the Hausdorff dimension of
a set is bounded above by its packing dimension, the effective dimension of a set is bounded above
by its effective strong dimension. Moreover, just as in the classical case, the effective dimension
coincides with the strong effective dimension for sets that are sufficiently regular.

Throughout Chapter 3 we present the theory of effective strong dimension alongside that of
effective dimension. The material on packing dimension and effective strong dimension is joint
work with Athreya, Lutz, and Mayordomo and is based on [5].

1.1.2 Gales Suffice for Constructive Dimension

Lutz [31] originally formulated constructive dimension using supergales, functions which are similar
to gales but lack an equality property. (Supergales are to gales as supermartingales are to martin-
gales.) For the classical and resource-bounded dimensions, it is easy to see that gales and supergales
give equivalent definitions. For constructive dimension, Lutz used supergales rather than gales be-
cause he was able to show that optimal constructive supergales exist. These optimal supergales give
constructive dimension some very nice properties. The questions of whether optimal constructive
gales exist and whether gales can be used to equivalently define constructive dimension were left
open. In Section 3.2.1 we show that certain forms of optimal constructive gales do exist and that
gales and supergales are equivalent for defining constructive dimension. This section is based on
[21]. The main result is also due independently to Fenner [14].

1.1.3 Entropy Rates and Kolmogorov Complexity

For each set X of sequences, Staiger [57] defined a kind of entropy rate that coincides with classical
Hausdorff dimension and proved results relating a computable version of this entropy rate to Haus-
dorff dimension. In Section 3.2.2 we show that a constructive version of Staiger’s entropy rate gives
an analogous characterization of constructive dimension. We show in Section 3.3.2 that Staiger’s
computable entropy rate coincides with computable dimension and also that a polynomial-space
entropy rate characterizes polynomial-space dimension. The material on entropy rates is based on
[18].

There is a natural relationship between entropy rates and Kolmogorov complexity. In Section
3.3.2 we use this to extend Mayordomo’s Kolmogorov complexity characterization of constructive
dimension [43] to the computable and polynomial-space dimensions by using resource-bounded
Kolmogorov complexity.
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1.1.4 Log-Loss Unpredictability

Given a set X of infinite sequences over a finite alphabet, consider the problem of designing a single
predictor that performs well on all sequences in X. We define the log-loss unpredictability of X as
the minimal average log-loss rate that a predictor can achieve on all members of X; here the rate is
given by a limit inferior. Using a limit superior, the strong log-loss unpredictability of X is defined
analogously. In Section 3.3.1 we show that log-loss unpredictability is Hausdorff dimension and that
strong log-loss unpredictability is packing dimension. This extends to resource-bounded dimension
by imposing resource-bounds on the predictors to define resource-bounded unpredictabilities. This
result explains and illuminates the relationships between prediction and Hausdorff dimension that
were obtained by Fortnow and Lutz [15], Ryabko [49, 50, 51], and Staiger [57]. This section is based
on [20].

To overcome limitations of resource-bounded dimension for investigating certain complexity
classes within ESPACE, Hitchcock, Lutz, and Mayordomo [23] introduced a theory of resource-
bounded scaled dimension. This is in analogy with the classical theory of generalized dimension (see
[47]) that arises naturally from Hausdorff dimension. In Section 3.4 we review scaled dimension
and develop some log-loss unpredictability tools for working with it. This section is based on [22].

1.2 The Arithmetical Hierarchy

In Chapter 4 we investigate relationships between the arithmetical hierarchy and constructive
dimension. We identify the levels of the arithmetical hierarchy in which the Hausdorff and con-
structive dimensions of a set are guaranteed to be equal. The constructive dimension classes are
precisely located in the arithmetical hierarchy.

1.2.1 Correspondence Principles

In early lectures on effective dimension [36], Lutz conjectured that there should be a correspondence
principle stating that the constructive dimension of every sufficiently simple set X coincides with its
classical Hausdorff dimension. In Section 4.2 we provide such a principle, along with a new proof of
an analogous correspondence principle for computable dimension. Our correspondence principle for
constructive dimension says that for every set X that is an arbitrary union of Π0

1-definable sets of
sequences, the constructive and Hausdorff dimensions of X are equal. The correspondence principle
for computable dimension (which was first proven by Staiger [57]) says that for every Σ0

2-definable
set X of sequences, the computable and Hausdorff dimensions of X are equal. We show that these
results are optimal in the arithmetical hierarchy. This section is based on [18].

1.2.2 Complexity of Dimension Classes

Just as Martin-Löf [40] used constructive measure to define the randomness of individual sequences,
Lutz [31] used constructive dimension to define the dimensions of individual sequences. Each
element S of Cantor space is assigned a dimension and a strong dimension which are the constructive
dimension of {S} and the constructive strong dimension of {S}, respectively.

For any α ∈ [0, 1], let DIMα be the class of all sequences that have dimension α and let DIMα
str

be the class of all sequences that have strong dimension α. We investigate the complexities of these
dimension classes in terms of the arithmetical hierarchy of subsets of Cantor space. We show that
DIM0 is properly Π0

2, and for all ∆0
2-computable α ∈ (0, 1] we show that DIMα is properly Π0

3.
To classify the strong dimension classes, we introduce a more powerful effective Borel hierarchy
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where a co-enumerable predicate is used rather than a enumerable predicate in the definition of
the Σ0

1 level. We show that DIM1
str is properly in the Π0

2 level of this stronger hierarchy. For all
∆0

2-computable α ∈ [0, 1), we show that DIMα
str is properly in the Π0

3 level of this hierarchy. This
section is joint work with Lutz and Terwijn and is based on [24].

1.3 Polynomial-Time Reductions

In Chapter 5 we use resource-bounded dimension to investigate complexity classes involving polynomial-
time reductions.

1.3.1 Small Spans

In Section 5.1 we use resource-bounded scaled dimension to strengthen from both ends the con-
trasting theorems of Juedes and Lutz [25] and Ambos-Spies, Merkle, Reimann, and Stephan [2]
regarding spans under polynomial-time reductions.

1. The small span theorem of [25] for ≤p
m-reductions [25] is strengthened from resource-bounded

measure to −3rd-order resource-bounded scaled dimension.

2. The result of [2] that ≤p
m-lower spans and -degrees have the same dimension in E is extended

to all orders −2 ≤ i ≤ 2 of scaled dimension in E. This implies that there is no small span
theorem in −2nd-order scaled dimension in E.

These results suggest that contrast between the −2nd- and −3rd-orders of resource-bounded
scaled dimension will be useful for studying complexity classes involving polynomial-time reduc-
tions. For example, our results imply that the many-one complete degree of NP unconditionally
has −3rd-order scaled dimension 0 in E, but that in order −2 the scaled dimension of the complete
degree is the same as the scaled dimension of NP. Scaled dimension therefore provides two different
types of dimension for studying NP. The NP-complete degree provides all the dimension of NP in
order -2, but in order -3 the NP-complete degree unconditionally has dimension 0.

We also prove analogous results for scaled dimension in ESPACE. We are able to show that
determining the −1st- or −2nd-order scaled dimension of the class of complete languages for E
within ESPACE would fully derandomize BPP or separate P from PSPACE. In contrast, without
any hypothesis we show that the complete languages for E have −3rd-order dimension 0 in ESPACE
and −2nd- and −1st-order dimension 1 in E.

This section is based on [22].

1.3.2 Degrees of Arbitrary Dimensions

Ambos-Spies, Merkle, Reimann, and Stephan [2] showed that for any ∆0
2-computable real number

α there is a decision problem A ∈ E such that the polynomial-time many-one degree of A has
dimension α in E. In Section 5.2 we extend this result to show that for every pair of ∆0

2-computable
real numbers 0 ≤ α ≤ β ≤ 1 there is a decision problem A ∈ E such that the polynomial-time
many-one degree of A has dimension α in E and strong dimension β in E. This extension uses our
log-loss unpredictability characterization of polynomial-time dimension.

This section is joint work with Athreya, Lutz, and Mayordomo and is based on [5].
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1.3.3 Reductions to Nondense Languages

Polynomial-time measure has been used by Lutz and Mayordomo [37] and Lutz and Zhao [39] to
investigate the size of the class of problems that can be efficiently reduced to languages that are
not exponentially dense. In order to use polynomial-time dimension to understand the frequency
of inapproximability for the Max3Sat optimization problem, a result similar to those in [37, 39]
(but using weaker reductions) was proved in [19] for polynomial-time dimension. In Section 5.3 we
strengthen the result of [19] to more powerful reductions. This gives a new proof of a result due to
Watanabe [63] regarding the densities of hard languages for exponential time.
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Chapter 2

Preliminaries

We use the set Z of integers, the set Z+ of (strictly) positive integers, the set N of natural numbers
(i.e., nonnegative integers), the set Q of rational numbers, the set R of real numbers, and the set
[0,∞) of nonnegative reals. All logarithms in this thesis are base 2. We use the slow-growing
function log∗ n = min{j ∈ N | tj ≥ n}, where t0 = 0 and tj+1 = 2tj , and Shannon’s binary entropy
function H : [0, 1] → [0, 1] defined by

H(β) = β log
1
β

+ (1− β) log
1

1− β
,

where 0 log 1
0 = 0.

A language, or decision problem, is a set A ⊆ {0, 1}∗. We usually identify a language A
with its characteristic sequence χA ∈ C defined by χA[n] = if sn ∈ A then 1 else 0, where
s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . . is the standard enumeration of {0, 1}∗. That is, we usually (but
not always) use A to denote both the set A ⊆ {0, 1}∗ and the sequence A = χA ∈ C. In the same
way, classes of languages are routinely identified with subsets of Cantor space.

A string is a finite, binary string w ∈ {0, 1}∗. We write |w| for the length of a string w and
λ for the empty string. For i, j ∈ {0, . . . , |w| − 1}, we write w[i..j] for the string consisting of the
ith through the jth bits of w and w[i] for w[i..i], the ith bit of w. Note that the 0th bit w[0] is the
leftmost bit of w and that w[i..j] = λ if i > j. We also define w � i = w[0..i − 1] as the first i bits
of w. A sequence is an infinite, binary sequence. If S is a sequence and i, j ∈ N, then the notations
S[i..j], S[i], S � i are defined exactly as for strings. We work in the Cantor space C consisting of all
sequences. A string w ∈ {0, 1}∗ is a prefix of a sequence S ∈ C, and we write w v S, if S � |w| = w.
The cylinder generated by a string w ∈ {0, 1}∗ is Cw = {S ∈ C|w v S}. Note that Cλ = C.

Given a set A ⊆ {0, 1}∗ and n ∈ N, we use the abbreviations A=n = A ∩ {0, 1}n and A≤n =
A ∩ {0, 1}≤n. A prefix set is a set A ⊆ {0, 1}∗ such that no element of A is a prefix of another
element of A.

For each i ∈ N we define a class Gi of functions from N into N as follows [33].

G0 = {f | (∃k)(∀∞n)f(n) ≤ kn}
Gi+1 = 2Gi(log n) = {f | (∃g ∈ Gi)(∀∞n)f(n) ≤ 2g(log n)}

We also define the functions ĝi ∈ Gi by ĝ0(n) = 2n, ĝi+1(n) = 2ĝi(log n). We regard the functions in
these classes as growth rates. In particular, G0 contains the linearly bounded growth rates and G1

contains the polynomially bounded growth rates. It is easy to show that each Gi is closed under
composition, that each f ∈ Gi is o(ĝi+1), and that each ĝi is o(2n). Thus Gi contains superpolyno-
mial growth rates for all i > 1, but all growth rates in the Gi-hierarchy are subexponential.
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Let CE be the class of computably enumerable languages. Within the class DEC of all decid-
able languages, we are interested in the exponential complexity classes Ei = DTIME(2Gi−1) and
EiSPACE = DSPACE(2Gi−1) for i ≥ 1. The much-studied classes E = E1 = DTIME(2linear),
EXP = E2 = DTIME(2polynomial), ESPACE = E1SPACE = DSPACE(2linear), and EXPSPACE =
E2SPACE = DSPACE(2polynomial) are of particular interest.

We use the following classes of functions.

all = {f | f : {0, 1}∗ → {0, 1}∗}
comp = {f ∈ all | f is computable}

pi = {f ∈ all | f is computable in Gi time} (i ≥ 1)
pispace = {f ∈ all | f is computable in Gi space} (i ≥ 1)

(The length of the output is included as part of the space used in computing f .) We write p for
p1 and pspace for p1space.

A constructor is a function δ : {0, 1}∗ → {0, 1}∗ that satisfies x@
6=δ(x) for all x. The result

of a constructor δ (i.e., the language constructed by δ) is the unique language R(δ) such that
δn(λ) v R(δ) for all n ∈ N. Intuitively, δ constructs R(δ) by starting with λ and then iteratively
generating successively longer prefixes of R(δ). We write R(∆) for the set of languages R(δ) such
that δ is a constructor in ∆. The following facts are the reason for our interest in the above-defined
classes of functions [33].

R(all) = C.
R(comp) = DEC.
For i ≥ 1, R(pi)=Ei.
For i ≥ 1, R(pispace) = EiSPACE.

If D is a discrete domain (such as N, {0, 1}∗, N×{0, 1}∗, etc.), then a function f : D −→ [0,∞)
is ∆-computable if there is a function f̂ : N×D −→ Q ∩ [0,∞) such that |f̂(r, x)− f(x)| ≤ 2−r for
all r ∈ N and x ∈ D and f̂ ∈ ∆ (with r coded in unary and the output coded in binary). We say
that f is exactly ∆-computable if f : D −→ Q ∩ [0,∞) and f ∈ ∆.

Let resource ∈ {time, space} and let t(n) be a resource bound. Let l ∈ N. A function f : Nl ×
{0, 1}∗ → [0,∞)∩Q is t(n)-resource exactly computable if there is a Turing machine that computes
f(k1, . . . , kl, w) using at most t(k1 + · · · + kl + |w|) resource for all (k1, . . . , kl, w) ∈ Nl × {0, 1}∗.
Let g : Nl × {0, 1}∗ → [0,∞) be a real-valued function. An approximation of g is a function
ĝ : Nl+1 × {0, 1}∗ → [0,∞) such that

|g(x)− ĝ(r, x)| ≤ 2−r

for all x ∈ Nl × {0, 1}∗ and r ∈ N. We say that g is t(n)-resource computable if there is an exactly
t(n)-resource computable approximation ĝ of g. A family of functions (fi : Nl × {0, 1}∗ → [0,∞) |
i ∈ N) is uniformly t(n)-resource (exactly) computable if the function f(i, x) = fi(x) is t(n)-resource
(exactly) computable.

We say that f is lower semicomputable if there is a computable function f̂ : D × N → Q such
that

(a) for all (x, t) ∈ D × N, f̂(x, t) ≤ f̂(x, t + 1) < f(x), and

(b) for all x ∈ D, limt→∞ f̂(x, t) = f(x).

Finally, we say that f is ∆0
2-computable if f is computable (i.e., comp-computable) relative to the

halting oracle.
A real number α ∈ [0,∞) is computable (respectively, ∆0

2-computable) if the function f : {0} →
[0,∞) defined by f(0) = α is computable (respectively, ∆0

2-computable).
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Chapter 3

Effective Fractal Dimension

This chapter introduces effective fractal dimension. First we recall the classical Hausdorff and
packing dimensions and present their gale characterizations that form the foundation for the con-
structive and resource-bounded dimensions and strong dimensions.

3.1 Hausdorff and Packing Dimensions

We begin this section by reviewing the classical definitions of some fractal dimensions and the
relationships among them. Since we are primarily interested in binary sequences and (equivalently)
decision problems, we focus on fractal dimension in the Cantor space C.

For each k ∈ N, we let Ak be the collection of all prefix sets A such that A<k = ∅. For each
X ⊆ C, we then define the families

Ak(X) =

{
A ∈ Ak

∣∣∣∣∣X ⊆
⋃

w∈A

Cw

}
,

Bk(X) = {A ∈ Ak |(∀w ∈ A)Cw ∩X 6= ∅} .

If A ∈ Ak(X), then we say that the prefix set A covers the set X. If A ∈ Bk(X), then we call the
prefix set A a packing of X. For X ∈ C, s ∈ [0,∞), and k ∈ N, we then define

Hs
k(X) = inf

A∈Ak(X)

∑
w∈A

2−s|w|,

P s
k (X) = sup

A∈Bk(X)

∑
w∈A

2−s|w|.

Since Hs
k(X) and P s

k (X) are monotone in k, the limits

Hs(X) = lim
k→∞

Hs
k(X),

P s
∞(X) = lim

k→∞
P s

k (X)

exist, though they may be infinite. We then define

P s(X) = inf

{ ∞∑
i=0

P s
∞(Xi)

∣∣∣∣∣X ⊆
∞⋃
i=0

Xi

}
. (3.1)
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The set functions Hs and P s have the technical properties of an outer measure [13], and the
(possibly infinite) quantities Hs(X) and P s(X) are thus known as the s-dimensional Hausdorff
(outer) cylinder measure of X and the s-dimensional packing (outer) cylinder measure of X, re-
spectively. The set function P s

∞ is not an outer measure; this is the reason for the extra optimization
(3.1) in the definition of the packing measure.

Definition. Let X ⊆ C.

1. The Hausdorff dimension of X is dimH(X) = inf{s ∈ [0,∞) | Hs(X) = 0}.

2. The packing dimension of X is dimP(X) = inf{s ∈ [0,∞) | P s(X) = 0}.

There is a well-known characterization of packing dimension as a modified box dimension. For
each X ⊆ C and n ∈ N, let

Nn(X) =
∣∣∣{w ∈ {0, 1}n|(∃S ∈ X)w v S}

∣∣∣.
Then the upper box dimension of X is

dimB(X) = lim sup
n→∞

log Nn(X)
n

. (3.2)

The lower box dimension dimB(X), which we do not use here, is obtained by using a limit inferior
in place of the limit superior in (3.2). When dimB(X) = dimB(X), this quantity, written dimB(X),
is called the box dimension of X.

Box dimensions are over 60 years old, have been re-invented many times, and have been named
many things, including Minkowski dimension, Kolmogorov entropy, Kolmogorov dimension, topo-
logical entropy, metric dimension, logarithmic density, and information dimension. Box dimensions
are often used in practical applications of fractal geometry because they are easy to estimate, but
they are not well-behaved mathematically. The modified upper box dimension

dimMB(X) = inf

{
sup

i
dimB(Xi)

∣∣∣∣∣X ⊆
∞⋃
i=0

Xi

}
(3.3)

is much better behaved. (Note that (3.3), like (3.1), is an optimization over all countable decom-
positions of X.) In fact, the following relations are well-known [13].

Theorem 3.1. For all X ⊆ C, 0 ≤ dimH(X) ≤ dimMB(X) = dimP(X) ≤ dimB(X) ≤ 1.

The above dimensions are monotone, i.e., X ⊆ Y implies dim(X) ≤ dim(Y ), and stable, i.e.,
dim(X ∪ Y ) = max{dim(X),dim(Y )}. The Hausdorff and packing dimensions are also countably
stable, i.e., dim(∪∞i=0Xi) = sup{dim(Xi)|i ∈ N}.

3.1.1 Gale Characterizations

In this subsection we review the gale characterization of Hausdorff dimension and prove the dual
gale characterization of packing dimension.

Definition. Let s ∈ [0,∞).

10



1. An s-supergale is a function d : {0, 1}∗ −→ [0,∞) that satisfies the condition

d(w) ≥ 2−s[d(w0) + d(w1)] (3.4)

for all w ∈ {0, 1}∗.

2. An s-gale is an s-supergale that satisfies (3.4) with equality for all w ∈ {0, 1}∗.

3. A supermartingale is a 1-supergale.

4. A martingale is a 1-gale.

Intuitively, we regard a supergale d as a strategy for betting on the successive bits of a sequence
S ∈ C. More specifically, d(w) is the amount of capital that d has after betting on the prefix w
of S. If s = 1, then the right-hand side of (3.4) is the conditional expectation of d(wb) given that
w has occurred (when b is a uniformly distributed binary random variable). Thus a martingale
models a gambler’s capital when the payoffs are fair. (The expected capital after the bet is the
actual capital before the bet.) In the case of an s-gale, if s < 1, the payoffs are less than fair; if
s > 1, the payoffs are more than fair.

We use the following known generalization of the Kraft inequality.

Lemma 3.2. (Lutz [30]) Let s ∈ [0,∞). If d is an s-supergale and B ⊆ {0, 1}∗ is a prefix set, then
for all w ∈ {0, 1}∗,

∑
u∈B 2−s|u|d(wu) ≤ d(w).

We now define two criteria for the success of a supergale.

Definition. Let d be an s-supergale, where s ∈ [0,∞).

1. We say that d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S �n) = ∞. (3.5)

The success set of d is S∞[d] = {S ∈ C | d succeeds on S}.

2. We say that d succeeds strongly on a sequence S ∈ C if

lim inf
n→∞

d(S �n) = ∞. (3.6)

The strong success set of d is S∞str[d] = {S ∈ C | d succeeds strongly on S}.

We have written conditions (3.5) and (3.6) in a fashion that emphasizes their duality. Condition
(3.5) simply says that the set of values d(S � n) is unbounded, while condition (3.6) says that
d(S �n) →∞ as n →∞.

The following characterization of Lebesgue measure using martingales is foundational to resource-
bounded measure.

Theorem 3.3. (Ville [62]) Let X ⊆ C. The following conditions are equivalent.

1. X has Lebesgue measure 0 in C.

2. There is a martingale d with X ⊆ S∞[d].

3. There is a martingale d with X ⊆ S∞str[d].

11



Ville [62] proved the equivalence of the first two conditions. The equivalence of the second two
conditions is well known and easy to prove. We note that replacing “martingale” by “supermartin-
gale” in the theorem yields further equivalent conditions.

The Hausdorff and packing dimensions can be similarly characterized using gales and supergales.
For this, we define the following sets of real numbers.

Notation. Let X ⊆ C.

1. G(X) is the set of all s ∈ [0,∞) for which there exists an s-gale d such that X ⊆ S∞[d].

2. Gstr(X) is the set of all s ∈ [0,∞) for which there exists an s-gale d such that X ⊆ S∞str[d].

3. Ĝ(X) is the set of all s ∈ [0,∞) for which there exists an s-supergale d such that X ⊆ S∞[d].

4. Ĝstr(X) is the set of all s ∈ [0,∞) for which there exists an s-supergale d such that X ⊆ S∞str[d].

Note that s′ ≥ s ∈ G(X) implies that s′ ∈ G(X), and similarly for the classes Gstr(X), Ĝ(X),
and Ĝstr(X). The following fact is also clear.

Observation 3.4. For all X ⊆ C, G(X) = Ĝ(X) and Gstr(X) = Ĝstr(X).

For Hausdorff dimension, Lutz proved the following fundamental theorem.

Theorem 3.5. (Gale Characterization of Hausdorff Dimension – Lutz [30]) For all X ⊆ C,

dimH(X) = inf G(X).

In analogy with Ville’s martingale characterization of Lebesgue measure in Theorem 3.3, Lutz
proved the gale characterization of Hausdorff dimension by showing that for all X ⊆ C, Hs(X) = 0
if and only if there is an s-gale d with X ⊆ S∞[d].

The following theorem is a dual of Theorem 3.5 for packing dimension.

Theorem 3.6. (Gale Characterization of Packing Dimension) For all X ⊆ C,

dimP(X) = inf Gstr(X).

We will use the following lemma to prove Theorem 3.6.

Lemma 3.7. For each family of sets {Xk ⊆ C |k ∈ N}, inf Gstr (
⋃

k Xk) = supk inf Gstr(Xk).

Proof. The inequality inf Gstr(
⋃

k Xk) ≥ supk inf Gstr(Xk) holds trivially.
To prove that inf Gstr(

⋃
k Xk) ≤ supk inf Gstr(Xk), let s > supk inf Gstr(Xk). Then for each

k ∈ N there is an s-gale dk such that Xk ⊆ S∞str[dk]. We define an s-gale d by

d(w) =
∑
k∈N

2−k

dk(λ)
· dk(w)

for all w ∈ {0, 1}∗. Then for each k, for any S ∈ Xk, we have

d(S �n) ≥ 2−k

dk(λ)
· dk(S �n)

for all n, so S ∈ S∞str[d]. Therefore
⋃

k Xk ⊆ S∞str[d] and the lemma follows.
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Proof of Theorem 3.6. Let X ⊆ C. By Theorem 3.1, it suffices to show that dimMB(X) =
inf Gstr(X).

To see that dimMB(X) ≤ inf Gstr(X), let s > inf Gstr(X). It suffices to show that dimMB(X) ≤ s.
By our choice of s, there is an s-gale d such that X ⊆ S∞str[d]. For each n ∈ N, let

Bn = {w ∈ {0, 1}n | d(w) > d(λ)}

and
Yn = {S ∈ C | S �n ∈ Bn}.

For each i ∈ N, let

Xi =
∞⋂

n=i

Yn,

and note that

X ⊆
∞⋃
i=0

Xi. (3.7)

For all n ≥ i ∈ N, we have Xi ⊆ Yn, whence the generalized Kraft inequality (Lemma 3.2) tells us
that

Nn(Xi) ≤ Nn(Yn) = |Bn| < 2sn.

It follows that, for all i ∈ N,

dimB(Xi) = lim sup
n→∞

log Nn(Xi)
n

≤ s,

whence by (3.7),
dimMB(X) ≤ sup

i∈N
dimB(Xi) ≤ s.

To see that inf Gstr(X) ≤ dimMB(X), let s > s′ > s′′ > dimMB(X). It suffices to show that
inf Gstr(X) ≤ s. Since s′′ > dimMB(X), there exist sets X0, X1, . . . ⊆ C such that X =

⋃∞
i=0 Xi

and dimB(Xi) < s′′ for all i ∈ N. By Lemma 3.7, it suffices to show that s ∈ Gstr(Xi) for all i ∈ N.
Fix i ∈ N. Since dimB(Xi) < s′′, there exists n0 ∈ N such that, for all n ≥ n0,

log Nn(Xi)
n < s′′,

i.e., Nn(Xi) < 2s′′n. For each n ≥ n0, let

An = {S �n | S ∈ Xi}

(noting that |An| = Nn(Xi)), and define dn : {0, 1}∗ → [0,∞) by

dn(w) =


2(s−s′)|w|

∑
u

wu∈An

2−s′|u| if |w| ≤ n

2(s−1)(|w|−n)dn(w �n) if |w| > n.

It is routine to verify that dn is an s-gale for each n ≥ n0. Note also that dn(w) = 2(s−s′)n for all
n ≥ n0 and w ∈ An. Let d =

∑∞
n=n0

dn. Then

d(λ) =
∞∑

n=n0

dn(λ) =
∞∑

n=n0

|An|2−s′n =
∞∑

n=n0

Nn(Xi)2−s′n

<

∞∑
n=n0

2(s′′−s′)n < ∞,
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so d is an s-gale by linearity. Let S ∈ Xi. Then, for all n ≥ n0, S �n ∈ An, so

d(S �n) ≥ dn(S �n) ≥ 2(s−s′)n.

Thus S ∈ S∞str[d]. This shows that Xi ⊆ S∞str[d], whence s ∈ Gstr(Xi).

By Observation 3.4, we could equivalently use Ĝ(X) and Ĝstr(X) in Theorems 3.5 and 3.6,
respectively.

3.2 Constructive Dimensions

In this section we present the constructive dimensions, the most fundamental of the effective di-
mensions. Constructive dimension was introduced by Lutz [31] as an effectivization of Hausdorff
dimension by using constructive supergales. Packing dimension is effectivized in the same way to
give constructive strong dimension.

Definition. An s-supergale d is constructive if it is lower semicomputable.

Notation. Let X ⊆ C.

1. Gconstr(X) is the set of all s ∈ [0,∞) for which there exists a constructive s-gale d such that
X ⊆ S∞[d].

2. Gstr
constr(X) is the set of all s ∈ [0,∞) for which there exists a constructive s-gale d such that

X ⊆ S∞str[d].

3. Ĝconstr(X) is the set of all s ∈ [0,∞) for which there exists a constructive s-supergale d such
that X ⊆ S∞[d].

4. Ĝstr
constr(X) is the set of all s ∈ [0,∞) for which there exists a constructive s-supergale d such

that X ⊆ S∞str[d].

Constructive dimension [31] and constructive strong dimension are defined as follows. This
definition is motivated by Theorems 3.5 and 3.6. Intuitively, constructive dimension is a construc-
tive version of Hausdorff dimension and constructive strong dimension is a constructive version of
packing dimension.

Definition. Let X ⊆ C.

1. The constructive dimension of X is

cdim(X) = inf Ĝconstr(X).

2. The constructive strong dimension of X is

cDim(X) = inf Ĝstr
constr(X).

The constructive dimensions have the following relationship with each other and the Hausdorff
and packing dimensions.
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Observation 3.8. For any X ⊆ C,

0 ≤ dimH(X) ≤ cdim(X)

≤ ≤

≤ dimP(X) ≤ cDim(X) ≤ 1.

It will be very useful to consider the dimensions of individual sequences.

Definition. Let S ∈ C.

1. The dimension of S is
dim(S) = cdim({S}).

2. The strong dimension of S is
Dim(S) = cDim({S}).

Martin-Löf [40] used constructive null sets (Martin-Löf tests) to give a definition of individual
randomness for sequences that is now commonly called Martin-Löf randomness. This random-
ness notion is robust and has many equivalent definitions. In particular, Schnorr [52, 53] showed
that Martin-Löf randomness can be equivalently defined using constructive martingales and super-
martingales. Let RAND be the class of all Martin-Löf random sequences.

Theorem 3.9. (Schnorr [52, 53]) Let S ∈ C. The following conditions are equivalent.

1. S 6∈ RAND.

2. There is a constructive martingale d with S ∈ S∞[d].

3. There is a constructive supermartingale d with S ∈ S∞[d].

The dimension of individual sequences refines Martin-Löf nonrandomness.

Proposition 3.10. (Lutz [31]) Let S ∈ C. If dim(S) < 1, then S 6∈ RAND.

Proof. Assume that dim(S) < 1 and let d be a constructive s-supergale with S ∈ S∞[d] and s < 1.
Since d is a supermartingale, S 6∈ RAND by Theorem 3.9.

Schnorr showed that there are optimal constructive supermartingales and martingales. We will
use the following notion of optimality for constructive supergales.

Definition. Let d∗ be a supergale and let D be a class of supergales. We say that d∗ is multi-
plicatively optimal for D if for each d ∈ D there is an α > 0 such that d∗(w) ≥ αd(w) for all
w ∈ {0, 1}∗.

Lutz used Levin’s universal constructive semimeasure [64] to show that there exist multiplica-
tively optimal supergales.

Theorem 3.11. (Lutz [31]) For any computable s ∈ [0,∞) there is a constructive s-supergale d(s)

that is multiplicatively optimal for the class of constructive s-supergales.
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Proof. A semimeasure is a function ν : {0, 1}∗ → [0,∞) satisfying ν(w0) + ν(w1) ≤ ν(w) (i.e.,
a 0-gale). Levin [64] proved that there is a constructive semimeasure M that is multiplicatively
optimal for the class of all constructive semimeasures. The s-gale we want is defined by

d(s)(w) = 2s|w|M(w)

for all w ∈ {0, 1}∗.

Corollary 3.12. Let X ⊆ C. Let s > cdim(X) and t > cDim(X) be computable. Then X ⊆
S∞[d(s)] and X ⊆ S∞str[d

(t)].

Proof. Since s > cdim(X), for some s′ < s there is a constructive s′-supergale ds′ such that
X ⊆ S∞[ds′ ]. Since s′ < s, ds′ is also a constructive s-supergale, so S∞[ds′ ] ⊆ S∞[d(s)] by Theorem
3.11. The proof that X ⊆ S∞str[d

(t)] is analogous.

The following is a cornerstone of constructive dimension theory.

Theorem 3.13. (Lutz [31]) For any X ⊆ C,

cdim(X) = sup
S∈X

dim(S)

and
cDim(X) = sup

S∈X
Dim(S).

Proof. We prove the first equality; the proof for strong dimension is analogous. Let

r = sup
S∈X

dim(S).

The inequality cdim(X) ≥ r is clear by monotonicity. For the other inequality, let t > r be
computable. For each S ∈ X, we have dim(S) < t, so S ∈ S∞[d(t)] by Corollary 3.12. Therefore
X ⊆ S∞[d(t)] and cdim(X) ≤ t. As t > r is an arbitrary computable real, cdim(X) ≤ r follows.

Mayordomo showed that constructive dimension has a fundamental relationship with Kol-
mogorov complexity.

Theorem 3.14. (Mayordomo [43]) For any S ∈ C,

dim(S) = lim inf
n→∞

K(S �n)
n

and
Dim(S) = lim sup

n→∞

K(S �n)
n

.

Proof. We give the proof for dimension; the proof for strong dimension is analogous.
Let t > dim(S) be rational. Then by Corollary 3.12, S ∈ S∞[d(t)]. Recall from the proof of

Theorem 3.11 that d(t)(w) = 2t|w|M(w) for all w ∈ {0, 1}∗. Since d(t) succeeds on S, there is an
infinite set J such that d(t)(S �n) ≥ 1 for all n ∈ J . Therefore

− log M(S �n) ≤ − log 2−tn = tn

for all n ∈ J . As
| − log M(w)−K(w)| = O(log |w|) (3.1)
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(see [28]), the inequality

lim inf
n→∞

K(S �n)
n

≤ t

follows.
Now let

t > s > r > lim inf
n→∞

K(S �n)
n

be rational. Then for infinitely many n, K(S �n) < rn. Then using (3.1), there is an infinite set J
such that − log M(S �n) < sn for all n ∈ J . Therefore

d(t)(S �n) = 2tnM(S �n) > 2(t−s)n

for all n ∈ J , so S ∈ S∞[d(t)] and dim(S) ≤ t.

Note that any of the usual variants of Kolmogorov complexity can be used in Theorem 3.14 as
they all coincide up to a logarithmic additive term.

The rate at which a gambler can increase its capital when betting in a given situation is a
fundamental concern of classical and algorithmic information and computational learning theories.
In the setting of constructive gamblers, the following quantities are of particular relevance.

Definition. Let d be a supermartingale, let S ∈ C, and let X ⊆ C.

1. The lower d-Lyapunov exponent of S is

λd(S) = lim inf
n→∞

log d(S �n)
n

.

2. The upper d-Lyapunov exponent of S is

Λd(S) = lim sup
n→∞

log d(S �n)
n

.

3. The lower Lyapunov exponent of S is

λ(S) = sup{λd(S)|d is a constructive supermartingale}.

4. The upper Lyapunov exponent of S is

Λ(S) = sup{Λd(S)|d is a constructive supermartingale}.

5. The lower Lyapunov exponent of X is

λ(X) = inf
S∈X

λ(S).

6. The upper Lyapunov exponent of X is

Λ(X) = inf
S∈X

Λ(S).
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Lyapunov exponents such as these were investigated by Schnorr [53, 55], Ryabko [51], and
Staiger [57, 58] (using slightly different notations) prior to the effectivization of Hausdorff dimension.
The quantities λd(S) and Λd(S) are also called “exponents of increase” of d on S. It is implicit in
Staiger’s paper [57] that

Λcomp(S) = 1− dimcomp(S)

for all S ∈ C, where Λcomp(S) is defined like Λ(S) above, but with d required to be a computable
martingale. Similar reasoning leads to the following characterizations of the Lyapunov exponents.

Theorem 3.15. Let S ∈ C and X ⊆ C. Then Λ(S) = 1 − dim(S), λ(S) = 1 − Dim(S), Λ(X) =
1− cdim(X), and λ(X) = 1− cDim(X).

Proof. We show that Λ(S) = 1− dim(S). A similar argument shows that λ(S) = 1−Dim(S). By
Theorem 3.13, Λ(X) = 1 − cdim(X) and λ(X) = 1 − cDim(X) follow from the statements about
sequences.

Let t < s < Λ(S) with t computable, and let d be a constructive martingale for which λd(S) > s.
Then for infinitely many n, d(S �n) > 2sn. Define a constructive (1−t)-gale d′ by d′(w) = 2−t|w|d(w)
for all w ∈ {0, 1}∗. Then for infinitely many n, we have d′(S � n) = 2−tnd(S � n) > 2(s−t)n, so
S ∈ S∞[d]. Therefore dim(S) < 1−t. This holds for all computable t < Λ(S), so dim(S) ≤ 1−Λ(S).

Let s > dim(S) be computable, and let d be a constructive s-gale with S ∈ S∞[d]. Define
a constructive martingale d′ by d′(w) = 2(1−s)|w|d(w) for all w ∈ {0, 1}∗. For infinitely many n,
we have d(S � n) > 1, and for each of these n, d′(S � n) > 2(1−s)n. Therefore Λd′(S) ≥ 1 − s, so
Λ(S) ≥ 1− s. This holds for all s > dim(S), so Λ(S) ≥ 1− dim(S).

In the classical case, Tricot [61] has defined a set to be regular if its Hausdorff and packing
dimensions coincide, and defined its irregularity to be the difference between these two fractal
dimensions. Analogously, we define the c-irregularity (i.e., constructive irregularity) of a sequence
S ∈ C to be Dim(S) − dim(S), and we define the c-irregularity of a set X ⊆ C to be cDim(X) −
cdim(X). We define a sequence or set to be c-regular (i.e., constructively regular) if its c-irregularity
is 0.

As the following result shows, the c-irregularity of a sequence may be any real number in [0, 1].

Theorem 3.16. For any two real numbers 0 ≤ α ≤ β ≤ 1, there is a sequence S ∈ C such that
dim(S) = α and Dim(S) = β.

Proof. Let R be a Martin-Löf random sequence. It is well-known that

K(R�n) ≥ n−O(1). (3.2)

Write R = r1r2r3 . . . where |rn| = 2n− 1 for all n. Note that |r1 · · · rn| = n2.
For each n, define

γn =

{
1−α

α if log∗ n is odd
1−β

β if log∗ n is even,

and let
kn = d|rn|γne .

We now define S ∈ C as
S = r10k1r20k2 · · · rn0kn · · · .
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Note that for all n,

|rn0kn | = d|rn|(1 + γn)e

=

{⌈
1
α |rn|

⌉
if log∗ n is odd⌈

1
β |rn|

⌉
if log∗ n is even.

Let w v S. Then for some n,

w = r10k1 · · · rn−10kn−1r′n0j

where r′n v rn and 0 ≤ j ≤ kn. We have

K(w) ≤ K(r1 · · · rn−1r
′
n) + K(k1) + · · ·K(kn−1) + K(j) + O(1)

≤ |r1 · · · rn−1r
′
n|+ O(n log n)

≤ (n− 1)2 + O(n log n).

(3.3)

Also,

K(r1 · · · rn−1r
′
n) ≤ K(w) + K(k1) + · · ·+ K(kn−1) + K(j) + O(1)

≤ K(w) + O(n log n),

so by (3.2),
K(w) ≥ K(r1 · · · rn−1r

′
n)−O(n log n)

≥ |r1 · · · rn−1r
′
n| −O(n log n)

≥ (n− 1)2 −O(n log n).

(3.4)

We bound the length of w in terms of n as

|w| ≥ |r1|(1 + γ1) + · · ·+ |rn−1|(1 + γn−1) + |r′n|

≥ |r1 · · · rn−1|
β

=
1
β

(n− 1)2

(3.5)

and
|w| ≤ |r1|(1 + γ1) + · · ·+ |rn−1|(1 + γn−1) + |rn|(1 + γn) + n

≤ |r1 · · · rn−1rn|
α

+ n

≤ 1
α

(n + 1)2.

(3.6)

From (3.3) and (3.5), we have

lim sup
m→∞

K(S �m)
m

≤ lim sup
n→∞

(n− 1)2 + O(n log n)
1
β (n− 1)2

= β, (3.7)

and (3.4) and (3.6) yield

lim inf
m→∞

K(S �m)
m

≥ lim inf
n→∞

(n− 1)2 −O(n log n)
1
α(n + 1)2

= α. (3.8)
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For each n, let
wn = r10k1 · · · rn0kn .

Recall the sequence of towers defined by tj by t0 = 1 and tj+1 = 2tj . If j is even, then for all
tj−1 < i ≤ tj , γi = 1−β

β . Then

|wtj | ≤ tj +
tj∑

i=1

|ri|(1 + γi)

= tj +
tj−1∑
i=1

|ri|(1 + γi) +
1
β

tj∑
i=tj−1+1

|ri|

≤ tj +
1
α

t2j−1 +
1
β

(t2j − t2j−1)

≤ 1
β

t2j + tj + O((log tj)2).

(3.9)

Similarly, if j is odd, we have

|wtj | ≥
tj∑

i=1

|ri|(1 + γi)

=
tj−1∑
i=1

|ri|(1 + γi) +
1
α

tj∑
i=tj−1+1

|ri|

≥ 1
β

tj−1
2 +

1
α

(t2j − t2j−1)

≥ 1
α

t2j −O((log tj)2).

(3.10)

Combining (3.4) and (3.9), we have

lim sup
m→∞

K(S �m)
m

≥ lim sup
n→∞

K(wt2n)
|wt2n |

≥ β. (3.11)

Putting (3.3) together with (3.10) yields

lim inf
m→∞

K(S �m)
m

≤ lim inf
n→∞

K(wt2n+1)
|wt2n+1 |

≤ α. (3.12)

By Theorem 3.14, (3.8), and (3.12), we have dim(S) = α. We also have Dim(S) = β from
Theorem 3.14, (3.7), and (3.11).

Examples of c-regular sequences that are more natural than those given by Theorem 3.16 can be
obtained by generalizing the construction of Chaitin’s random real number Ω [11]. Mayordomo [43]
and, independently, Tadaki [60] defined for each s ∈ (0, 1] and each infinite, computably enumerable
set A ⊆ {0, 1}∗, the real number

θs
A =

∑{
2
|π|
s

∣∣∣π ∈ {0, 1}∗ and U(π) ∈ A
}

,

where U is a universal self-delimiting Turing machine. Given Theorem 3.14, the following fact is
implicit in Tadaki’s paper.

Theorem 3.17. (Tadaki [60]) For each s ∈ (0, 1] and each infinite, computably enumerable set
A ⊆ {0, 1}∗, the (binary expansion of the) real number θs

A is c-regular with dim(θs
A) = Dim(θs

A) = s.
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3.2.1 Gales Suffice for Constructive Dimension

In [35], a conference paper preceding [31], Lutz defined constructive dimension using constructive
gales. There Lutz used an incorrect assertion about martingales to argue that for each computable
s there exists a constructive s-gale that is multiplicatively optimal for the class of constructive
s-gales. These “optimal gales” were then used to prove Theorem 3.13. These flawed arguments
were subsequently noticed and corrected in [31] by reformulating constructive dimension in terms
of constructive supergales. The multiplicatively optimal supergales of Theorem 3.11 exist and
Theorem 3.13 is true in the reformulation. However, Lutz left open the questions of whether there
exist optimal constructive gales and whether constructive dimension can be equivalently defined
using constructive gales. We now address these questions.

Theorem 3.18. Let 0 ≤ r < t be computable real numbers. Then for any constructive r-supergale
d, there exists a constructive t-gale d′ such that S∞[d] ⊆ S∞[d′] and S∞str[d] ⊆ S∞str[d

′].

Proof. Let d be a constructive r-supergale, and assume without loss of generality that d(λ) < 1.
Define the language A = {w ∈ {0, 1}∗|d(w) > 1}. Observe that A is computably enumerable. For
all n ∈ N, ∑

w∈{0,1}n

d(w) ≤ 2rn,

so |A=n| ≤ 2rn.
For each n ∈ N, define a function d′n : {0, 1}∗ → [0,∞) by

d′n(w) =

{
2−t(n−|w|) ·

∣∣{v ∈ A=n|w v v}
∣∣ if |w| ≤ n

2(t−1)(|w|−n)d′n(w �n) if |w| > n.

Then for all n, d′n is a t-gale and d′n(w) = 1 for all w ∈ A=n.
Let s ∈ (r, t) be computable and define a function d′ on {0, 1}∗ by

d′ =
∞∑

n=0

2(s−r)nd′n.

Then

d′(λ) =
∞∑

n=0

2(s−r)n2−tn|A=n| ≤
∞∑

n=0

2(s−t)n < ∞,

and it follows by induction that d′(w) < ∞ for all strings w. Therefore, by linearity, d′ is a t-gale.
Also, because the language A is computably enumerable, d′ is constructive.

For all w ∈ A,
d′(w) ≥ 2(s−r)|w|d′|w|(w) = 2(s−r)|w|.

If S ∈ S∞[d], then S has infinitely many prefixes in A, so it follows that S ∈ S∞[d′]. Similarly, if
S ∈ S∞str[d], then all but finitely many prefixes of S are in A, so S ∈ S∞str[d

′].

Constructive dimension and constructive strong dimension may now be equivalently defined
using gales instead of supergales.

Theorem 3.19. For all X ⊆ C,

cdim(X) = inf Gconstr(X)

and
cDim(X) = inf Gstr

constr(X).
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Proof. Because any gale is also a supergale, Gconstr(X) ⊆ Ĝconstr(X), so

cdim(X) = inf Ĝconstr(X) ≤ inf Gconstr(X)

is immediate.
Let t > r > cdim(X) be computable real numbers and let d be a constructive r-supergale such

that X ⊆ S∞[d]. By Theorem 3.18, there is a constructive t-gale d′ such that X ⊆ S∞[d] ⊆ S∞[d′],
so t ∈ Gconstr(X). As this holds for any computable t > cdim(X), we have inf Gconstr(X) ≤ cdim(X).

The proof for constructive strong dimension is analogous.

We can also state the existence of a form of optimal constructive gales.

Definition. Let d∗ be a supergale and let D be a class of supergales. We say that d∗ is success-
optimal for D if for every d ∈ D, S∞[d] ⊆ S∞[d∗] and S∞str[d] ⊆ S∞str[d

∗].

Corollary 3.20. For all computable real numbers t > r ≥ 0 there exists a constructive t-gale that
is success-optimal for the class of constructive r-supergales.

Proof. Let d(r) be the constructive r-supergale from Theorem 3.11 that is multiplicatively optimal
for the constructive r-supergales. Take the constructive t-gale d′ from Theorem 3.18 that succeeds
everywhere that d(r) does. Therefore S∞[d] ⊆ S∞[d(r)] ⊆ S∞[d′] (and similarly for strong success)
for any constructive r-supergale d, so the corollary is proved.

The optimal gales provided by Corollary 3.20 may not be technically as strong as possible, in
two respects.

1. Lutz’s optimal constructive r-supergale is multiplicatively optimal, whereas our optimal con-
structive t-gale is only success-optimal. Does there exist a constructive t-gale that is multi-
plicatively optimal for the class of constructive r-supergales?

2. Our proof seems to require the hypothesis t > r. Does there exist a constructive r-gale that
is success-optimal for the class of constructive r-supergales?

However, the optimality in Corollary 3.20 remains strong enough to directly prove Theorem 3.13
using the gale definition of Theorem 3.19.

3.2.2 Entropy Rates

In this section we show that the constructive dimensions characterize entropy rates of the type
investigated by Staiger [56, 57].

Definition. Let A ⊆ {0, 1}∗.

1. The entropy rate of A ⊆ {0, 1}∗ is

HA = lim sup
n→∞

log |A=n|
n

.

2. We define the sets of sequences

Ai.o. = {S ∈ C|(∃∞n)S �n ∈ A}

and
Aa.e. = {S ∈ C|(∀∞n)S �n ∈ A}.
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In [56, 57], Ai.o. is called Aδ, the δ-limit of A. Staiger observed that HA has a useful alternate
characterization.

Lemma 3.21. (Staiger [56]) For any A ⊆ {0, 1}∗,

HA = inf

{
s

∣∣∣∣∣∑
w∈A

2−s|w| < ∞

}
.

Proof. Let

r = inf

{
s

∣∣∣∣∣∑
w∈A

2−s|w| < ∞

}
.

Let s > HA and ε = s−HA. Then for some n0, we have

HA +
ε

2
>

log |A=n|
n

for all n ≥ n0. We have

∑
w∈A

2−s|w| =
∑
w∈A

2−(HA+ε)|w| =
∞∑

n=0

|A=n|2−(HA+ε)n,

and
∞∑

n=n0

|A=n|2−(HA+ ε
2
)n2−

ε
2
n <

∞∑
n=n0

|A=n|2
−

(
log |A=n|

n

)
n2−

ε
2
n

=
∞∑

n=n0

2−
ε
2
n

< ∞,

so ∑
w∈A

2−s|w| < ∞.

Therefore r ≤ s. As s > HA is arbitrary, we have r ≤ HA.
For the other inequality, let s > r. Then since

∞∑
n=0

2−sn|A=n| =
∑
w∈A

2−s|w| < ∞,

there is some n0 such that 2−sn|A=n| ≤ 1 for all n ≥ n0. Therefore

log |A=n|
n

≤ s

for all n ≥ n0, so HA ≤ s. Since s > r is arbitrary, we have HA ≤ r.

We now give a general definition of entropy rate of a class of sequences that takes a class of
languages as a parameter.

Definition. Let X ⊆ C and let C be a class of languages.
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1. The C-entropy rate of X is

HC(X) = inf{HA | X ⊆ Ai.o. and A ∈ C}.

2. The strong C-entropy rate of X is

Hstr
C (X) = inf{HA | X ⊆ Aa.e. and A ∈ C}.

For now we are interested in the cases when C = ALL, the class of all languages, and C = CE, the
class of computably enumerable languages. In Section 3.3.2 the PSPACE- and DEC- entropy rates
will also be of interest.

The classical Hausdorff and packing dimensions may be characterized in terms of entropy rates.

Theorem 3.22. For any X ⊆ C,

dimH(X) = HALL(X)

and
dimP(X) = Hstr

ALL(X).

Proof. A proof of the Hausdorff dimension part can be found in [56]; it also follows from Theorem
32 of [47]. We omit a proof for packing dimension. (Both parts can also be proved using the
arguments from the proofs of Lemmas 3.23 and 3.24 below.)

In analogy with Theorem 3.22 we will show that the constructive dimensions can be character-
ized using the constructive entropy rates HCE(X) and Hstr

CE(X). First we show that the dimensions
are lower bounds of the entropy rates.

Lemma 3.23. For any X ⊆ C,
cdim(X) ≤ HCE(X)

and
cDim(X) ≤ Hstr

CE(X).

Proof. Let A ⊆ {0, 1}∗ and let t > s > HA. For each n ∈ N, define a function dn : {0, 1}∗ → [0,∞)
by

dn(w) =

{
2−t(n−|w|) ·

∣∣{v ∈ A=n|w v v}
∣∣ if |w| ≤ n

2(t−1)(|w|−n)dn(w �n) if |w| > n.

Then each dn is a t-gale. Define a function d on {0, 1}∗ by d =
∑∞

n=0 2(t−s)ndn. Then

d(λ) =
∞∑

n=0

2(t−s)n2−tn|A=n| =
∑
w∈A

2−s|w| < ∞

because s > HA. By induction, d(w) < ∞ for all strings w, so d : {0, 1}∗ → [0,∞). By linearity, d
is also a t-gale. For any w ∈ A, we have

d(w) ≥ 2(t−s)|w|d|w|(w) = 2(t−s)|w|,

so it follows that Ai.o. ⊆ S∞[d] and Aa.e. ⊆ S∞str[d].
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Let r > HCE(X) be arbitrary. Then there is a computably enumerable A with X ⊆ Ai.o.

and HA < r. We can also choose t and s computable so that HA < s < t < r. Because A is
computably enumerable, the t-gale d defined above is constructive. Since X ⊆ Ai.o. ⊆ S∞[d], we
have cdim(X) ≤ t < r. As this holds for all r > HCE(X), we have cdim(X) ≤ HCE(X).

The proof that cDim(X) ≤ Hstr
CE(X) is analogous to the previous paragraph.

Next we give lower bounds for the dimensions by entropy rates.

Lemma 3.24. For all X ⊆ C,
HCE(X) ≤ cdim(X)

and
Hstr

CE(X) ≤ cDim(X).

Proof. Suppose that d is an s-supergale with X ⊆ S∞[d]. Assume without loss of generality that
d(λ) < 1 and let A = {w | d(w) > 1}. Then for all n ∈ N,∑

w∈{0,1}n

d(w) ≤ 2sn

and |A=n| ≤ 2sn. Also, X ⊆ S∞[d] ⊆ Ai.o.. For any t > s,∑
w∈A

2−t|w| =
∞∑

n=0

2−tn|A=n| ≤
∞∑

n=0

2(s−t)n < ∞,

so HA ≤ t. Therefore HA ≤ s.
If we let s > cdim(X) be computable, then there is a constructive s-supergale d with X ⊆ S∞[d].

Then the set A defined above is computably enumerable and X ⊆ Ai.o., so HCE(X) ≤ HA. We
showed that HA ≤ s, so HCE(X) ≤ s. Therefore HCE(X) ≤ cdim(X).

The proof that Hstr
CE(X) ≤ cDim(X) is analogous.

We now have an equivalence between constructive entropy rates and the constructive dimen-
sions.

Theorem 3.25. For all X ⊆ C,
cdim(X) = HCE(X)

and
cDim(X) = Hstr

CE(X).

Proof. This follows immediately from Lemmas 3.23 and 3.24.

3.3 Resource-Bounded Dimensions

In this section we define resource-bounded dimension and resource-bounded strong dimension.
Resource-bounded dimension was introduced by Lutz [30] by effectivizing the gale characterization
of Hausdorff dimension (Theorem 3.5) in much the same way that the martingale characterization
of Lebesgue measure (Theorem 3.3) was effectivized to define resource-bounded measure [33].

Unless otherwise specified, ∆ denotes any of the resource bounds defined in Chapter 2. We
begin by recalling the definition of resource-bounded measure. This is done by restricting the
martingales in Theorem 3.3 to be ∆-computable.
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Definition. Let X ⊆ C.

1. We say that X has ∆-measure 0, and write µ∆(X) = 0, if there is a ∆-computable martingale
d such that X ⊆ S∞[d].

2. We say that X has ∆-measure 1, and write µ∆(X) = 1, if µ∆(Xc) = 0.

3. We say that X has measure 0 in R(∆), and write µ(X | R(∆)) = 0, if µ∆(X ∩R(∆)) = 0.

4. We say that X has measure 1 in R(∆), and write µ(X | R(∆)) = 1, if µ∆(Xc | R(∆)) = 0.

The definition of measure in R(∆) is justified by the following theorem.

Theorem 3.26. (Measure Conservation Theorem (Lutz [33])) µ∆(R(∆)) 6= 0.

In particular, Theorem 3.26 implies that the conditions µ∆(X | R(∆)) = 0 and µ∆(X | R(∆)) = 1
are mutually exclusive.

To effectivize the Hausdorff and packing dimensions, we use ∆-computable gales and supergales.
The following sets are similar to those defined in Section 3.2 that were used for the constructive
dimensions.

Notation. Let X ⊆ C.

1. G∆(X) is the set of all s ∈ [0,∞) for which there exists a ∆-computable s-gale d such that
X ⊆ S∞[d].

2. Gstr
∆ (X) is the set of all s ∈ [0,∞) for which there exists a ∆-computable s-gale d such that

X ⊆ S∞str[d].

3. Ĝ∆(X) is the set of all s ∈ [0,∞) for which there exists a ∆-computable s-supergale d such
that X ⊆ S∞[d].

4. Ĝstr
∆ (X) is the set of all s ∈ [0,∞) for which there exists a ∆-computable s-supergale d such

that X ⊆ S∞str[d].

The following effectivizations of Hausdorff and packing dimension are motivated by Theorems
3.5 and 3.6.

Definition. Let X ⊆ C and S ∈ C.

1. The ∆-dimension of X is
dim∆(X) = inf G∆(X).

2. The ∆-strong dimension of X is

Dim∆(X) = inf Gstr
∆ (X).

3. The dimension of X in R(∆) is

dim(X | R(∆)) = dim∆(X ∩R(∆)).

4. The strong dimension of X in R(∆) is

Dim(X | R(∆)) = Dim∆(X ∩R(∆)).
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The polynomial-time dimensions dimp(X) and Dimp(X) are also called the feasible dimension
and the feasible strong dimension, respectively. The notation dimp(X) for the p-dimension is all
too similar to the notation dimP(X) for the classical packing dimension, but confusion is unlikely
because these dimensions typically arise in quite different contexts.

Note that the classical Hausdorff and packing dimensions can each now be written in three
different ways, i.e.,

dimH(X) = dimall(X) = dim(X | C)

and
dimP(X) = Dimall(X) = Dim(X | C).

In the definition of the resource-bounded dimensions, we could equivalently use the “hatted” sets
Ĝ∆(X) and Ĝstr

∆ (X) in place of their unhatted counterparts. This is immediate from the following
exact computation lemma.

Lemma 3.27. (Lutz [30]) If d is a ∆-computable s-supergale and 2s is rational, then there is an
exactly ∆-computable s-gale d̃ such that S∞[d] ⊆ S∞[d̃] and S∞str[d] ⊆ S∞str[d̃].

We now give some basic properties of the resource-bounded dimensions.

Observations 3.28. Let X, Y ⊆ C and let ∆,∆′ be resource-bounds.

1. 0 ≤ dim∆(X) ≤ Dim∆(X) ≤ 1.

2. If X ⊆ Y , then dim∆(X) ≤ dim∆(Y ) and Dim∆(X) ≤ Dim∆(Y ).

3. If ∆ ⊆ ∆′, then dim∆′(X) ≤ dim∆(X) and Dim∆′(X) ≤ Dim∆(X).

Resource-bounded dimension refines resource-bounded measure in the following way.

Proposition 3.29. (Lutz [30]) Let X ⊆ C.

1. If dim∆(X) < 1, then µ∆(X) = 0.

2. If dim(X | R(∆)) < 1, then µ(X | R(∆)) = 0.

Proof. Assume that dim∆(X) < 1 and let d be a ∆-computable s-gale with X ⊆ S∞[d] and s < 1.
Then d is a 1-supergale, so by Lemma 3.27, there is an exactly ∆-computable martingale (i.e., a
1-gale) d̃ with S∞[d] ⊆ S∞[d̃], so µ∆(X) = 0.

That is, sets that do not have ∆-measure 0 have ∆-dimension 1. In particular, from Theorem
3.26, we have the following.

Corollary 3.30. (Lutz [30])

1. dimp(E) = Dimp(E) = 1.

2. dimp2
(EXP) = Dimp2

(EXP) = 1.

3. dimpspace(ESPACE) = Dimpspace(ESPACE) = 1.

4. dimp2space(EXPSPACE) = Dimp2space(EXPSPACE) = 1.

On the other hand, “slices” of these classes have ∆-dimension 0.
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Proposition 3.31. (Lutz [30]) Let c ∈ N.

1. dimp(DTIME(2cn) = Dimp(DTIME(2cn)) = 0.

2. dimp2
(DTIME(2nc

) = Dimp2
(DTIME(2nc

)) = 0.

3. dimpspace(DSPACE(2cn) = Dimpspace(DSPACE(2cn)) = 0.

4. dimp2space(DSPACE(2nc
) = Dimp2space(DSPACE(2nc

)) = 0.

It is possible for a subclass of R(∆) to have ∆-dimension strictly between 0 and 1, but so far
this is not known to hold for any standard complexity class.

3.3.1 Log-Loss Unpredictability

In this section we establish a fundamental relationship between the Hausdorff and packing dimen-
sions and log-loss prediction.

Consider predicting the symbols of an unknown infinite sequence. Given an initial finite segment
of the sequence, a predictor specifies a probability distribution over {0, 1}. We may think of the
probability that the algorithm assigns to each character as representing the predictor’s confidence
of that character occurring next in the sequence. Formally, we define a predictor as follows.

Definition. A function π : {0, 1}∗ × {0, 1} → [0, 1] is a predictor if for all w ∈ {0, 1}∗, π(w, 0) +
π(w, 1) = 1.

Here we interpret π(w, b) as the predictor π’s estimation of the likelihood that the bit immediately
following the string w is b. There is a natural correspondence between predictors and gales. (An
early reference for the following type of relationship between prediction and gambling is [12].)

Notation. 1. A predictor π induces for each s ∈ [0,∞) an s-gale d
(s)
π defined by the recursion

d(s)
π (λ) = 1

d(s)
π (wa) = 2sd(s)

π (w)π(w, a)

for all w ∈ {0, 1}∗ and a ∈ {0, 1}; equivalently

d(s)
π (w) = 2s|w|

|w|−1∏
i=0

π(w � i, w[i])

for all w ∈ {0, 1}∗.

2. An s-gale d with d(λ) = 1 is induced by the predictor πd defined by

πd(w, a) =

{
2−s d(wa)

d(w) if d(w) 6= 0
1
k otherwise

for all w ∈ {0, 1}∗ and a ∈ {0, 1}.

The following observation is simple but useful.

Observation 3.32. 1. Let s be rational and π be a predictor. If π is ∆-computable, then d
(s)
π

is ∆-computable.
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2. Let 2s be rational and d be an s-gale. If d is exactly ∆-computable, then πd is exactly ∆-
computable.

In judging the performance of a predictor on a sequence, it is instructive to consider its “loss”
on individual bits of the sequence. A standard way to do this is the log-loss function (see [44]). If
the probability that the predictor assigned to the correct bit is p, then we assign a loss of

log
1
p

to that prediction. If p = 1, then the loss is 0. As p approaches 0, the loss becomes infinite. Using
p = 1

2 achieves a loss of 1 no matter which bit occurs.
In the following definition we write Π(∆) for the class of all ∆-computable predictors.

Definition. Let w ∈ {0, 1}∗, S ∈ C, and X ⊆ C.

1. The cumulative log-loss of π on w is

Llog(π,w) =
|w|−1∑
i=0

log
1

π(w � i, w[i])
.

2. The log-loss rate of π on S is

Llog(π, S) = lim inf
n→∞

Llog(π, S �n)
n

.

3. The strong log-loss rate of π on S is

Llog
str (π, S) = lim sup

n→∞

Llog(π, S �n)
n

.

4. The (worst-case) log-loss of π on X is

Llog(π,X) = sup
S∈X

Llog(π, S).

5. The (worst-case) strong log-loss of π on X is

Llog
str (π,X) = sup

S∈X
Llog

str (π, S).

6. The ∆-log-loss unpredictability of X is

unpredlog
∆ (X) = inf

π∈Π(∆)
Llog(π,X).

7. The ∆-strong log-loss unpredictability of X is

Unpredlog
∆ (X) = inf

π∈Π(∆)
Llog

str (π,X).

We now show that log-loss unpredictability equals dimension.
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Theorem 3.33. For any X ⊆ C,

dim∆(X) = unpredlog
∆ (X)

and
Dim∆(X) = Unpredlog

∆ (X).

Proof. Let 2s be rational such that dim∆(X) ≤ s and let d be an exactly ∆-computable s-gale with
X ⊆ S∞[d]. Assume without loss of generality that d(λ) = 1. Let πd : {0, 1}∗×{0, 1} → [0, 1] be the
predictor inducing d as defined above. The πd is also exactly ∆-computable. For any w ∈ {0, 1}∗
with d(w) > 0,

Llog(πd, w) =
|w|−1∑
i=0

log
1

πd(w � i, w[i])

= − log
|w|−1∏
i=0

πd(w � i, w[i])

= − log 2−s|w|d(w)
= s|w| − log d(w).

Let S ∈ S∞[d]. Then there exist infinitely many n ∈ N such that d(S �n) ≥ 1, and for each of these
n we have

Llog(πd, S �n)
n

=
sn− log d(S �n)

n

≤ sn− log 1
n

= s.

Therefore Llog(πd, S) ≤ s, so this establishes that unpredlog
∆ (X) ≤ Llog(πd, X) ≤ s. By density of

the set {s | 2s ∈ Q}, it follows that unpredlog
∆ (X) ≤ dim∆(X). The proof that Unpredlog

∆ (X) ≤
Dim∆(X) is analogous.

Now let s > t > unpredlog
∆ be rational, and let π be a ∆-computable predictor for which

Llog
π (X) < t. Let d

(s)
π be the s-gale induced by π as defined above. Note that d

(s)
π is also ∆-

computable. Let S ∈ X. Then there exist infinitely many n ∈ N such that

Llog
π (S �n)

n
≤ t,

and for each of these n we have

log d(s)
π (S �n) = sn +

n−1∑
i=0

log π(w � i, w[i])

= sn− Llog
π (S �n)

≥ sn− tn

= (s− t)n,

so it follows that S ∈ S∞[d(s)
π ] and X ⊆ S∞[d(s)

π ]. Therefore, dim∆(X) ≤ s. As this holds for
all rational s > unpredlog

∆ (X), we have dim∆(X) ≤ unpredlog
∆ (X). The proof that Dim∆(X) ≤

Unpredlog
∆ (X) is analogous.
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3.3.2 Entropy Rates and Kolmogorov Complexity

In this section we show that versions of the entropy rate and Kolmogorov complexity character-
izations of constructive dimension (Theorems 3.25 and 3.14) also hold for the computable and
polynomial-space dimensions.

In the following definition, comp is the class of all computable space bounds and poly is the
class of all polynomials. We use KSf to denote f -space-bounded Kolmogorov complexity.

Definition. For any X ⊆ C, we define the quantities

KScomp(X) = inf
f∈comp

sup
S∈X

lim inf
n→∞

KSf (S �n)
n

,

KSstr
comp(X) = inf

f∈comp
sup
S∈X

lim sup
n→∞

KSf (S �n)
n

,

KSpoly(X) = inf
p∈poly

sup
S∈X

lim inf
n→∞

KSp(S �n)
n

,

and
KSstr

poly(X) = inf
p∈poly

sup
S∈X

lim sup
n→∞

KSp(S �n)
n

.

The main result of this section gives new characterizations of the computable and polynomial-
space dimensions. Here we use the HC(X) and Hstr

C (X) entropy rates from Section 3.2.2.

Theorem 3.34. For all X ⊆ C,

dimcomp(X) = HDEC(X) = KScomp(X),

Dimcomp(X) = Hstr
DEC(X) = KSstr

comp(X),

dimpspace(X) = HPSPACE(X) = KSpoly(X),

and
Dimpspace(X) = Hstr

PSPACE(X) = KSstr
poly(X).

Theorem 3.34 will follow from the next few lemmas. First, we show that the dimensions are
upper bounded by the entropy rates.

Lemma 3.35. Let ∆ ∈ {comp,pspace}. For any X ⊆ C,

dim∆(X) ≤ HR(∆)(X)

and
Dim∆(X) ≤ Hstr

R(∆)(X).

Proof. We first give the proof for ∆ = comp. The case HDEC(X) = 1 is trivial, so assume
HDEC(X) < 1 and let 1 > r > HDEC(X) be arbitrary. Take a decidable A and 2s, 2t rational such
that X ⊆ Ai.o. and HA < s < t < r. Recall the construction of a t-gale d that succeeds on Ai.o.

from the proof of Lemma 3.23. For each n ∈ N, we first defined dn : {0, 1}∗ → [0,∞) by

dn(w) =

{
2−t(n−|w|) ·

∣∣{v ∈ A=n | w v v}
∣∣ if |w| ≤ n

2(t−1)(|w|−n)dn(w �n) if |w| > n.

31



and then defined d : {0, 1}∗ → [0,∞) by

d =
∞∑

n=0

2(t−s)ndn.

We will show that d is computable. For this, choose a natural number k > 1
t−s . Define a function

d̂ : {0, 1}∗ × N → [0,∞) ∩Q by

d̂(w, r) =
kr+|w|∑
n=0

2(s−t)ndn(w).

Then d̂ is exactly computable. For all n, dn(w) ≤ 1 for all w with |w| ≥ n, so for any precision
r ∈ N,

|d(w)− d̂(w, r)| =
∞∑

n=kr+|w|+1

2(s−t)ndn(w)

≤
∞∑

n=kr+|w|+1

2(s−t)n

≤
∞∑

n=kr+1

2(s−t)n

= 2(s−t)(kr)

< 2−r.

Therefore d̂ demonstrates that d is computable. Then dimcomp(X) ≤ t < r because X ⊆ Ai.o. ⊆
S∞[d]. It follows that dimcomp(X) ≤ HDEC(X) because r > HDEC(X) is arbitrary. The proof that
Dimcomp(X) ≤ Hstr

DEC(X) is analogous.
For ∆ = pspace, the same construction works. If A ∈ PSPACE, then dn(w) can be exactly

computed in space that is polynomial in n + |w| by reusing space. Therefore d̂(w, r) is exactly
computable in space polynomial in r + |w|, so d is a polynomial-space computable t-gale.

We now show that the dimensions are lower bounded by the entropy rates. While it seems
difficult to extend the upper bounds in Lemma 3.35 to the polynomial-time case, the lower bounds
do hold for polynomial time.

Lemma 3.36. Let r(comp) = DEC, r(pspace) = PSPACE, and r(p) = P. For all X ⊆ C and
∆ ∈ {comp,pspace,p},

Hr(∆)(X) ≤ dim∆(X)

and
Hstr

r(∆)(X) ≤ Dim∆(X).

Proof. Let d be an exactly ∆-computable s-gale with X ⊆ S∞[d]. Assume without loss of generality
that d(λ) < 1 and define A = {w | d(w) > 1}. For all n ∈ N, we have∑

w∈{0,1}n

d(w) ≤ 2sn,
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so |A=n| ≤ 2sn. Also, X ⊆ S∞[d] ⊆ Ai.o.. For any t > s,∑
w∈A

2−t|w| =
∞∑

n=0

2−tn|A=n| ≤
∞∑

n=0

2(s−t)n < ∞,

so HA ≤ t. Therefore HA ≤ s. Since A ∈ r(∆), we have Hr(∆)(X) ≤ s. It follows that Hr(∆)(X) ≤
dim∆(X). The proof that Hstr

r(∆)(X) ≤ Dim∆(X) is analogous.

The next lemma equates the entropy rates with the Kolmogorov complexity quantities defined
at the beginning of this section.

Lemma 3.37. For all X ⊆ C,
HDEC(X) = KScomp(X),

Hstr
DEC(X) = KSstr

comp(X),

HPSPACE(X) = KSpoly(X),

Hstr
PSPACE(X) = KSstr

poly(X).

Proof. Let t > s > KScomp(X) be rational and let f be a computable space bound such that

lim inf
n→∞

KSf (S �n)
n

< s

for all S ∈ X. Define
A = {w | KSf (w) ≤ s|w|}.

Then A ∈ DEC and X ⊆ Ai.o.. Also, |A=n| ≤ 2dsne ≤ 2tn for all n, so HA ≤ t. Therefore
HDEC(X) ≤ t. As t > KScomp(X) is an arbitrary rational, we have HDEC(X) ≤ KScomp(X). The
inequality Hstr

DEC(X) ≤ KSstr
comp(X) is established analogously. The corresponding inequalities for

the polynomial-space part follow in the same way using the fact that {w | KSf (w) < s|w|} is in
PSPACE if f is a polynomial.

Let s > HDEC(X), and let A ∈ DEC such that HA < s and X ⊆ Ai.o.. Let f(n) ≥ n be a
computable space bound in which A is decidable. Any w ∈ A=n can be described by giving n and
its index within a listing of A=n in lexicographic order. By reusing space, w can be computed from
this description in O(f(n)) space. Therefore

KSO(f)(w) ≤ log |A=n|+ O(log n).

Let S ∈ X. Then
(∃∞n)S �n ∈ A=n.

Also, since HA < s,

(∀∞n)
log |A=n|

n
< s,

so

(∃∞n)
KSO(f)(S �n)

n
≤ log |A=n|+ O(log n)

n
< s + o(1).

Therefore

lim inf
n→∞

KSO(f)(S �n)
n

≤ s.

Because s > HA is arbitrary, this establishes that KScomp(X) ≤ HDEC(X). The proofs of the
remaining three inequalities are analogous.

Theorem 3.34 now follows immediately from Lemmas 3.35, 3.36, and 3.37.
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3.4 Scaled Dimension

To overcome limitations of resource-bounded dimension for investigating complexity classes within
ESPACE, Hitchcock, Lutz, and Mayordomo [23] introduced for each integer i ∈ Z the ith-order
scaled dimension dim(i)

∆ (X) and also the ith-order scaled dimension in R(∆) dim(i)(X | R(∆)) =
dim(i)

∆ (X ∩ R(∆)). For any class X and i ∈ Z, dim(i)
∆ (X) ∈ [0, 1], and if it is less than 1, then

µ∆(X) = 0. The quantity dim(i)
∆ (X) is nondecreasing in i, and there is at most one i ∈ Z for

which 0 < dim(i)
∆ (X) < 1. The 0th-order dimension, dim(0)

∆ (·), is precisely the standard unscaled
dimension, and the other orders can be more useful than it for certain complexity classes. To
illustrate this, we mention some examples from circuit-size complexity. For a function s : N → N,
let SIZE(s(n)) consist of all languages decidable by nonuniform Boolean circuit families of size s(n).
Lutz [30] showed that

dim
(

SIZE
(

α
2n

n

)∣∣∣∣ESPACE
)

= α (3.1)

for all α ∈ (0, 1). Circuit size bounds of the from 2αn and 2nα
are typically of more interest in

complexity theory, but (3.1) implies that SIZE(2αn) and SIZE(2nα
) have dimension 0 in E for all

α ∈ (0, 1). For these size bounds, the scaled dimensions are useful; in [23] it is shown that

dim(1)(SIZE(2αn) | ESPACE) = α

and
dim(2)(SIZE(2nα

) | ESPACE) = α

for any α ∈ (0, 1).
In this section we review the essentials of resource-bounded scaled dimension and develop some

new tools for working with it. The principle concept is a scale, which is a function g : H× [0,∞) →
R, where H = (a,∞) for some a ∈ R ∪ {−∞}.

Definition. A scale is a continuous function g : H × [0,∞) −→ R with the following properties.

1. H = (a,∞) for some a ∈ R ∪ {−∞}.

2. g(m, 1) = m for all m ∈ H.

3. g(m, 0) = g(m′, 0) ≥ 0 for all m,m′ ∈ H.

4. For every sufficiently large m ∈ H, the function s 7→ g(m, s) is nonnegative and strictly
increasing.

5. For all s′ > s ≥ 0, lim
m→∞

[g(m, s′)− g(m, s)] = ∞.

The canonical example of a scale is the function g0 : R× [0,∞) → R defined by g0(m, s) = sm.
This scale is used in the standard (unscaled) dimension. Other scales of interest are obtained from
g0 by rescaling and reflection operations.

Definition. Let g : H × [0,∞) → R be a scale.

1. The first rescaling of g is the scale g# : H# × [0,∞) −→ R defined by

H# = {2m | m ∈ H}

g#(m, s) = 2g(log m,s).
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2. The reflection of g is the scale gR : H × [0,∞) → R defined by

gR(m, s) =
{

m + g(m, 0)− g(m, 1− s) if 0 ≤ s ≤ 1
g(m, s) if s ≥ 1.

If g is a scale, then for all m ∈ H# and s ∈ [0,∞),

log g#(m, s) = g(log m, s),

which means that a log-log graph of the function m 7→ g#(m, s) is precisely the ordinary graph of
the function m 7→ g(m, s). This is the sense in which g# is a rescaling of g.

A family of scales, one for each integer, is defined as follows.

Definition. 1. For each i ∈ N, define ai by the recurrence a0 = −∞, ai+1 = 2ai.

2. For each i ∈ Z, define the ith scale gi : (a|i|,∞)× [0,∞) → R by the following recursion.

(a) g0(m, s) = sm.

(b) For i ≥ 0, gi+1 = g#
i .

(c) For i < 0, gi = gR
−i.

For clarity, we compute the first few scales. For all s ∈ [0, 1], if m > a|i|, then gi(m, s) is defined
by

g3(m, s) = 22(log log m)s

g2(m, s) = 2(log m)s

g1(m, s) = ms

g0(m, s) = sm

g−1(m, s) = m + 1−m1−s

g−2(m, s) = m + 2− 2(log m)1−s

g−3(m, s) = m + 4− 22(log log m)1−s

.

Scaled dimension is defined using functions called scaled gales.

Definition. Let i ∈ Z and let s ∈ [0,∞). An ith-order scaled s-gale (briefly, an s(i)-gale) is a
function d : {0, 1}>a|i| → [0,∞) such that for all w ∈ {0, 1}∗ with |w| > a|i|,

d(w) = 2−∆gi(|w|,s)[d(w0) + d(w1)], (3.2)

where ∆gi : (a|i|,∞)× [0,∞) → R is defined by

∆gi(m, s) = gi(m + 1, s)− gi(m, s).

Note that an s(0)-gale is simply an s-gale.
Success sets of scaled gales are used to define scaled dimension.

Definition. Let X ⊆ C and i ∈ Z.
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1. The ith-order scaled ∆-dimension of X is

dim(i)
∆ (X) = inf

{
s

∣∣∣∣ there exists a ∆-computable
s(i)-scaled gale d for which X ⊆ S∞[d]

}
.

2. The ith-order scaled dimension of X within R(∆) is

dim(i)(X | R(∆)) = dim(i)
∆ (X ∩R(∆)).

The 0th-order dimension dim(0)
∆ (·) is precisely the dimension dim∆(·) defined in Section 3.3 and the

other orders are interpreted as rescalings of this concept.
The following lemma relates resource-bounded scaled dimension to resource-bounded measure.

Lemma 3.38. ([23]) For any class X ⊆ C and i ∈ Z,

dim(i)
∆ (X) < 1 ⇒ µ∆(X) = 0

and
dim(i)(X | R(∆)) < 1 ⇒ µ(X | R(∆)) = 0.

The following is another key property of scaled dimension.

Theorem 3.39. ([23]) Let X ⊆ C and i ∈ Z. If dim(i+1)
∆ (X) < 1, then dim(i)

∆ (X) = 0.

This theorem tells us that for every class X, the sequence of dimensions dim(i)
∆ (X) for i ∈ Z

satisfies exactly one of the following three conditions.

(i) dim(i)
∆ (X) = 0 for all i ∈ Z.

(ii) dim(i)
∆ (X) = 1 for all i ∈ Z.

(iii) There exist i∗ ∈ Z such that dim(i)
∆ (X) = 0 for all i < i∗ and dim(i)

∆ (X) = 1 for all i > i∗.

3.4.1 Unpredictability Tools

This section provides some tools involving measures and the log-loss concept that are useful for
working with the scaled dimensions. In Section 3.3.1 we showed that log-loss unpredictability is
equivalent to dimension. We similarly characterize scaled dimension using the log-loss of measures.

Definition. A measure on C is a function ρ : {0, 1}∗ → [0,∞) satisfying

ρ(w) = ρ(w0) + ρ(w1)

for all w ∈ {0, 1}∗.

Measures have the following fundamental relationship with scaled gales. This extends Schnorr’s
“likelihood ratio” characterization of martingales [55].

Observation 3.40. Let i ∈ Z and s ∈ [0,∞).
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1. If ρ : {0, 1}∗ → [0,∞) is a measure, then the function dρ : {0, 1}>a|i| → [0,∞) defined by

dρ(w) = 2gi(|w|,s)ρ(w)

for all w ∈ {0, 1}>a|i| is an s(i)-gale.

2. If d : {0, 1}>a|i| → [0,∞) is an s(i)-gale, then the function ρd : {0, 1}∗ → [0,∞) defined by

ρd(w) = 2−gi(|w|,s)d(w)

for all w ∈ {0, 1}>a|i| and
ρd(w) =

∑
|v|=a|i|+1−|w|

ρd(wv)

for all w ∈ {0, 1}≤a|i| is a measure.

The following lemma relates the scaled dimension of a class to limits involving scales and
logarithms of measures.

Lemma 3.41. Let X ⊆ C and let i ∈ Z.

1. If s > dim(i)
∆ (X), then there is a ∆-computable measure ρ such that

lim sup
n→∞

gi(n, s) + log ρ(A�n) = ∞

for all A ∈ X.

2. If s < dim(i)
∆ (X), then for any ∆-computable measure ρ there is an Aρ ∈ X such that

lim
n→∞

gi(n, s) + log ρ(Aρ �n) = −∞.

Proof. Let r be rational with s > r > dim(i)
∆ (X) and let d be a ∆-computable r(i)-gale succeeding

on X. Then the measure ρd from Observation 3.40 is also ∆-computable. Let A ∈ X. There are
infinitely many n ∈ N such that d(A�n) ≥ 1 since A ∈ S∞[d]. For such n,

gi(n, s) + log ρd(A�n) = gi(n, s)− gi(n, r) + log d(A�n)
≥ gi(n, s)− gi(n, r).

Part 1 follows because r < s.
For part 2, let ρ be a ∆-computable measure. Let t be rational with s < t < dim(i)

∆ (X) and
obtain the t(i)-gale dρ from Observation 3.40. Then X 6⊆ S∞[dρ] because dρ is ∆-computable, so
there is an Aρ ∈ X and a constant c such that d(A�n) ≤ c for all n > a|i|. Then

gi(n, s) + log ρ(A�n) = gi(n, s)− gi(n, t) + log dρ(A�n)
≤ gi(n, s)− gi(n, t) + log c,

so the claim follows because s < t.

Lemma 3.41 asserts that if the ith-order scaled dimension of a class X is less than s then there
is a measure ρ such that for every A ∈ X, there are prefixes w v A where the log-loss quantity

− log ρ(w)

is arbitrarily less than gi(|w|, s).
It is often convenient to replace computable measures by exactly computable measures.
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Lemma 3.42. Let ρ be a measure that is computable in t(n) time (respectively, space). Then there
is a measure ρ̃ that is exactly computable in O(n · t(3n)) time (respectively, space) such that

log ρ̃(w) ≥ log ρ(w)− c

for all w ∈ {0, 1}∗ where c is a constant that is independent of w.

Proof. We assume that ρ(w) ≥ 2−|w| for all w ∈ {0, 1}∗. (If ρ does not satisfy this condition, add
2−|w| to ρ(w) to obtain a measure that does and use it instead.)

Let ρ̂ : N× {0, 1}∗ → [0,∞) be an approximation of ρ. For all w ∈ {0, 1}∗, define

ρ′(w) = ρ̂(2|w|, w).

The measure ρ̃ : {0, 1}∗ → [0,∞) is defined by

ρ̃(λ) = ρ′(0) + ρ′(1)

and

ρ̃(wb) =
ρ′(wb)

ρ′(w0) + ρ′(w1)
ρ̃(w)

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. If ρ̂ is exactly computable in t(n) time, then ρ′(w) is computable
in t(2|w| + |w|) time, so we can exactly compute ρ̃(w) in O(|w| · t(3|w|)) time. Similarly, if ρ̂ is
computable in t(n) space, then ρ̃ is computable in O(n · t(3n)) space.

For any w ∈ {0, 1}+, we have

ρ′(w)
ρ′(w0) + ρ′(w1)

≥ ρ(w)− 2−2|w|

ρ(w0) + 2−2(|w|+1) + ρ(w1) + 2−2(|w|+1)

=
ρ(w)− 2−2|w|

ρ(w) + 2−2|w|−1

≥ 2−|w| − 2−2|w|

2−|w| + 2−2|w|−1

=
2|w| − 1
2|w| + 1

2

= 1−
3
2

2|w| + 1
2

≥ 1− 2
2|w|+1

= 1− 2−|w|,

with the second inequality holding because

α− ε

α + ε
2
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is an increasing function of α and 2−|w| is the minimum possible value for ρ(w). Therefore

log ρ̃(w) = log

 |w|∏
i=1

ρ′(w � i)
ρ′((w � i− 1)0) + ρ′((w � i− 1)1)

 ρ̃(λ)

= log ρ′(w) +
|w|−1∑
i=1

log
ρ′(w � i)

ρ′((w � i)0) + ρ′((w � i)1)
+ log

ρ′(0) + ρ′(1)
ρ′(0) + ρ′(1)

≥ log ρ′(w) +
|w|−1∑
i=1

log 1− 2−i

≥ log ρ′(w) +
|w|−1∑
i=1

−2−i

ln 2

≥ log ρ′(w)− 1
ln 2

.

Also, again using the fact that ρ(w) ≥ 2−|w|,

log ρ′(w) ≥ log
[
ρ(w)− 2−2|w|

]
≥ log ρ(w)

2−|w| − 2−2|w|

2−|w|

= log ρ(w)(1− 2−|w|)

≥ log ρ(w)− 2−|w|

ln 2
.

Combining the above, we have

log ρ̃(w) ≥ log ρ(w)− 2
ln 2

for all w ∈ {0, 1}+. The lemma holds with c =
⌈
max

{
2

ln 2 , log ρ(λ)
ρ̃(λ)

}⌉
.

The measures that are exactly computable within a fixed time or space bound are uniformly
exactly computable with slightly more time or space.

Lemma 3.43. For any time constructible functions t(n) and t′(n) with t(n) log t(n) = o(t′(n)),
the family of exactly t(n)-time computable measures is uniformly exactly computable in t′(n)-time.
If t(n) = o(t′(n)), then the family of exactly t(n)-space computable measures is uniformly exactly
computable in t′(n)-space.

Proof. There is a uniform enumeration (Mi | i ∈ N) of all t(n)-time (respectively, t(n)-space)
clocked Turing machines such that for all i ∈ N, Mi(w) can be computed in O(t(|w|) log t(|w|))
time (respectively, O(t(|w|)) space) for all w ∈ {0, 1}∗. (Here the constants in the O(·) depend on
i but not on |w|.) Define ρi : {0, 1}∗ → [0,∞) inductively by ρi(λ) = Mi(λ) and

ρi(w0) =

{
Mi(w0) if Mi(w0) ≤ ρi(w)
Mi(w) otherwise,

ρi(w1) = ρi(w)− ρi(w0)

39



for all w ∈ {0, 1}∗. Then each ρi is a measure, and the family is uniformly computable in t′(n) time
(respectively, t′(n) space). Also, if ρ is a measure that is exactly computed by Mi in t(n) time,
then ρi(w) = ρ(w) for all w.

Uniformly exactly computable families of measures can be combined into a single measure in
an efficient manner.

Lemma 3.44. Let (ρk | k ∈ N) be a uniformly exactly ∆-computable family of measures. There is
a ∆-computable measure ρ∗ such that for any k, there is a constant ck such that

log ρ∗(w) ≥ log ρk(w)− ck

for all w ∈ {0, 1}∗.

Proof. Define

ρ∗(w) =
∞∑

k=0

ρk(w)
2kρk(λ)

.

Then ρ is a measure by linearity. Also, ρ∗ is ∆-computable by the approximation function ρ̂∗ :
N× {0, 1}∗ → [0,∞) defined by

ρ̂∗(r, w) =
r∑

k=0

ρk(w)
2kρk(λ)

since ∣∣∣ρ∗(w)− ρ̂∗(r, w)
∣∣∣ =

∞∑
k=r+1

ρk(w)
2kρk(λ)

≤
∞∑

k=r+1

ρk(λ)
2kρk(λ)

= 2−r.

Let k ∈ N. For any w ∈ {0, 1}∗,

log ρ∗(w) ≥ log
ρk(w)

2kρk(λ)
= log ρk(w)− k − ρk(λ),

so the lemma holds with ck = k + ρk(λ).

We now combine the preceding lemmas to obtain a tool that will be useful in calculating scaled
dimensions.

Theorem 3.45. Let X ⊆ C, i ∈ Z, and k ∈ N.

1. If for each A ∈ X there is a measure ρA computable in O(nk) time such that

(∃cA ∈ Z)(∃∞n)gi(n, s) + log ρA(A�n) ≥ cA, (3.3)

then dim(i)
p (X) ≤ s.
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2. If for each A ∈ X there is a measure ρA computable in O(2log nk
) time such that (3.3) holds,

then then dim(i)
p2

(X) ≤ s.

3. If for each A ∈ X there is a measure ρA computable in O(nk) space such that (3.3) holds,
then then dim(i)

pspace(X) ≤ s.

4. If for each A ∈ X there is a measure ρA computable in O(2log nk
) space such that (3.3) holds,

then then dim(i)
p2space(X) ≤ s.

Proof. From Lemmas 3.42, 3.43, and 3.44 we obtain an exactly ∆-computable measure ρ such that
log ρ(w) ≥ log ρA(w)− bA for all w ∈ {0, 1}∗ where bA is a constant that depends on A but not on
w.

Let t > s. For any A ∈ X,

gi(n, t) + log ρ(A�n) ≥ gi(n, t)− gi(n, s) + cA − bA

for infinitely many n. Therefore

lim sup
n→∞

gi(n, t) + log ρ(A�n) = ∞

since t > s. It follows from the contrapositive of Lemma 3.41(2) that dim∆(X) ≤ t.
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Chapter 4

Constructive Dimension and the
Arithmetical Hierarchy

In this chapter we use the arithmetical hierarchy (the effective Borel hierarchy) to investigate
constructive dimension. In Section 4.2 we will prove a correspondence principle asserting that
dimH(X) = cdim(X) for any class X that is a union of Π0

1-sets. We investigate the arithmetical
complexity of the classes DIMα and DIMα

str consisting of all sequences of dimension α and strong
dimension α, respectively, in Section 4.3. To classify DIMα

str, we introduce a stronger effective Borel
hierarchy. This new hierarchy is defined in Section 4.1 where the Borel and arithmetical hierarchies
are also reviewed.

4.1 Effective Borel Hierarchies

We use Σ0
n and Π0

n to denote the levels of the Borel hierarchy for subsets of Cantor space. The
levels of the arithmetical hierarchy (the corresponding effective hierarchy) are denoted by Σ0

n and
Π0

n.
We will also make use of the following more general hierarchy definition.

Definition. Let P be a class of predicates, let n ≥ 1, and let X ⊆ C.

• X ∈ Σ0
n[P] if for some predicate P ∈ P,

A ∈ X ⇐⇒ (∃kn)(∀kn−1) · · · (Qk1)P (kn, . . . , k2, A�k1),

where Q = ∃ if n is odd and Q = ∀ if n is even.

• X ∈ Π0
n[P] if for some predicate P ∈ P,

A ∈ X ⇐⇒ (∀kn)(∃kn−1) · · · (Qk1)P (kn, . . . , k2, A�k1),

where Q = ∀ if n is odd and Q = ∃ if n is even.

If we take P to be ∆0
1 (decidable predicates), then the above definition is equivalent to the

standard arithmetical hierarchy; that is,

Σ0
n = Σ0

n[∆0
1]
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and
Π0

n = Π0
n[∆0

1]

hold for all n. Also, if ALL is the class of all predicates, then we obtain the classical Borel hierarchy:

Σ0
n = Σ0

n[ALL]

and
Π0

n = Π0
n[ALL].

In this chapter, we will also be interested in the cases where P is Σ0
1 (enumerable predicates) or

Π0
1 (co-enumerable predicates). In some cases, the classes in the generalized hierarchy using these

sets of predicates are no different that the standard arithmetical hierarchy classes. If n is odd,
then Σ0

n = Σ0
n[Σ0

1] as the existential quantifier in the Σ0
1 predicate can be absorbed into the last

quantifier in the definition of Σ0
n[∆0

1] = Σ0
n. Analogously, Π0

n = Π0
n[Π0

1] for odd n, and for even n we
have Σ0

n = Σ0
n[Π0

1] and Π0
n = Π0

n[Σ0
1]. On the other hand, using the complementary set of predicates

defines an effective hierarchy that is distinct from and interleaved with the arithmetical hierarchy.

Proposition 4.1. 1. If n is odd, then

Σ0
n ( Σ0

n[Π0
1] ( Σ0

n+1

and
Π0

n ( Π0
n[Σ0

1] ( Π0
n+1.

2. If n is even, then
Σ0

n ( Σ0
n[Σ0

1] ( Σ0
n+1

and
Π0

n ( Π0
n[Π0

1] ( Π0
n+1.

Proof. We only show Σ0
n ( Σ0

n[Π0
1] ( Σ0

n+1 for odd n; the arguments for the other statements are
analogous.

The inclusion Σ0
n ⊆ Σ0

n[Π0
1] is obvious. To show that it is proper, let P be a predicate that is

complete for the class of Π0
n predicates. Then there is a decidable predicate R such that

P (n) ⇐⇒ (∀kn)(∃kn−1) · · · (∀k1)R(n, kn, · · · , k1).

Define X ⊆ C as
X =

⋃
n∈P

0n1C.

Then X ∈ Σ0
n[Π0

1] as we have

S ∈ X ⇐⇒ (∃n)P (n) and 0n1 v S

⇐⇒ (∃n)(∀kn)(∃kn−1) · · · (∀k1)R(n, kn, · · · , k1) and 0n1 v S

⇐⇒ (∃n)(∀kn)(∃kn−1) · · · (∃k2)T (n, kn, · · · , k3, S �k2),

where T is the Π0
1 predicate defined by

T (n, kn, · · · , k3, w) ⇐⇒ (∀k1)R(n, kn, · · · , k3, |w|, k1) and 0n1 v w.
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Now suppose that X ∈ Σ0
n. Then for some decidable predicate U ,

S ∈ X ⇐⇒ (∃kn)(∀kn−1) · · · (∃k1)U(kn, · · · , k2, S �k1).

We then have

n ∈ P ⇐⇒ 0n1C ⊆ X
⇐⇒ 0n10∞ ∈ X
⇐⇒ (∃kn)(∀kn−1) · · · (∃k1)U(kn, · · · , k2, 0n10∞ �k1),

so P is a Σ0
3 predicate, a contradiction of its Π0

3-completeness. Therefore X 6∈ Σ0
3 and we have

established Σ0
n ( Σ0

n[Π0
1].

The inclusion Σ0
n[Π0

1] ⊆ Σ0
n+1 is immediate from the definitions using Σ0

n+1 = Σ0
n+1[∆

0
1]. That

it is proper follows from the facts Σ0
n+1 −Σ0

n 6= ∅ and Σ0
n[Π0

1] ⊆ Σ0
n.

Intuitively, the classes Σ0
1[Π

0
1], Π0

1[Σ
0
1], Σ0

2[Σ
0
1], Π0

2[Π
0
1], . . . are slightly more powerful than their

respective counterparts in the arithmetical hierarchy because they use one additional quantifier that
is limited to the predicate.

4.2 Correspondence Principles

In this section we will prove that cdim(X) = dimH(X) for any X that is an arbitrary union of
Π0

1-definable sets. We will also show that dimcomp(X) = dimH(X) if X is Σ0
2-definable.

Lemma 4.2. If X ∈ Π0
1, then dimH(X) = dimcomp(X).

Proof. Let X ∈ Π0
1. Since dimcomp(X) ≥ dimH(X), it is enough to prove that dimcomp(X) ≤

dimH(X). For this, let s > dimH(X) be such that 2s is rational.
Since s > dimH(X), for each r ∈ N, there is a prefix set Ar ⊆ {0, 1}∗ such that∑

w∈Ar

2−s|w| ≤ 2−r and X ⊆
⋃

w∈Ar

Cw.

Because C is compact and X is closed, X is compact. Thus each Ar may be taken finite.
Because X ∈ Π0

1, there is a computable function h : N → {0, 1}∗ ∪ {>} such that

X =
∞⋂
i=0

Cc
h(i).

For each k ∈ N, let

Xk =
k⋂

i=0

Cc
h(i).

Then for each k ∈ N, it is easy to compute a finite prefix set Bk such that∑
w∈Bk

2−s|w| is minimal and Xk ⊆
⋃

w∈Bk

Cw.

For each r ∈ N, let

kr = min

k

∣∣∣∣∣∣
∑

w∈Bk

2−s|w| ≤ 2−r

 .
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We know that each kr exists because of the existence of the finite prefix sets Ar that satisfy the
condition. Also, each kr can be computed by computing the finite sets Bk until the condition is
satisfied.

The rest of the proof is based on a construction that was used in [30] to prove Theorem 3.5,
the gale characterization of Hausdorff dimension. There the prefix sets Ar mentioned above are
used to give an s-gale that succeeds on X. Here we use the finite, computable prefix sets Bkr in
the same manner to give a computable s-gale that succeeds on X.

Define for each r ∈ N a function dr : {0, 1}∗ → [0,∞) by

dr(w) =


2(s−1)(|w|−|v|) if (∃v v w)v ∈ Bkr∑
u∈{0,1}∗
wu∈Bkr

2−s|u| otherwise.

Then each dr is an s-gale. Also, dr(λ) ≤ 2−r and dr(w) = 1 for all w ∈ Bkr . Next define a function
d on {0, 1}∗ by d =

∑∞
r=0 2rd2r. Then

d(λ) =
∞∑

r=0

2rd2r(λ) ≤
∞∑

r=0

2r2−2r = 2,

so by induction it follows that d(w) < ∞ for all strings w. Therefore, by linearity, d is an s-gale.
Let S ∈ X. Then S ∈ Xk2r for all r ∈ N. This means that S has some prefix S �n ∈ Bk2r , and

then
d(S �n) ≥ 2rd2r(S �n) = 2r.

Therefore d succeeds on S, so X ⊆ S∞[d].
To see that d is computable, define d̂ : N× {0, 1}∗ → [0,∞) by

d̂(i, w) =
ds|w|e+i∑

r=0

2rd2r(w).

We can exactly compute d̂ by using the function h to uniformly compute the sets Bkr . Then∣∣∣d(w)− d̂(i, w)
∣∣∣ =

∞∑
r=ds|w|e+i+1

2rd2r(w)

≤
∞∑

r=ds|w|e+i+1

2r2s|w|d2r(λ)

≤
∞∑

r=ds|w|e+i+1

2r+s|w|2−2r

= 2s|w|
∞∑

r=ds|w|e+i+1

2−r

= 2s|w|2−ds|w|e−i

≤ 2−i,

so d̂ is a computable approximation of d. Therefore d is computable, so it witnesses that dimcomp(X) ≤
s. Since s > dimH(X) is arbitrary with 2s rational and the rationals are dense, it follows that
dimcomp(X) ≤ dimH(X).
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We now use the preceding lemma to give our correspondence principle for constructive dimen-
sion.

Theorem 4.3. If X ⊆ C is a union of Π0
1 sets, then dimH(X) = cdim(X).

Proof. Let I be an arbitrary index set, Xα ∈ Π0
1 for each α ∈ I, and X =

⋃
α∈I Xα. By definition,

dimH(X) ≤ cdim(X). Using Theorem 3.13 (the pointwise stability of constructive dimension),
Lemma 4.2, and the monotonicity of Hausdorff dimension, we have

cdim(X) = sup
α∈I

cdim(Xα)

= sup
α∈I

dimH(Xα)

≤ dimH(X).

Theorem 4.3 yields a pointwise characterization of the classical Hausdorff dimension of unions
of Π0

1 sets.

Corollary 4.4. If X ⊆ C is a union of Π0
1 sets, then

dimH(X) = sup
S∈X

dim(S).

Proof. This follows immediately from Theorems 4.3 and 3.13.

If we require that the union in Theorem 4.3 be effective, we arrive at the following correspon-
dence principle for computable dimension. This result also follows implicitly from Staiger’s work
on martingale exponents of increase [57].

Theorem 4.5. If X ∈ Σ0
2, then dimH(X) = dimcomp(X).

Proof. Let X ∈ Σ0
2. Since dimcomp(X) ≥ dimH(X), it is enough to prove that dimcomp(X) ≤

dimH(X). For this, let s > dimH(X) be such that 2s is rational. As in the proof of the Lemma 4.2,
it suffices to give a computable s-gale d that succeeds on X.

Since X ∈ Σ0
2, there is a computable function h : N× N → {0, 1}∗ ∪ {>} such that

X =
∞⋃

j=0

∞⋂
i=0

Cc
h(i,j).

For each j ∈ N, let

Xj =
∞⋂
i=0

Cc
h(i,j).

Since each Xj ⊆ X, dimH(Xj) ≤ dimH(X) < s. Each Xj ∈ Π0
1, so by Lemma 4.2, for each

j ∈ N, there is a computable s-gale dj with dj(λ) ≤ 1 that succeeds on Xj . Let d =
∑∞

j=0 2−jdj .
Then d is an s-gale, d is computable by using h to uniformly compute the dj , and X ⊆ S∞[d].

We note that Theorems 4.3 and 4.5 cannot be extended to higher levels of the arithmetical
hierarchy.

Observation 4.6. There is a set X ∈ Π0
2 such that dimH(X) 6= cdim(X).

Proof. It is well known that there exists a sequence S ∈ RAND ∩∆0
2. (A sequence S is in ∆0

2 if S
is decidable relative to an oracle for the halting problem.) Let X = {S}. Since S ∈ ∆0

2, we have
X ∈ Π0

2. By Proposition 3.10, cdim(X) = dim(S) = 1. But any singleton has Hausdorff dimension
0, so dimH(X) = 0.
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4.3 Classification of Dimension Classes

In this section we investigate the arithmetical complexity of the following dimension and strong
dimension classes.

DIMα = {A ∈ C | dim(A) = α}
DIM≤α = {A ∈ C | dim(A) ≤ α}
DIM≥α = {A ∈ C | dim(A) ≥ α}
DIMα

str = {A ∈ C | Dim(A) = α}
DIM≤α

str = {A ∈ C | Dim(A) ≤ α}
DIM≥α

str = {A ∈ C | Dim(A) ≥ α}

Let α ∈ [0, 1] be ∆0
2-computable. For any such α, it is well known that there is a computable

function α̂ : N → Q such that lim
n→∞

α̂(n) = α. Using Theorem 3.14 , we have

dim(X) ≤ α ⇐⇒ lim inf
n→∞

K(X �n)
n

≤ α

⇐⇒ (∀k)(∀N)(∃n ≥ N)K(X �n) < (α̂(n) + 1/k)n,

so DIM≤α is a Π0
2-class. Also,

dim(X) ≥ α ⇐⇒ lim inf
n→∞

K(X �n)
n

≥ α

⇐⇒ (∀k)(∃N)(∀n ≥ N)K(X �n) > (α̂(N)− 1/k)n,

so DIM≥α is a Π0
3-class. Therefore we have the following.

Proposition 4.7. 1. The class DIM0 is Π0
2.

2. For all ∆0
2-computable α ∈ (0, 1], DIMα is a Π0

3-class.

3. For arbitrary α ∈ (0, 1], DIMα is a Π0
3-class.

The situation is slightly more complicated for strong dimension. By Theorem 3.14, we have

Dim(X) ≤ α ⇐⇒ lim sup
n→∞

K(X �n)
n

≤ α

⇐⇒ (∀k)(∃N)(∀n ≥ N)K(X �n) < (α̂(N) + 1/k)n
⇐⇒ (∀k)(∃N)(∀n ≥ N)(∃〈π, t〉)|π| < (α̂(N) + 1/k)n

and U(π) = X �n in ≤ t computation steps,

where U is the fixed universal self-delimiting Turing machine used to define K. From this it is clear
that DIM≤α

str ∈ Π0
4. However, the “(∃〈π, t〉)” quantifier is local to the defining predicate, so we have

DIM≤α
str ∈ Π0

3, and in fact, it is a Π0
3[Σ

0
1]-class. Also,

Dim(X) ≥ α ⇐⇒ lim sup
n→∞

K(X �n)
n

≥ α

⇐⇒ (∀k)(∀N)(∃n ≥ N)K(X �n) > (α̂(n)− 1/k)n,

so DIM≥α
str is a Π0

2[Π
0
1]-class. This establishes the following analogue of Proposition 4.7.
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Proposition 4.8. 1. The class DIM1
str is Π0

2[Π
0
1].

2. For all ∆0
2-computable α ∈ [0, 1), DIMα

str is a Π0
3[Σ

0
1]-class.

3. For arbitrary α ∈ [0, 1), DIMα
str is a Π0

3-class.

In the remainder of this section we prove that the classifications in Propositions 4.7 and 4.8
cannot be improved in their respective hierarchies.

4.3.1 Category Methods

Recall that a class X is meager if it is included in a countable union of nowhere dense subsets of C,
and comeager if its complement X is meager. The following lemma (implicit in Rogers [48, p341])
will be useful.

Lemma 4.9. If X ∈ Σ0
2 and X is dense then X is meager.

Proof. Suppose that X =
⋃

nXn, Xn closed. Since X is dense, Xn contains no basic open set, hence
Xn is nondense (i.e. its closure contains no basic open set), and X is a countable union of nondense
sets.

The class RAND of Martin-Löf random sets can easily be classified with category methods.

Theorem 4.10. RAND is a Σ0
2-class, but not a Π0

2-class.

Proof. This is a well known result. The proof is analogous to the one in Rogers [48, p 341] that
{X | X finite} is a Σ0

2-class but not a Π0
2-class. Both RAND and its complement are dense, so

by Lemma 4.9, RAND is meager. If RAND were a Π0
2-class, then again using Lemma 4.9, its

complement would also be meager. This contradicts the fact that C is not meager.

As DIM0 and DIM1
str are dense Π0

2-classes that have dense complements, an argument similar
to the one used for Theorem 4.10 shows that they are not Σ0

2-classes.

Theorem 4.11. The classes DIM0 and DIM1
str are not Σ0

2-classes.

We now develop category methods for the other DIMα classes. Following Schnorr [53], we call
an unbounded nondecreasing function h : {0, 1}∗ → {0, 1}∗ an order. For any supermartingale d,
the order h success set of d is

Sh[d] =
{

A ∈ C
∣∣∣∣lim sup

n→∞

d(A�n)
h(n)

≥ 1
}

.

Let d be a multiplicatively optimal constructive supermartingale (for example, d(1) from Theorem
3.11). For every rational s, define the computable order hs(n) = 2(1−s)n. From Theorem 3.15 it
follows that for any A ⊆ C,

cdim(A) = inf{s ∈ Q : A ⊆ Shs [d] )}.

Lemma 4.12. For every rational s ∈ (0, 1), Shs [d] is a comeager Π0
2-class.

Proof. Notice that Shs [d] ∈ Σ0
2 and Shs [d] is dense. Now apply Lemma 4.9.

Lemma 4.13. For all α ∈ (0, 1], DIMα is meager.
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Proof. Let s < α be rational. Lutz [31] showed that d(s)(w) = 2(s−1)|w|d(w) is an optimal construc-
tive s-supergale. It follows that for any A ∈ C, A ∈ Shs [d] ⇒ dim(S) < α. Therefore DIMα ⊆ Shs ,
so DIMα is meager by Lemma 4.12.

Proposition 4.14. For all α ∈ (0, 1], DIMα is not a Π0
2-class.

Proof. If DIMα ∈ Π0
2, then Lemma 4.9 implies that DIMα is comeager, contradicting Lemma

4.13.

To strengthen Proposition 4.14 to show that DIMα is not Σ0
3, we now turn to Wadge reductions.

4.3.2 Wadge Reductions

Let A,B ⊆ C. A Wadge reduction of A to B is a function f : C → C that is continuous and
satisfies A = f−1(B), i.e., X ∈ A ⇐⇒ f(X) ∈ B. We say that B is Wadge complete for a class
Γ of subsets of C if B ∈ Γ and every A ∈ Γ Wadge reduces to B. As the classes of the Borel
hierarchy are closed under Wadge reductions, Wadge completeness can be used to properly identify
the location of a subset of C in the hierarchy.

We now prove that DIM1 is Wadge complete for Π0
3. We will then give Wadge reductions from

it to DIMα for the other values of α.

Theorem 4.15. DIM1 is Wadge complete for Π0
3. Therefore DIM1 is not a Σ0

3-class, and in
particular is not a Σ0

3 -class.

Proof. One could prove this by reducing a known Π0
3-complete class to DIM1, e.g. the class of sets

that have a limiting frequency of 1’s that is 0 (this class was proved to be Π0
3-complete by Ki and

Linton [26]), but it is just as easy to build a direct reduction from an arbitrary Π0
3-class.

Let d be a multiplicatively optimal constructive supermartingale. Note that we have

S2n
[d] ( . . . ( S2

1
k

n

[d] ( S2
1

k+1
n

[d] ( . . . ( DIM1.

Let
⋃

k

⋂
sOk,s be a Σ0

3-class. Without loss of generality Ok,s ⊇ Ok,s+1 for all k,s. We define a
continuous function f : C → C such that

∀k

(
X ∈

⋂
s

Ok,s ⇐⇒ f(X) ∈ S2
1
k

n

[d]

)
(4.1)

so that we have

X 6∈
⋃
k

⋂
s

Ok,s ⇐⇒ ∀k
(

f(X) 6∈ S2
1
k

n

[d]
)

⇐⇒ f(X) ∈ DIM1.

The image Y = f(X) is defined in stages, Y =
⋃

s Ys, such that every initial segment of X defines
an initial segment of Y .

At stage 0 we define Y0 to be the empty sequence.
At stage s > 0 we consider X �s, and for each k we define tk,s to be the largest stage t ≤ s such

that X �s ∈ Ok,t. (Let tk,s = 0 if such a t does not exist.) Define k to be expansionary at stage s
if tk,s−1 < tk,s. Now we let k(s) = min{k : k is expansionary at s}. There are two substages.
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Substage (a). First consider all strings σ extending Ys−1 of minimal length with d(σ) ≥ 2
1

k(s)
|σ|,

and take the leftmost one of these σ’s. Such σ’s exist because S2
1

k(s)
n

[d] is dense. If k(s) does not
exist, let σ = Ys−1.

Substage (b). Next consider all extensions τ w σ of minimal length such that d(τ � i) ≤ d(τ �
(i − 1)) for every |σ| < i < |τ |, and d(τ) ≤ |τ |. Clearly such τ exist, by direct diagonalization
against d. Define Ys to be the leftmost of these τ . This concludes the construction.

So Ys is defined by first building a piece of evidence σ that d achieves growth rate 2
1

k(s)
n

on Y and then slowing down the growth rate of d to the order n. Note that f is continuous. If
X ∈

⋃
k

⋂
sOk,s, then for the minimal k such that X ∈

⋂
sOk,s, infinitely many pieces of evidence σ

witness that d achieves growth rate 2
1
k
n on Y , so Y 6∈ DIM1. On the other hand, if X 6∈

⋃
k

⋂
sOk,s

then for every k only finitely often d(Ys) ≥ 2
1
k
|Ys| because in substage (a) the extension σ is chosen

to be of minimal length, so Y 6∈ Shk
[d]. Hence Y ∈ DIM1.

As RAND is a Σ0
2-class, we have the following corollary (which can also be proved by a direct

construction).

Corollary 4.16. (Lutz [31]) RAND is a proper subset of DIM1.

In order to establish the existence of ∆0
2-computable sequences of any ∆0

2-computable dimension
α ∈ [0, 1), Lutz [31] defined a dilution function gα : C → C that is computable and satisfies
dim(gα(X)) = α · dim(X) for all X ∈ C. Applying this to any ∆0

2-computable Martin-Löf random
sequence (which must have dimension 1) establishes the existence theorem. (We note that gα(X)
has the same Turing degree as X. Since by the Low Basis Theorem of Jockusch and Soare [46,
Theorem V.5.32] there are Martin-Löf random sets of low degree, we immediately obtain that there
are low sets of any ∆0

2-computable dimension α.) As gα is continuous, it is a Wadge reduction from
DIM1 to DIMα if α > 0. Combining this with the previous theorem, we have that DIMα is Wadge
complete for Π0

3 for all ∆0
2-computable α ∈ (0, 1). We now give a similar dilution construction that

will allow us to prove this for arbitrary α ∈ (0, 1).
Let X ∈ C and let α ∈ (0, 1). Write X = x1x2x3 . . . where |xn| = 2n− 1 for all n, noting that

|x1 · · ·xn| = n2. For each n, let

kn =
⌈
n

1− α

α

⌉
and yn = 0kn . We then define

fα(X) = x1y1x2y2 · · ·xnyn · · · .

Observe that fα is a continuous function mapping C to C. We now show that it modifies the
dimension of X in a controlled manner.

Lemma 4.17. For any X ∈ C and α ∈ (0, 1),

dim(fα(X)) = α · dim(X)

and
Dim(fα(X)) = α ·Dim(X).

Proof. The proof uses Theorem 3.14, the Kolmogorov complexity characterizations of dimension
and strong dimension.
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Let w v fα(X). For some n,
w = x1y1 · · ·xn−1yn−1v,

where v v xnyn. Then

K(w) ≤ K(x1 · · ·xn−1) + K(v)
+K(k1) + · · ·+ K(kn−1) + O(1)

≤ K(x1 · · ·xn−1) + O(n log n).

Because

|w| ≥ |x1y1 · · ·xn−1yn−1| ≥
(n− 1)2

α
,

we have
K(w)
|w|

≤ α ·K(x1 · · ·xn−1)
|x1 · · ·xn−1|

+
O(n log n)
(n− 1)2

,

It follows that

dim(fα(X)) ≤ α lim inf
n→∞

K(x1 · · ·xn−1)
|x1 · · ·xn−1|

= α lim inf
n→∞

K(x�n)
n

= α · dim(X),

where the first equality holds because the blocks xn are short relative to x1 · · ·xn−1. Similarly,
Dim(fα(X)) ≤ α ·Dim(X).

For the other inequality, we have

K(x1 · · ·xn−1) ≤ K(w) + K(k1) + · · ·+ K(kn−1)
+O(1)

≤ K(w) + O(n log n)

and

|w| ≤ |x1y1 · · ·xnyn| ≤
n2

α
+ n ≤ (n + 1)2

α
,

so

K(w)
|w|

≥ α
K(x1 · · ·xn−1)−O(n log n)

(n + 1)2

= α
K(x1 · · ·xn−1)
|x1 · · ·xn−1|

(n− 1)2

(n + 1)2
− O(n log n)

(n + 1)2
.

Therefore

dim(fα(X)) ≥ α lim inf
n→∞

K(x1 · · ·xn−1)
|x1 · · ·xn−1|

= α lim inf
n→∞

K(x�n)
n

= α · dim(X),

and analogously, Dim(fα(X)) ≥ α ·Dim(X).
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The function fα establishes the completeness of DIMα.

Theorem 4.18. For all α ∈ (0, 1), DIMα is Wadge complete for Π0
3. Therefore it is not a Σ0

3-class,
and in particular not a Σ0

3-class.

Proof. By Lemma 4.17, fα is a Wadge reduction from DIM1 to DIMα. Therefore DIMα is Wadge
complete for Π0

3 by composing fα with the reduction from Theorem 4.15.

As gα is also a Wadge reduction from DIM1
str to DIMα

str, we have from Theorem 4.11 that DIMα
str

is not a Σ0
2-class for all α ∈ (0, 1). We now prove that DIMα

str is not even Σ0
3 for all α ∈ [0, 1).

Theorem 4.19. For all α ∈ [0, 1), DIMα
str is Wadge complete for Π0

3. Therefore DIMα
str is not a

Σ0
3-class, and in particular is not a Σ0

3[Π
0
1]-class.

Proof. The proof is similar to that of Theorem 4.15, but uses the Kolmogorov complexity charac-
terization of strong dimension (Theorem 3.14). Let C =

⋃
k

⋂
sOk,s be a Σ0

3-class and without loss
of generality assume that Ok,s ⊇ Ok,s+1 for all k,s.

Let α ∈ (0, 1). (We will discuss the simpler case α = 0 later.) We define a continuous function
f : C → C in stages that will Wadge reduce C to DIMα

str. The image Y = f(X) will be the unique
sequence extending Ys for all s. At stage 0 we define Y0 to be the empty sequence.

At stage s > 0 we consider X � s, and define k(s) as in the proof of Theorem 4.15. There are
three substages.

Substage (a). First consider all strings ρ extending Ys−1 of minimal length with K(ρ) ≥ α|ρ|,
and take the leftmost one of these ρ’s.

Substage (b). Next consider all strings σ extending ρ of minimal length with K(σ) ≥ (α+ 1
k(s))|σ|,

and take the leftmost one of these σ’s. If k(s) does not exist, let σ = ρ.
Substage (c). Extend σ with a block of 0’s to obtain Ys = σ0|σ|

2−|σ|.
That is, to define Ys, we first select ρ to increase the Kolmogorov complexity rate to α. This

ensures that Y will have strong dimension at least α. We then construct a piece of evidence σ
that Y has strong dimension at least α + 1

k(s) . We finish Ys with a long block of 0’s to bring the
Kolmogorov complexity down to a near-zero rate, so that the next stage will work properly.

If X ∈ C, then for the minimal k such that X ∈
⋂

sOk,s, infinitely many prefixes σ v Y satisfy
K(σ) ≥ (α + 1

k )|σ|. Therefore Dim(Y ) ≥ α + 1
k , so Y 6∈ DIMα

str.
Now let X 6∈ C. Let α′ > α be arbitrary, and choose k so that 1

k < α′ − α. Because X 6∈ C,
we have k(s) > k for all sufficiently large s. Let s0 be large enough to ensure k(s) > s and
K(Ys−1) ≤

√
|Ys−1|+ O(1) < α|Ys−1| hold for all s ≥ s0. Suppose that

K(w) ≥ α′|w|. (4.2)

holds for some w with Ys−1 v w v Ys for some stage s ≥ s0. We then have that ρ is a proper
extension of Ys−1. By choice of ρ and σ and the fact that α′ > α + 1

k > α + 1
k(s) , we must have

w = ρ or σ v w. We analyze these two cases separately.

(i) w = ρ: Let ρ′ be the string obtained from ρ by removing the last bit. Then K(ρ) ≤ K(ρ′) +
O(1). By choice of ρ, we have K(ρ′) < α|ρ′|. We also have K(ρ) ≥ (α′)|ρ| by (4.2). Putting
these three statements together yields

α′|ρ| < α(|ρ| − 1) + O(1),

which is a contradiction if |ρ| = |w| is sufficiently large.
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(ii) σ v w: Obtain σ′ from σ by removing the last bit of σ. Then we have

K(w) ≤ K(σ′) + K(|w| − |σ|) + O(1)
≤ K(σ′) + log(|w| − |σ|) + O(1)
≤ K(σ′) + 2 log |σ|+ O(1).

By choice of σ, K(σ′) < (α + 1
k(s))|σ

′|. These two facts together with (4.2) tell us that

α′|w| <
(

α +
1

k(s)

)
(|σ| − 1) + 2 log |σ|+ O(1),

which is a contradiction for large |w| because |w| ≥ |σ| and α′ > α + 1
k(s) .

Therefore, for all sufficiently long w v Y , (4.2) does not hold. It follows that Dim(Y ) ≤ α. On
the other hand, there are infinitely many ρ v Y with K(ρ) ≥ α|ρ|, so Dim(Y ) ≥ α. Therefore
Y ∈ DIMα

str.
This shows that f is a Wadge reduction from C to DIMα

str. As C is an arbitrary Σ0
3-class, this

shows that DIMα
str is Wadge complete for Π0

3.
The proof for the case α = 0 is similar, but simpler as substage (a) is omitted in the construction.

4.3.3 Ad Hoc Methods

When classifying classes in the arithmetical hierarchy of reals there are several methods one can
use. As we have seen, category methods are sometimes useful up to the second level, Wadge
reductions are useful if the classification in the effective (lightface) hierarchy coincides with that in
the classical (boldface) hierarchy, and sometimes (as in Proposition 4.1 ) one just needs something
else. In particular when the level of the class in the effective hierarchy is not the same as the level
in the classical hierarchy one often needs to resort to ad hoc arguments. One might think that the
notion of effective Wadge reduction, or recursive functional, would be the proper notion to use in
classifying classes of reals in the effective hierarchy. However, this notion is rarely useful for the
following reason. Let X be a class without computable elements, such as the class of Martin-Löf
random sets or the class of 1-generic sets. Then X cannot be proven to be complete for any level
of the effective hierarchy by a recursive Wadge reduction f . For if X is recursive, then so is f(X),
so we can never have X ∈ C ⇐⇒ f(X) ∈ X . So we see that “easy” classes like C that contain
recursive elements cannot be reduced in such a way to many “difficult” classes, which renders the
notion rather useless.

We have left open the question whether DIM1
str is not in Π0

2, and whether DIMα
str is not in Π0

3

for any ∆0
2-computable α ∈ [0, 1). We have no answer to the second question, but we provide an

answer to the first in the next theorem. We make use of the following lemma:

Lemma 4.20. If X ∈ Π0
2 is dense then there is a computable X ∈ X .

Proof. This is an easy finite extension argument. Suppose that X = {X : (∀m)(∃k)RX(m, k) ↓=
1} ∈ Π0

2 is dense. (Here R is a computable predicate. Note that R does not have to be defined
with oracles X that are not in X .) Given any initial segment τ such that

(∀n < m)(∃k)Rτ (m, k)↓= 1,

53



we show how to compute an extension σ A τ such that

(∃k)Rσ(m, k)↓= 1. (4.3)

Because X is dense, there are X A τ and k such that RX(m, k) ↓= 1. Let u be the use of this
computation, i.e. the part of the oracle X used in it. Now define σ = max{X�u, τ}. Then σ w τ
satisfies (4.3).

Now it is clear that for every m we can compute appropriate extensions σm such that X =⋃
m σm is computable and (∀m)(∃k)Rσm(m, k)↓= 1, so that X ∈ X .

Theorem 4.21. DIM1
str is not a Π0

2-class. Hence it is properly Π0
2[Π

0
1].

Proof. Suppose that DIM1
str is Π0

2. Then, since clearly DIM1
str is dense, by Lemma 4.20 it contains

a computable real, contradicting that every computable real has strong dimension 0.

The results of this section are summarized in the following figure.

DIMα DIMα
str

α = 0 Π0
2 −Σ0

2 Π0
3[Σ

0
1]−Σ0

3

α ∈ (0, 1) ∩∆0
2 Π0

3 −Σ0
3 Π0

3[Σ
0
1]−Σ0

3

α = 1 Π0
3 −Σ0

3 Π0
2[Π

0
1]− (Σ0

2 ∪Π0
2)

arbitrary α ∈ (0, 1) Π0
3 −Σ0

3 Π0
3 −Σ0

3

Classification Summary

Open Question 4.22. Is it the case that DIMα
str is not in Π0

3 for any ∆0
2-computable α ∈ [0, 1)?
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Chapter 5

Resource-Bounded Dimension and
Polynomial-Time Reductions

Resource-bounded measure has been used very successfully to study polynomial-time reductions
within exponential-time complexity classes. Measure-theoretic arguments were the first to show
that for all α < 1, every ≤p

nα−tt-hard language for exponential time is exponentially dense [37].
The first plausible hypothesis on NP to separate the ≤p

m and ≤p
T reducibilities within NP came

from resource-bounded measure [38].
The degrees and spans of languages and classes of languages under polynomial-time reductions

have been studied by several researchers using resource-bounded measure.

Definition. Let ≤p
r be a reducibility. For any class D of languages, let

Pr(D) = {B ⊆ {0, 1}∗ | (∃A ∈ D)B ≤p
r A}

be the ≤p
r -lower span of D and let

P−1
r (D) = {B ⊆ {0, 1}∗ | (∃A ∈ D)A ≤p

r B}

be the ≤p
r -upper span of D. For any A ⊆ {0, 1}∗ we also define Pr(A) = Pr({A}) as the ≤p

r -lower
span of A, P−1

r (A) = Pr({A}) as the ≤p
r -upper span of A, and

degp
r (A) = Pr(A) ∩ P−1

r (A)

as the ≤p
r -degree of A.

Also of interest are the classes of hard and complete languages for a given complexity class.

Definition. For any complexity class D, the class of ≤p
r -hard languages for D is

Hp
r (D) = {A ⊆ {0, 1}∗ | D ⊆ Pr(A)}

and the class of ≤p
r -complete languages for D is

Cp
r (D) = D ∩Hp

r (D).

In this chapter we use resource-bounded dimension to investigate various polynomial-time spans
and degrees as well as the hard and complete languages for various complexity classes.
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5.1 Small Spans in Scaled Dimension

Juedes and Lutz [25] proved the following small span theorem for ≤p
m reductions in both E and in

EXP.

Theorem 5.1. (Juedes and Lutz [25]) Let ∆ ∈ {p,p2}. For every A ∈ R(∆),

µ(Pm(A) | R(∆)) = 0

or
µ(P−1

m (A) | R(∆)) = µ∆(P−1
m (A)) = 0.

In particular, µ(degp
m(A) | R(∆)) = 0.

That is, at least one of the upper or lower spans of A is small within R(∆). Using a result of Bennett
and Gill [6], Juedes and Lutz [25] noted that strengthening Theorem 5.1 from ≤p

m reductions to ≤p
T

reductions would achieve the separation BPP 6= EXP. Pursuing this program, small span theorems
for reductions of progressively increasing strength between ≤p

m and ≤p
T have been obtained by

Lindner [29], Ambos-Spies, Neis, and Terwijn [3], and Buhrman and van Melkebeek [10].
Recall that resource-bounded dimension is capable of quantitatively distinguishing among the

measure 0 sets. With regard to the measure 0 sets in Theorem 5.1, Ambos-Spies, Merkle, Reimann,
and Stephan [2] proved the following.

Theorem 5.2. (Ambos-Spies, Merkle, Reimann, and Stephan [2]) For every A ∈ E,

dim(degp
m(A) | E) = dim(Pm(A) | E)

and
dimp(degp

m(A)) = dimp(Pm(A)).

In particular, as dim(E | E) = 1, the ≤p
m-complete degree for E has dimension 1 within E. This

implies that replacing “µ” by “dim” in Theorem 5.1 makes the statement for E no longer true. In
other words, there is no analogue of the small span theorem for dimension in E. Dimension in E
cannot distinguish between lower spans and degrees.

In this section we use scaled dimension to investigate polynomial-time spans and degrees and
further understand the contrast between Theorems 5.1 and 5.2. We show that the same dichotomy
also occurs between the −3rd- and −2nd-orders of scaled dimension. The main contribution is a
strengthening of Theorem 5.1 to give a small span theorem for −3rd-order scaled dimension. In
contrast, we extend Theorem 5.2 to scaled dimension at orders i with |i| ≤ 2.

These results hold for scaled dimension in exponential space as well as in exponential time. As
an application, we consider the scaled dimension of Cp

m(E), the class of polynomial-time many-one
complete sets for E, within ESPACE. Let i ∈ {−2,−1}. We extend a theorem of Lutz [32] and
use it to show that determining the −1st or −2nd-order scaled dimension of Cp

m(E) in ESPACE
would derandomize BPP or separate P from PSPACE. In contrast, we also show that Cp

m(E)
unconditionally has −3rd-order scaled dimension 0 in ESPACE and −2nd-order scaled dimension 1
in E.
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5.1.1 Scaled Non-Bi-Immunity and Compressibility

In this section we introduce some classes involving scales, non-bi-immunity, and compressibility by
polynomial-time reductions and calculate their scaled dimensions.

A Turing machine M is consistent with a language A ⊆ {0, 1}∗ if for all x ∈ {0, 1}∗,

M(x) halts ⇐⇒ M(x) = A(x).

Let t be a time bound. The fast set of M with respect to t is

F t
M = {x ∈ {0, 1}∗ | timeM (x) ≤ t(|x|)}.

Recall that A is not DTIME(t)-bi-immune if there is a machine M consistent with A such that F t
M

is infinite.

Definition. For any time bound t, let X(t) be the class of all languages that are not DTIME(t)-
bi-immune.

Let A ⊆ {0, 1}∗ and f : {0, 1}∗ → {0, 1}∗. We say that f is a many-one reduction of A if there
is some B ⊆ {0, 1}∗ such that x ∈ A ⇐⇒ f(x) ∈ B. The collision set of f is

Cf = {si|(∃j < i)f(si) = f(sj)}.

Recall that A is compressible by ≤DTIME(t)
m -reductions if there exists an f ∈ DTIMEF(t) that is a

many-one reduction of A and has Cf infinite [25].

Definition. For any time bound t, let C(t) be the class of all languages that are compressible by
≤DTIME(t)

m -reductions.

The following theorem asserts that almost every language in E is DTIME(2cn)-bi-immune [42]
and incompressible by ≤DTIME(2cn)

m -reductions [25].

Theorem 5.3. (Mayordomo [42], Juedes and Lutz [25]) For all c ∈ N,

µp(X(2cn)) = µp(C(2cn)) = 0

and
µp2

(X(2nc
)) = µp2

(C(2nc
)) = 0.

The next two definitions introduce scaled versions of X(t) and C(t).

Definition. For any i ∈ Z, α ∈ [0, 1], and time bound t, let

X(i)
α (t) =

{
A ⊆ {0, 1}∗

∣∣∣∣ (∃M)M is consistent with A and
(∃∞n)#(1, F t

M �n) ≥ n− gi(n, α)

}
.

That is, X
(i)
α (t) consists of the languages that are not DTIME(t)-bi-immune in a particular strong

way: for infinitely many n, all but gi(n, α) of the first n strings can be decided in less than t time
by a consistent Turing machine.

Definition. For any i ∈ Z, α ∈ [0, 1], and time bound t, let

C(i)
α (t) =

{
A ∈ {0, 1}∗

∣∣∣∣ (∃f ∈ DTIMEF(t)) f is a many-one reduction of A
and (∃∞n)#(1, Cf �n) ≥ n− gi(n, α)

}
.

57



In other words, C
(i)
α (t) is the class of languages compressible by ≤DTIME(t)

m -reductions where for
infinitely many n, all but gi(n, α) of the first n strings have collisions under some reduction.

For α < 1, X
(i)
α (2n) ⊆ X(2n) and C

(i)
α (2n) ⊆ C(2n), so Theorem 5.3 implies that X

(i)
α (2n) and

C
(i)
α (2n) have measure 0. We now refine this by calculating their scaled dimensions.

Theorem 5.4. For all i ∈ Z, c ≥ 1, and α ∈ [0, 1],

dim(i)
p (X(i)

α (2cn)) = dim(i)
p (C(i)

α (2cn)) = α

and
dim(i)

p2
(X(i)

α (2nc
)) = dim(i)

p2
(C(i)

α (2nc
)) = α.

Proof. We focus on the p-dimension portion of the theorem; the argument for p2-dimension is
identical. If α = 0, this is trivial, so assume α ∈ (0, 1]. Let s, t > 0 be arbitrary rationals with
s < α < t. It suffices to show that

s ≤ dim(i)
p (X(i)

α (2cn)) ≤ dim(i)
p (C(i)

α (2cn)) ≤ t.

The inequality dim(i)
p (X(i)

α (2cn)) ≤ dim(i)
p (C(i)

α (2cn)) holds because of the inclusion X
(i)
α (2cn) ⊆

C
(i)
α (2cn).

For the lower bound, let ρ be any p-computable measure, say computable in nk time. We
define a language A inductively by lengths. Let s′ ∈ (s, α) be rational. The first bgi(2n, s′)c bits of
A=n are set by diagonalization to minimize ρ. The remaining 2n − bgi(2n, s′)c bits are identically
0. More formally, if x is the characteristic string of A≤n−1, we choose v ∈ {0, 1}bgi(2

n,s′)c so that
ρ(xv) is minimized, and let A=n have characteristic string v02n−bgi(2

n,s′)c. Then A is easily in
X

(i)
s′ (2cn) ⊆ X

(i)
α (2cn). Let w v A, and let n be such that 2n − 1 ≤ |w| < 2n+1 − 1. Then if

|w| ≤ 2n − 1 + bgi(2n, s′)c, we have

ρ(w) ≤ ρ(w �2n − 1)2−(|w|−(2n−1)),

and if |w| ≥ 2n − 1 + bgi(2n, s′)c, we have

ρ(w) ≤ ρ(w �(2n − 1 +
⌊
gi(2n, s′)

⌋
))

≤ ρ(w �2n − 1)
22n−1+bgi(2n,s′)c−(2n−1)

=
ρ(w �2n − 1)
2bgi(2n,s′)c .

Therefore, in either case,

log ρ(w) + gi(|w|, s) ≤ log ρ(w �2n − 1)−
⌊
gi(2n, s′)

⌋
+ gi(|w|, s)

≤ log ρ(w �2n − 1) + gi(2n+1 − 1, s)− gi(2n, s′).

As gi(2n, s′)− gi(2n+1 − 1, s) →∞ as n →∞ since s < s′, it follows that

lim
n→∞

log ρ(A�n) + gi(n, s) = −∞.

Since ρ is an arbitrary p-computable measure, the contrapositive of Lemma 3.41(1) implies that
dim(i)

p (X(i)
α ) ≥ s.

Now we prove the upper bound. Let A ∈ C
(i)
α (2cn) by a function f ∈ DTIMEF(2cn). Define a

measure ρ inductively by ρ(λ) = 1 and for all w ∈ {0, 1}∗, b ∈ {0, 1},
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1. If f(si) 6= f(s|w|) for all i < |w|, then

ρ(wb) =
ρ(w)

2
.

2. Otherwise, let i = min{i < |w| | f(si) = f(s|w|)} and define

ρ(wb) =

{
ρ(w) if b = w[i]
0 if b 6= w[i].

Then for all w v A,

log ρ(w) = −#(0, Cf � |w|)
= #(1, Cf � |w|)− |w|.

Whenever #(1, Cf �n) ≥ n− gi(n, α), we have

gi(n, t) + log ρ(A�n) = gi(n, t) + #(1, Cf �n)− n

≥ gi(n, t)− gi(n, α).

This happens infinitely often, so

lim sup
n→∞

gi(n, t) + log ρ(A�n) = ∞

because t > α. Also, ρ is computable in O(|w| · 2c log |w|) = O(|w|c+1) time. Such a ρ can be defined
for each A ∈ C

(i)
α (2cn), so dim(i)

p (C(i)
α (2cn)) ≤ t follows by Theorem 3.45.

5.1.2 Small Span Theorem

In this section we establish our small span theorem for scaled dimension. We begin with a simple,
but important, lemma about the scales.

Lemma 5.5. For all k ≥ 1 and s, t ∈ (0, 1), g3(2nk
, s) = o(g2(2n, t)).

Proof. We have

g3(2nk
, s) = 22

(
log log 2nk

)s

= 22(k log n)s

and
g2(2n, t) = 2(log 2n)t

= 2nt
= 22t log n

.

The lemma holds since (k log n)s = o(t log n).

Juedes and Lutz [25] proved that the upper spans of incompressible languages are small. Specif-
ically, for any language A ∈ EXP that is incompressible by ≤p

m-reductions, they showed that
µp2

(P−1
m (A)) = 0, and if additionally A ∈ E, then µp(P−1

m (A)) = 0. The following theorem is a
scaled dimension analogue of this. For any i ∈ Z, let

C(i)
α (poly) =

⋃
c∈N

C(i)
α (nc + c).
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Theorem 5.6. Let α ∈ (0, 1).

1. Let ∆ ∈ {p,pspace}. For any B ∈ R(∆)− C
(1)
α (poly), dim(−3)

∆ (P−1
m (B)) = 0.

2. Let ∆ ∈ {p2 ,p2space}. For any B ∈ R(∆)− C
(2)
α (poly), dim(−3)

∆ (P−1
m (B)) = 0.

Proof. We first give the proof for ∆ = p. Let B ∈ E− C
(1)
α (poly) and let M be a Turing machine

that decides B in O(2cn) time. Assume B ≤p
m C via f where f is computable in nk time almost

everywhere. Then for all sufficiently large n,

f(B≤n) ⊆ C≤nk (5.1)

and ∣∣f(B≤n)
∣∣ ≥ g1(2n+1 − 1, α) ≥ g1(2n, α), (5.2)

with the latter holding because B 6∈ C
(1)
α (poly).

Let r ∈ N such that 1
r < α. Define d : N → N by d(n) = bn/rc. For each n ∈ N we define a

measure ρn : {0, 1}∗ → [0, 1] by
ρn(λ) = 2−n

and for all w ∈ {0, 1}∗ and b ∈ {0, 1},

1. If |w| < 2d(n) or
[
(∀i < 2n+1 − 1)f(si) 6= f(s|w|)

]
, then

ρn(wb) =
ρn(w)

2
.

2. Otherwise, let i = min
{

i < 2n+1 − 1
∣∣ f(si) = f(s|w|)

}
and define

ρn(wb) =

{
ρn(w) if b = B[i]
0 if b 6= B[i].

If |w| < 2d(n), then ρn(w) is computable in O(|w|) time. If |w| ≥ 2d(n), we can compute ρn(w) by
using 2n+1 − 1 = O(|w|n/d(n)) = O(|w|r) computations of M and f on strings with length at most
n = O(log |w|). Therefore ρn(w) is computable in O(|w|r(2c log |w| + (log |w|)k)) = O(|w|r+c) time
for all w ∈ {0, 1}∗.

Let wn = C �2nk+1 − 1 be the characteristic string of C≤nk . Then letting

m(n) =
∣∣∣ {j < |wn|

∣∣(∀i < 2n+1 − 1)f(si) 6= f(sj)
} ∣∣∣,

we have
ρn(wn) ≥ ρn(λ)2−2d(n)−m(n) = 2−2d(n)−m(n)−n.

By (5.1) and (5.2), we have
m(n) ≤ 2nk+1 − 1− g1(2n, α)

if n is sufficiently large. In this case,

log ρn(wn) ≥ g1(2n, α)− 2d(n) − 2nk+1 − n. (5.3)
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The function ρ : {0, 1}∗ → [0,∞) defined by

ρ(w) =
∞∑

n=0

ρn(w)

for all w is a measure by linearity. Notice that ρ(w) can be approximated to a precision of 2−l in
O(|w|r+cl) time by adding the first l + 1 terms of the sum.

Using (5.3), for all sufficiently large n, we have

g−3(|wn|, s) + log ρn(wn) = 2nk+1 + 4− g3(2nk+1 − 1, 1− s) + log ρn(wn)

≥ g1(2n, α)− g3(2nk+1 − 1, 1− s)− 2d(n) − n.

By Lemma 5.5, g3(2nk+1− 1, 1− s) = o(g1(2n, α)). Also, 2d(n) = 2bn/rc is little-o of g1(2n, α) = 2αn

because α > 1/r. Using these facts, it follows that

lim sup
n→∞

g−3(n, s) + log ρn(C �n) = ∞.

Appealing to Theorem 3.45, we establish dim(i)
p (P−1

m (B)) ≤ s. As s > 0 is arbitrary, the ∆ = p
part of the theorem holds. The argument is identical for ∆ = pspace.

The proof for ∆ ∈ {p2 ,p2space} is very similar, so we only sketch the differences for ∆ =
p2 . Let B ∈ EXP − C

(2)
α (2n) and let M be a Turing machine that decides B in O(2nc

) time.
Assume B ≤p

m C via f . The measures ρn and ρ are defined in the same way, except we use a
different function d(n). For this, we let r > 1/α and define d(n) = bnεc where ε = 1/r. Then,
if |w| ≥ 2d(n), as before we can compute ρn(w) by using 2n+1 − 1 computations of M and f

on strings with length at most n = O(log |w|). Since 2n = 2(log 2nε
)r

= O(2(log |w|)r
), we can

compute ρn(w) in O(2(log |w|)r · 2(log |w|)c
) = O(2(log |w|)max(r,c)

) time. Instead of (5.3), we arrive at
log ρn(wn) ≥ g2(2n, α)− 2d(n) − 2nk+1 − n. The proof is completed in the same way using the fact
that 2d(n) = o(g2(2n, α)) because ε < α.

We are now ready to prove our small span theorem.

Theorem 5.7.

1. Let ∆ ∈ {p,pspace}. For every A ∈ R(∆),

dim(1)(Pm(A) | R(∆)) = 0

or
dim(−3)(P−1

m (A) | R(∆)) = dim(−3)
∆ (P−1

m (A)) = 0.

2. Let ∆ ∈ {p2 ,p2space}. For every A ∈ R(∆),

dim(2)(Pm(A) | R(∆)) = 0

or
dim(−3)(P−1

m (A) | R(∆)) = dim(−3)
∆ (P−1

m (A)) = 0.

Proof. Let ∆ ∈ {p,pspace} and let A ∈ R(∆). We consider two cases.
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(I.) Suppose that
Pm(A) ∩R(∆) ⊆

⋂
α∈(0,1)

C(1)
α (2n).

Then dim(1)
∆ (Pm(A) ∩ R(∆)) ≤ dim(1)

p (C(1)
α (2n)) ≤ α by Theorem 5.4 for all α ∈ (0, 1), so

dim(1)(Pm(A) | R(∆)) = dim(1)
∆ (Pm(A) ∩R(∆)) = 0.

(II.) Otherwise, there is an α ∈ (0, 1) such that

Pm(A) ∩R(∆) 6⊆ C(1)
α (2n).

Let B ∈ Pm(A) ∩ R(∆) − C
(1)
α (2n). Then by Theorem 5.6, dim(−3)

∆ (P−1
m (B)) = 0. Since

P−1
m (A) ⊆ P−1

m (B), we have dim(−3)
∆ (P−1

m (A)) = 0.

Part 2 is proved in the same way.

Theorem 5.7 implies that there is a small span theorem for −3rd-order scaled dimension, but it
is stronger than the following.

Corollary 5.8. For every A ∈ R(∆),

dim(−3)(Pm(A) | R(∆)) = 0

or
dim(−3)(P−1

m (A) | R(∆)) = dim(−3)
∆ (P−1

m (A)) = 0.

Proof. This follows immediately from Theorem 5.7 using Theorem 3.39.

Theorem 5.1, the small span theorem of Juedes and Lutz [25], is also a corollary of Theorem
5.7. This follows immediately from Lemma 3.38.

We also have the following regarding the scaled dimensions of the hard languages for EXP and
NP.

Corollary 5.9. 1. dim(−3)
p (Hp

m(EXP)) = dim(−3)
p2

(Hp
m(EXP)) = 0.

2. If dim(1)(NP | E) > 0, then dim(−3)
p (Hp

m(NP)) = 0.

3. If dim(2)(NP | EXP) > 0, then dim(−3)
p2

(Hp
m(NP)) = 0.

Proof. Let H ∈ Cp
m(E). Then also H ∈ Cp

m(EXP), so P−1
m (H) = Hp

m(EXP). Since dim(Pm(H) |
E) = dimp(E) = 1, Theorem 5.7 tells us that dimp(Hp

m(EXP)) = dimp(P−1
m (H)) = 0.

Parts 2 and 3 follow from Theorem 5.7 using any NP-complete language A.

Juedes and Lutz [25] concluded from their small span theorem that every≤p
m-degree has measure

0 in E and in EXP. From Theorem 5.7 we similarly derive a stronger version of this fact: every
≤p

m-degree actually has −3rd-order dimension 0.

Corollary 5.10. For every A ⊆ {0, 1}∗,

dim(−3)(degp
m(A) | R(∆)) = 0.
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Proof. If degp
m(A) is disjoint from R(∆), then dim(−3)(degp

m(A) | R(∆)) = dim(−3)
p (∅) = 0, so

assume that there is some B ∈ degp
m(A)∩R(∆). Because degp

m(A) = degp
m(B) = Pm(B)∩P−1

m (B),
we have

dim(−3)(degp
m(A) | R(∆)) ≤ dim(−3)(Pm(B) | R(∆))

and
dim(−3)(degp

m(A) | R(∆)) ≤ dim(−3)(P−1
m (B) | R(∆)).

By Corollary 5.8, we have either dim(−3)(Pm(B) | R(∆)) = 0 or dim(−3)(P−1
m (B) | R(∆)) = 0.

Therefore dim(−3)(degp
m(A) | R(∆)) = 0.

The ≤p
m-complete languages for any complexity class has −3rd-order dimension in every R(∆).

Corollary 5.11. For any class D of languages, dim(−3)(Cp
m(D) | R(∆)) = 0.

Proof. If Cp
m(D) = ∅, this is trivial. Assume Cp

m(D) 6= ∅ and let A ∈ Cp
m(D). Then Cp

m(D) ⊆
degp

m(A), so this follows from Corollary 5.10.

5.1.3 Lower Spans vs. Degrees in Orders -2 Through 2

We now present some results that stand in contrast to the small span theorem of the previous
section. We begin by showing that lower spans and degrees have the same scaled dimension in
orders i with |i| ≤ 2.

Theorem 5.12. For any A ∈ R(∆) and −2 ≤ i ≤ 2,

dim(i)(degp
m(A) | R(∆)) = dim(i)(Pm(A) | R(∆))

and
dim(i)

∆ (degp
m(A)) = dim(i)

∆ (Pm(A)).

Proof. We write the proof for dimension in R(p) = E; the rest of theorem is proved in the same
manner.

Let A ∈ E be decidable in O(2cn) time. By monotonicity, dim(i)(degp
m(A) | E) ≤ dim(i)(Pm(A) |

E). For the other inequality, let t > s > dim(i)(degp
m(A) | E). By Lemmas 3.41 and 3.42, for some

l ∈ N there is an exactly nl-time computable measure ρ satisfying

lim sup
m→∞

gi(m, s) + log ρ(C �m) = ∞ (5.4)

for all C ∈ degp
m(A) ∩ E.

Letting k ≥ 1 be a natural number to be specified later, we define a padding function f :
{0, 1}∗ → {0, 1}∗ by

f(x) = 0|x|
k−|x|x

for all x. Let R = f({0, 1}∗) be the range of f .
Let B ∈ Pm(A). We define another language B′ as

B′ = (B −R) ∪ f(A).
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Then B′ ∈ degp
m(A). Intuitively, B′ is a language that is very similar to B but has A encoded

sparsely in it. Define a function τ : {0, 1}∗ → {0, 1}∗ inductively by τ(λ) = λ and

τ(wb) =


τ(w)b if s|w| 6∈ R

τ(w)1 if s|w| ∈ R ∩B′

τ(w)0 if s|w| ∈ R−B′

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. Notice that

τ(B �n) = B′ �n

for all n.
Define a measure γ as follows. For all w ∈ {0, 1}∗ and b ∈ {0, 1},

γ(wb) =

{
γ(w)

2 if s|w| ∈ R
ρ(τ(w)b)
ρ(τ(w)) γ(w) if s|w| 6∈ R.

Intuitively, γ is designed to have performance on B that is similar to ρ’s performance on B′. This
is done by mimicking the conditional probabilities of ρ for strings that are not in R. Note that
γ(w) can be exactly computed in O(|w| · (|w|l + 2(log |w|)c

)) = O(|w|max(l,c)) time.
Let n ∈ N and let 2(n−1)k+1 ≤ m ≤ 2nk+1 − 1. Then

log γ(B �m) =
∑

1≤i≤m

log
γ(B � i)

γ(B � i− 1)

=
∑

1≤i≤m
si 6∈R

log
ρ(τ(B � i− 1)B[i])

ρ(τ(B � i− 1))
+
∑

1≤i≤m
si∈R

log
1
2

=
∑

1≤i≤m
si 6∈R

log
ρ(B′ � i)

ρ(B′ � i− 1)
−
∣∣{1 ≤ i ≤ m | si ∈ R}

∣∣
≥

∑
1≤i≤m

log
ρ(B′ � i)

ρ(B′ � i− 1)
−
∣∣{1 ≤ i ≤ 2nk+1 − 1 | si ∈ R}

∣∣
= log ρ(B′ �m)−

n∑
i=0

2n

= log ρ(B′ �m)− 2n+1 + 1.

Now assume that gi(m, s) + log ρ(B′ �m) ≥ 1. Then we have gi(m, t) + log γ(B �m) ≥ 1 if

2n+1 + gi(m, s) < gi(m, t). (5.5)

To establish
lim sup

n→∞
gi(m, t) + log γ(B �m) ≥ 1, (5.6)

it now suffices to show that (5.5) holds for all sufficiently large m. For each −2 ≤ i ≤ 2, we now
give an appropriate choice of k that yields this.

• i = 2: Let k > 1/t. Then g2(m, t) ≥ g2(2(n−1)k
, t) = 2(n−1)kt

, so 2n+1 = o(g2(m, t)) because
kt > 1. Also, g2(m, s) = o(g2(m, t)) since s < t, so (5.5) holds when m is sufficiently large.
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• i = 1: Let k = 2. Then g1(m, t) ≥ g1(2(n−1)2 , t) = 2t(n−1)2 , so 2n+1 = o(g2(m, t)). Also,
g1(m, s) = o(g1(m, t)), so (5.5) holds for sufficiently large m.

• i = 0: Let k = 2. Then g0(m, t) ≥ g0(2(n−1)2 , t) = t2(n−1)2 , so 2n+1 = o(g0(m, t)). Also,
g0(m, s) = o(g0(m, t)), so (5.5) holds for sufficiently large m.

• i = −1: We have g−1(m, t) = m + 1 − g1(m, 1 − t), so (5.5) is true if 2n+1 + g1(m, 1 − t) <
g1(m, 1− s). Taking k = 2, this follows from the argument for i = 1 above since 1− s > 1− t.

• i = −2: Just as in the i = −1 case, (5.5) is true if 2n+1 + g2(m, 1− t) < g2(m, 1− s). Taking
k > 1/(1− s), this follows from the argument for i = 2 above since 1− s > 1− t.

For each B ∈ Pm(A), we have given a O(nmax(l,c))-time computable measure γ such that (5.6)
holds. By Theorem 3.45, dim(i)(Pm(A) | E) ≤ t. As t > dim(i)(degp

m(A) | E) is arbitrary, this
establishes dim(i)(Pm(A) | E) ≤ dim(i)(degp

m(A) | E).

Theorem 5.12 has as a special case Theorem 5.2 that was proved by Ambos-Spies, Merkle,
Reimann, and Stephan [2].

Theorem 5.12 implies that Theorem 5.7 cannot be improved in one respect. For any i, j ∈ Z,
let SST[i, j] be the assertion that for every A ∈ E, either

dim(i)(Pm(A) | E) = 0

or
dim(j)(P−1

m (A) | E) = 0.

Let H ∈ Cp
m(E). Then

dim(−2)(Pm(H) | E) = dim(−2)(E | E) = 1,

so dim(−2)(degp
m(H) | E) = 1 by Theorem 5.12, which in turn implies

dim(−2)(P−1
m (H) | E) = 1.

Therefore, SST[i, j] is true only if i ≤ −3 or j ≤ −3. Theorem 5.7 asserts SST[1,−3], so the −3 in
it cannot be improved to −2.

We have the following corollary regarding the classes of complete sets for E, EXP, and NP.

Corollary 5.13. Let −2 ≤ i ≤ 2.

1. dim(i)(Cp
m(E) | E) = dim(i)(Cp

m(EXP) | EXP) = 1.

2. dim(i)(NP | E) = dim(i)(Cp
m(NP) | E).

3. dim(i)(NP | EXP) = dim(i)(Cp
m(NP) | EXP).

Proof. Let H ∈ Cp
m(E). Then Cp

m(E) = degp
m(H)∩E, so dim(i)(Cp

m(E) | E) = dim(i)(degp
m(H) | E) =

dim(i)(Pm(H) | E) = dim(i)
p (E) = 1 by Theorem 5.12. The other statements follow similarly.

We can now observe a difference between the −3rd- and −2nd-order scaled dimensions regarding
complete degrees. Corollaries 5.11 and 5.13 together with Theorem 3.39 tell us that for D ∈
{E,EXP},

dim(i)(Cp
m(D) | D) =

{
0 if i ≤ −3
1 if i ≥ −2
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and

dim(i)(Cp
m(NP) | D) =

{
0 if i ≤ −3
dim(i)(NP | D) if i ≥ −2.

In Section 5.1.5 we will discuss the scaled dimension of Cp
m(E) within ESPACE. The following

extension of Theorem 5.12 will be useful.

Theorem 5.14. For all −2 ≤ i ≤ 2,

dim(i)(Cp
m(E) | ESPACE) = dim(i)(E | ESPACE).

Proof. We use the construction from the proof of Theorem 5.12. Let t > s > dim(i)(Cp
m(E) |

ESPACE) and take an exactly nl-space computable measure ρ satisfying (5.4) for all C ∈ Cp
m(E).

Fix an A ∈ Cp
m(E). For any B ∈ E, the set B′ constructed from A and B is in Cp

m(E). The
arguments then show dim(i)(E | ESPACE) ≤ t.

5.1.4 ≤p
1−tt-Lower Spans vs. ≤p

m-Lower Spans

Theorem 5.12 is also true for most other polynomial-time reducibilities. (This fact was mentioned
in [2] for Theorem 5.2 when it was proved.) To replace ≤p

m by ≤p
r in the theorem, we only need to

have B′ ∈ degp
r (A) for the set B′ that was constructed in the proof from B ∈ Pr(A). In particular,

Theorem 5.12 is true for the ≤p
1−tt reducibility. In this section we show that this holds because

of another reason: the scaled dimensions of ≤p
1−tt-lower spans and ≤p

m-lower spans are always the
same.

The following proposition was used to show that a set is weakly ≤p
m-complete for exponential

time if and only if it is ≤p
1−tt-complete.

Proposition 5.15. (Ambos-Spies, Mayordomo, and Zheng [1]) Let A ≤p
1−tt B. Then there is a

language C ∈ P such that
Â = (A ∩ C) ∪ (Ac ∩ Cc) ≤p

m B.

The idea of the following lemma also comes from [1].

Lemma 5.16. Let i ∈ Z. Let C, Ĉ be classes of languages such that for any A ∈ C, there is some
C ∈ R(∆) such that Â = (A ∩ C) ∪ (Ac ∩ Cc) ∈ Ĉ. Then dim(i)

∆ (C) ≤ dim(i)
∆ (Ĉ).

Proof. We prove this for ∆ = p. The other cases are proved by identical arguments.
Let s > dim(i)

p (Ĉ) be rational and obtain ρ computable in O(nr) time from Lemma 3.41 such
that

lim sup
n→∞

gi(n, s) + log ρ(Â�n) = ∞ (5.7)

for all Â ∈ Ĉ.
Let A ∈ C and let C ∈ DTIME(nk) such that Â = (A ∩ C) ∪ (Ac ∩ Cc) ∈ Ĉ. Define a function

τ : {0, 1}∗ → {0, 1}∗ by

τ(w)[j] =

{
w[j] if sj ∈ C

1− w[j] if sj 6∈ C

for each 0 ≤ j < |w|. Define another measure ρ′ by

ρ′(w) = ρ(τ(w)).
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Then for all n,
ρ′(A�n) = ρ(τ(A�n)) = ρ(Â�n).

Therefore
lim sup

n→∞
gi(n, s) + log ρ′(A�n) = ∞

because of (5.7). As ρ′ is computable in time O(|w| · (log |w|)k + |w|r) = O(|w|2 + |w|r), it follows
by Theorem 3.45 that dim(i)

p (C) ≤ s.

We now show that the scaled dimension of a ≤p
m-lower span is always equal to the scaled

dimension of the ≤p
1−tt-lower span.

Theorem 5.17. Let D be a class of languages and let i ∈ Z. Then

dim(i)
∆ (Pm(D)) = dim(i)

∆ (P1−tt(D))

and
dim(i)(Pm(D) | R(∆)) = dim(i)(P1−tt(D) | R(∆)).

Proof. By Proposition 5.15, for each A ∈ P1−tt(D) there is a language C ∈ P such that Â =
(A ∩ C) ∪ (Ac ∩ Cc) ∈ Pm(D). Let Ĉ be the set of all such Â as A ranges over P1−tt(D). Then by
Lemma 5.16,

dim(i)
∆ (P1−tt(D)) ≤ dim(i)

∆ (Ĉ).

As Ĉ ⊆ Pm(D) ⊆ P1−tt(D), we also have

dim(i)
∆ (Ĉ) ≤ dim(i)

∆ (Pm(D)) ≤ dim(i)
∆ (P1−tt(D)),

so the first equality holds. The proof for dimension in R(∆) is analogous.

We can now give a stronger version of Theorem 5.12.

Corollary 5.18. For any A ∈ R(∆) and −2 ≤ i ≤ 2,

dim(i)(Pm(A) | R(∆)) = dim(i)(degp
m(A) | R(∆))

q q
dim(i)(P1−tt(A) | R(∆)) = dim(i)(degp

1−tt(A) | R(∆)),

and similarly with dim(i)(· | R(∆)) replaced by dim(i)
∆ (·).

Proof. From Theorems 5.12 and 5.17 we have

dim(i)(degp
m(A) | R(∆)) = dim(i)(Pm(A) | R(∆)) = dim(i)(P1−tt(A) | R(∆)).

By monotonicity, we have

dim(i)(degp
m(A) | R(∆)) ≤ dim(i)(degp

1−tt(A) | R(∆)) ≤ dim(i)(P1−tt(A) | R(∆)),

so the equalities displayed in the statement of the corollary are true. The proof for dim(i)
∆ (·) is

analogous.

Theorem 5.17 also yields a strengthening of Theorem 5.7: the Pm(A) in it can be replaced by
P1−tt(A). In fact, it is also possible to replace the P−1

m (A) in Theorem 5.7 by P−1
1−tt(A) by extending

Theorems 5.4 and 5.6 to deal with ≤p
1−tt-reductions. We omit the details.
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5.1.5 The Scaled Dimension of Cp
m(E) in ESPACE

Lutz [34] proved a small span theorem for nonuniform Turing reductions in ESPACE. This implies
that Cp

m(E) has measure 0 in ESPACE. In Corollary 5.11 we saw that Cp
m(E) actually has −3rd-order

scaled dimension 0 in ESPACE. In this section we show that determining the −2nd- or −1st-order
scaled dimension of Cp

m(E) in ESPACE would yield a proof of P = BPP or P 6= PSPACE.
The P = BPP hypothesis was related to the measure of E in ESPACE by Lutz [32].

Theorem 5.19. (Lutz [32]) If µ(E | ESPACE) 6= 0, then P = BPP.

We will extend this result to scaled dimension. We now recall the tools Lutz used to prove it.
Nisan and Wigderson [45] showed that BPP can be derandomized if there is a decision problem

in E that requires exponential-size circuits to approximately solve. The hardness of a decision
problem at a given length is the minimum size of a circuit that can approximately solve it. The
details of the definition of this hardness are not needed in this paper; we only need to recall existing
results regarding classes of languages with exponential hardness.

Definition. Let Hα be the class of all languages that have hardness at least 2αn almost everywhere.

The aforementioned derandomization of BPP can be stated as follows.

Theorem 5.20. (Nisan and Wigderson [45]) If there is an E ∩ Hα 6= ∅ for some α > 0, then
P = BPP.

We will also need space-bounded Kolmogorov complexity.

Definition. Given a machine M , a space bound s : N → N, a language L ⊆ {0, 1}∗, and a natural
number n, the s-space-bounded Kolmogorov complexity of L=n relative to M is

KSs
M (L=n) = min

{
|π|
∣∣∣M(π, n) = χL=n in ≤ s(2n) space

}
,

i.e., the length of the shortest program π such that M , on input (π, n), outputs the characteristic
string of L=n and halts without using more than s(2n) workspace.

Well-known simulation techniques show that there exists a machine U which is optimal in the sense
that for each machine M there is a constant c such that for all s, L and n we have

KScs+c
U (L=n) ≤ KSs

M (L=n) + c.

As usual, we fix such a universal machine and omit it from the notation.

Definition. For each space bound s : N → N and function f : N → N define the complexity class

KSs(f) = {L ⊆ {0, 1}∗ | (∀∞n)KSs(L=n) < f(n)}.

Lutz showed that Hα has measure 1 in ESPACE (i.e., that Hc
α has measure 0 in ESPACE) if

α < 1/3 by showing that languages not in Hα have low space-bounded Kolmogorov complexity.

Lemma 5.21. (Lutz [32]) There exist a polynomial q and a constant c such that for all 0 < α <
β < 1,

Hc
α ⊆ KSq

i.o.(2
n − c2(1−2α)n + 2βn).

The class on the right in Lemma 5.21 has measure 0 in ESPACE [33]. The scaled dimensions
of similar space-bounded Kolmogorov complexity classes were studied in [23].
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Theorem 5.22. (Hitchcock, Lutz, and Mayordomo [23]) For any i ≤ −1, polynomial q(n) = Ω(n2),
and α ∈ [0, 1],

dim(i)(KSq
i.o.(gi(2n, α)) | ESPACE) = α.

Lemma 5.21 and Theorem 5.22 provide an easy upper bound on the −1st-order scaled dimension
of Hc

α in ESPACE.

Corollary 5.23. If 0 < α < 1/3, then

dim(−1)
pspace(H

c
α) ≤ 2α.

Proof. Let ε > 0 and β ∈ (α, 1− 2α). Then for all sufficiently large n,

2n − c2(1−2α)n + 2βn < 2n + 1− 2(1−2α−ε)n

= g1(2n, 2α + ε),

so Lemma 5.21 implies Hc
α ⊆ KSq

i.o.(g1(2n, 2α + ε)). Therefore dim(−1)(Hc
α | ESPACE) ≤ 2α + ε by

Theorem 5.22.

We can now state a stronger version of Theorem 5.19. The hypothesis has been weakened, but
the conclusion remains the same.

Theorem 5.24. If dim(−1)(E | ESPACE) > 0, then P = BPP.

Proof. Assume the hypothesis and let s = min{1/2,dim(−1)(E | ESPACE)}. Then by Corollary
5.23, E 6⊆ Hc

s/2, i.e., E ∩Hs/2 6= ∅. Therefore P = BPP by Theorem 5.20.

We now relate the scaled dimension of Cp
m(E) to the P ?= PSPACE and P ?= BPP problems.

Theorem 5.25. For i ∈ {−2,−1},

dim(i)(Cp
m(E) | ESPACE) < 1 ⇒ P 6= PSPACE

and
dim(i)(Cp

m(E) | ESPACE) > 0 ⇒ P = BPP.

Proof. From Theorem 5.14 we know that dim(i)(Cp
m(E) | ESPACE) = dim(i)(E | ESPACE). Also,

dim(i)(E | ESPACE) < 1 implies E 6= ESPACE which implies P 6= PSPACE [7]. This proves the
first implication. The second one follows from Theorem 5.24 since dim(i)(Cp

m(E) | ESPACE) > 0
implies dim(−1)(E | ESPACE) > 0.

In other words, establishing any nontrivial upper or lower bound on dim(−1)(Cp
m(E) | ESPACE)

or dim(−2)(Cp
m(E) | ESPACE) would derandomize BPP or separate P from PSPACE. This is in

contrast to the unconditional facts from Corollaries 5.10 and 5.13 that

dim(−3)(Cp
m(E) | ESPACE) = 0

and
dim(−2)(Cp

m(E) | E) = dim(−1)(Cp
m(E) | E) = 1.
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5.2 Degrees of Arbitrary Dimensions

Ambos-Spies, Merkle, Reimann, and Stephan [2] proved the following result asserting the existence
of degrees with arbitrary dimensions in exponential time.

Theorem 5.26. (Ambos-Spies, Merkle, Reimann, and Stephan [2]) For any ∆0
2-computable real

number x ∈ [0, 1] there exists A ∈ E such that

dimp(degp
m(A)) = dim(degp

m(A) | E) = x.

In this section we develop a proof of the following extension of Theorem 5.26.

Theorem 5.27. For every pair of ∆0
2-computable real numbers x, y with 0 ≤ x ≤ y ≤ 1, there

exists A ∈ E such that
dimp(degp

m(A)) = dim(degp
m(A) | E) = x

and
Dimp(degp

m(A)) = Dim(degp
m(A) | E) = y.

The proof of Theorem 5.27 is motivated by the analogous, but simpler, arguments used by
Ambos-Spies, Merkle, Reimann and Stephan [2] to prove Theorem 5.26. Like most dimension
calculations, our proof consists of separate lower and upper bound arguments. The results from
here through Lemma 5.34 are used for the lower bound. Lemma 5.35 uses Theorem 3.33 to establish
the upper bound. The proof of Theorem 5.27 follows Lemma 5.35.

The following result is an exact dual of Theorem 5.2 and has an analogous proof.

Theorem 5.28. For any A ∈ E,

Dimp(degp
m(A)) = Dimp(Pm(A))

and
Dim(degp

m(A) | E) = Dim(Pm(A) | E).

We will use randomness relative to a bias sequence to prove Theorem 5.27. A bias is a real
number β ∈ [0, 1]. Intuitively, if we toss a 0/1-valued coin with bias β, then β is the probability of
the outcome 1. A bias sequence is a sequence ~β = (β0, β1, β2, . . .) of biases. If ~β is a bias sequence,
then the ~β-coin-toss probability measure is the probability µ

~β on C defined by

µ
~β(w) =

|w|−1∏
i=0

βi(w), (5.1)

where βi(w) = (2βi − 1)w[i] + (1− βi), i.e., βi(w) = if w[i] then βi else 1− βi. That is, µ
~β is the

probability that S ∈ Cw when S ∈ C is chosen according to a random experiment in which for
each i, independently of all other j, the ith bit of S is decided by tossing a 0/1-valued coin whose
probability of 1 is βi. In the case where the biases βi are all the same, i.e., ~β = (β, β, β, . . .) for
some β ∈ [0, 1], we write µβ for µ

~β , and (5.1) simplifies to

µβ(w) = (1− β)#(0,w)β#(1,w), (5.2)

where #(b, w) is the number of times the bit b appears in the string w. The uniform probability
measure on C is the probability measure µ = µ

1
2 , for which (5.2) simplifies to

µ(w) = 2−|w|

for all w ∈ {0, 1}∗.
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Definition. Let ν be a probability measure on C. A ν-martingale is a function d : {0, 1}∗ → [0,∞)
that satisfies the condition

d(w)ν(w) = d(w0)ν(w0) + d(w1)ν(w1)

for all w ∈ {0, 1}∗.

Note that a µ-martingale is a martingale. If ~β is a bias sequence, then we call a µ
~β-martingale

simply a ~β-martingale.
We will use resource-bounded notions of randomness that have been investigated by Schnorr

[53], Lutz [33], Ambos-Spies, Terwijn, and Zheng [4], and others.

Definition. Let ν be a probability measure on C, and let t : N → N.

1. A sequence R ∈ C is ∆-ν-random, and we write R ∈ RANDν(∆), if there is no ∆-computable
ν-martingale that succeeds on R.

2. A sequence R ∈ C is t(n)-ν-random, and we write R ∈ RANDν(t(n)), if there is no O(t(n))-
time-computable ν-martingale that succeeds on R.

We write RAND~β(t(n)) for RANDµ
~β
(t(n)). We also say µ

~β
t(n)(X) = 0 if there is a O(t(n))-time-

computable ~β-martingale that succeeds on X.

Notation. Given a bias sequence ~β = (β0, β1, . . .), n ∈ N, and S ∈ C, let

Hn(~β) =
1
n

n−1∑
i=0

H(βi),

H−(~β) = lim inf
n→∞

Hn(~β),

H+(~β) = lim sup
n→∞

Hn(~β).

We call H−(~β) and H+(~β) the lower and upper average entropies, respectively, of ~β. Also, let

Ln(~β)(S) = log
1

µ~β(S[0..n− 1])
=

n−1∑
i=0

ξi(S),

where
ξi(S) = (1− S[i]) log

1
1− βi

+ S[i] log
1
βi

for 0 ≤ i < n.

Note that Ln(~β), ξ0, . . . , ξn−1 are random variables with

ELn(~β) =
n−1∑
i=0

Eξi =
n−1∑
i=0

H(βi) = nHn(~β).

The following large deviation theorem tells us that Ln(~β) is very unlikely to deviate significantly
from this expected value.
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Theorem 5.29. For each δ > 0 and ε > 0, there exists α ∈ (0, 1) such that, for all bias sequences
~β = (β0, β1, . . .) with each βi ∈ [δ, 1− δ] and all n ∈ Z+, if Ln(~β) and Hn(~β) are defined as above,
then

P
[
|Ln(~β)− nHn(~β)| ≥ εn

]
< 2αn,

where the probability is computed according to µ
~β.

The proof of Theorem 5.29 is given in [5].

Lemma 5.30. If δ > 0 and ~β is an exactly nl-time computable bias sequence with each βi ∈ [δ, 1−δ],
then every sequence R ∈ RAND~β(nk+2l+1) satisfies

Ln(~β)(R) = nHn(~β) + o(n)

as n →∞.

Proof. Assume the hypothesis. Let ε > 0. For each n ∈ N, define the set

Yn =
{

S ∈ C
∣∣∣ |Ln(~β)(S)− nHn(~β)| ≥ εn

}
,

and let
Xε = {S ∈ C | (∃∞n)S ∈ Yn}.

It suffices to show that µ
~β
nk+2l+1(Xε) = 0.

For each n ∈ N and w ∈ {0, 1}∗, let

dn(w) =

{
µ

~β(Yn|Cw) if |w| ≤ n

dn(w[0..n− 1]) if |w| > n.

It is easily verified that each dn is a ~β-martingale. It is clear that Yn ⊆ S1[dn] for all n ∈ N. Finally,

by Theorem 5.29, the series
∞∑

n=0
dn(λ) is p-convergent, so the computable first Borel-Cantelli Lemma

[33] (extended to ~β as indicated in [8]) tells us that Xε has p-measure 0. It can be verified that the

resulting martingale is computable in nk+2l+1 time, so µ
~β
nk+2l+1(Xε) = 0.

Lemma 5.31. Assume that k, l ∈ Z+, δ > 0, ~β is an exactly nl-time-computable bias sequence
with each βi ∈ Q ∩ [δ, 1− δ], s ∈ Q ∩ [0,∞), and d is an nk-time-computable s-gale.

1. If s < H−(~β), then S∞[d]
⋂

RAND~β(nk+2l+1) = ∅.

2. If s < H+(~β), then S∞str[d]
⋂

RAND~β(nk+2l+1) = ∅.

Proof. Assume the hypothesis. Define d′ : {0, 1}∗ → [0,∞) by

d′(w) =
d(w)

2s|w|µ~β(w)

for all w ∈ {0, 1}∗. Then d′ is a ~β-martingale, and d′ is O(nk+2l+1)-time-computable.
Let R ∈ RAND~β(nk+2l+1). Then d′ does not succeed on R, so there is a constant c > 0 such

that, for all n ∈ N, if we write zn = R[0..n− 1], then d′(zn) ≤ 2c, whence

log d(zn) ≤ c + sn + log µ
~β(zn).
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It follows by Lemma 5.30 that

log d(zn) ≤ c + n[s−Hn(~β)] + o(n)

as n →∞. Hence, for any ε > 0, if we let

Iε = {n ∈ Z+ | s < Hn(~β)− ε},

then log d(zn) < c for all sufficiently large n ∈ Iε. We now verify the two parts of the lemma.

1. If s < H−(~β), let ε = H−(~β)−s
2 . Then Iε is cofinite, so log d(zn) < c for all sufficiently large

n ∈ Z+, so R 6∈ S∞[d].

2. If s < H+(~β), let ε = H+(~β)−s
2 . Then Iε is infinite, so log d(zn) < c for infinitely many n ∈ Z+,

so R 6∈ S∞str[d].

Our proof of Theorem 5.27 also uses the martingale dilation technique, which was introduced
by Ambos-Spies, Terwijn, and Zheng [4] and extended by Breutzmann and Lutz [8].

Definition. The restriction of a string w ∈ {0, 1}∗ to a language A ⊆ {0, 1}∗ is the string w � A
defined by the following recursion.

1. λ � A = λ.

2. For w ∈ {0, 1}∗ and b ∈ {0, 1},

(wb) � A =
{

(w � A)b if s|w| ∈ A,

w � A if s|w| 6∈ A.

(That is, w � A is the concatenation of the successive bits w[i] for which si ∈ A.)

Definition. A function f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing if, for all x, y ∈ {0, 1}∗,

x < y =⇒ f(x) < f(y),

where < is the standard ordering of {0, 1}∗.

Notation. If f : {0, 1}∗ −→ {0, 1}∗, then for each n ∈ N, let nf be the unique integer such that
f(sn) = snf

.

Definition. If f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing and ~β is a bias sequence, then the
f-dilation of ~β is the bias sequence ~βf given by βf

n = βnf
for all n ∈ N.

Observation 5.32. If f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing and A ⊆ {0, 1}∗, then for all
n ∈ N,

χf−1(A)[0..n− 1] = χA[0..nf − 1] � range(f).

Definition. If f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing and d is a martingale, then the f-dilation
of d is the function fˆd : {0, 1}∗ −→ [0,∞),

fˆd(w) = d(w � range(f)).
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Intuitively, the f -dilation of d is a strategy for betting on a language A, assuming that d itself
is a good betting strategy for betting on the language f−1(A). Given an opportunity to bet on
the membership of a string y = f(x) in A, f d̂ bets exactly as d would bet on the membership or
nonmembership of x in f−1(A).

The following result is a special case of Theorem 6.3 in [8].

Theorem 5.33. (Martingale Dilation Theorem - Breutzmann and Lutz [8]) Assume that ~β is a
bias sequence with each βi ∈ (0, 1), f : {0, 1}∗ −→ {0, 1}∗ is strictly increasing, and d is a ~βf -
martingale. Then fˆd is a ~β-martingale and, for every language A ⊆ {0, 1}∗, if d succeeds on
f−1(A), then fˆd succeeds on A.

Notation. For each k ∈ Z+, define gk : {0, 1}∗ −→ {0, 1}∗ by gk(x) = 0|x|
k
1x. Note that each gk

is strictly increasing and computable in polynomial time.

Lemma 5.34. Assume that ~β is a bias sequence with each βi ∈ (0, 1), and R ∈ RAND~β(n2). Then,
for each k ≥ 2, g−1

k (R) ∈ RAND~α(nk), where ~α = ~βgk .

Proof. Let ~β, k, and ~α be as given, and assume that g−1
k (R) 6∈ RAND~α(nk). Then there is an

nk-time-computable ~α-martingale d that succeeds on g−1
k (R). It follows by Theorem 5.33 that gk d̂

is a ~β-martingale that succeeds on R. The time required to compute gk d̂(w) is O(|w|2 + |w′|k)
steps, where w′ = w � range(gk). (This allows O(|w|2) steps to compute w′ and then O(|w|k steps
to compute d(w′).) Now |w′| is bounded above by the number of strings x such that |x|k + |x|+1 ≤
|s|w|| = blog(1 + |w|)c, so |w′| ≤ 21+log(1+|w|)

1
k . Therefore the time required to compute gk d̂(w) is

O(|w|2 + 2k2k(log(1+|w|))
1
k ) = O(|w|2)

steps. Thus gk d̂(w) is an n2-time computable ~β-martingale, so R 6∈ RAND~β(n2).

Notation. From here through the proof of Theorem 5.27, we assume that α and β are ∆0
2-

computable real numbers with 0 ≤ α ≤ β ≤ 1/2. It is well-known that a real number is ∆0
2-

computable if and only if there is a computable sequence of rationals that converge to it. Slowing
down this construction gives polynomial-time functions α̂, β̂ : N → Q such that lim

n→∞
α̂(n) = α and

lim
n→∞

β̂(n) = β. We also assume that 1
n ≤ α̂(n) ≤ β̂(n) for all n. For each n, we let

κ(n) =

{
α̂(n) if n is even
β̂(n) if n is odd

and define a special-purpose bias sequence ~γ by

γn = κ(log∗ n).

Note that ~γ is O(n)-time-computable, 1
log∗ n ≤ γn for all n, H−(~γ) = H(α), and H+(~γ) = H(β).

We now use the unpredictability characterizations from Theorem 3.33 to establish upper bounds
on the dimensions and strong dimensions of lower spans of sequences random relative to ~γ.

Lemma 5.35. For each R ∈ RAND~γ(n5),

dimp(Pm(R)) ≤ H(α)

and
Dimp(Pm(R)) ≤ H(β).
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Proof. For now, fix a polynomial-time function f : {0, 1}∗ → {0, 1}∗. The collision set of f is

Cf = {j | (∃i < j)f(si) = f(sj)}.

For each n ∈ N, let
#Cf (n) = |Cf ∩ {0, . . . , n− 1}|.

We use f to define the predictors

πf
0 (w, b) =

{
1
2 if |w| 6∈ Cf

w[i]b(1− w[i])1−b if |w| ∈ Cf and i = min{j | f(sj) = f(s|w|)}

and

πf
1 (w, b) =

{
(γf
|w|)

b(1− γf
|w|)

1−b if |w| 6∈ Cf

w[i]b(1− w[i])1−b if |w| ∈ Cf and i = min{j | f(sj) = f(s|w|)}

for all w ∈ {0, 1}∗ and b ∈ {0, 1}.
For each S ∈ C, we now define several objects to facilitate the proof. First, we let

Af (S) = f−1(S);

that is, Af (S) is the language ≤p
m-reduced to S by f . Observe that for all w v Af (S),

Llog(πf
0 , w) = |w| −#Cf (|w|). (5.3)

Recall the sequence of towers defined by tj by t0 = 1 and tj+1 = 2tj . For any j ∈ N and
tj < n ≤ tj+1, define the entropy quantity

Hf
n =

∑
i<n

i6∈Cf and if >tj−1

H(γf
n)

and the random variable

Lf
n(S) =

∑
i<n

i6∈Cf and if >tj−1

log
1

πf
1 (Af (S)[0..i− 1], Af (S)[i])

.

(Recall that if is the unique number such that f(si) = sif .) We have

Llog(πf
1 , Af (S)[0..n− 1]) =

∑
i<n

log
1

πf
1 (Af (S)[0..i− 1], Af (S)[i])

=
∑
i<n
i6∈Cf

log
1

πf
1 (Af (S)[0..i− 1], Af (S)[i])

= Lf
n(S) +

∑
i<n

i6∈Cf and if≤tj−1

log
1

πf
1 (Af (S)[0..i− 1], Af (S)[i])

≤ Lf
n(S) +

∑
i<n

i6∈Cf and if≤tj−1

log log∗ if

≤ Lf
n(S) + (tj−1 + 1) log(j − 1)

≤ Lf
n(S) + (1 + log n) log∗ n,

(5.4)
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for all n. (Here we used the fact that γi ≥ 1
log∗ i for all i.) Finally, for any ε > 0 and θ ∈ (0, 1),

define the set
Jf

θ,ε(S) = {n | #Cf (n) < (1− θ)n and Lf
n(S) ≥ Hf

n + εn}

of natural numbers.

Claim. For any rational θ ∈ (0, 1) and ε > 0,

µ~γ
n5

(
{S | Jf

θ,ε(S) is finite}
)

= 1.

Proof of Claim. The argument is similar to the proof of Lemma 5.30. For each n ∈ N, define the
set

Yn =

{
∅ if #Cf (n) ≥ (1− θ)n
{S | Lf

n(S) ≥ Hf
n + εn} otherwise,

and let
Xε = {S ∈ C|(∃∞n)S ∈ Yn}.

To prove the claim, we will show that µ~γ
n5(Xε) = 0.

For each n ∈ N and w ∈ {0, 1}∗, let

dn(w) =

{
µ~γ(Yn|Cw) if |w| ≤ n

dn(w[0..n− 1]) if |w| > n.

It is clear that each dn is a ~γ-martingale and that Yn ⊆ S1[dn] for all n ∈ N.
Let S ∈ C. For each n, j ∈ N, let

In
j = {if | i < n, i 6∈ Cf , and log∗ if = j}.

Also, define S+ = {i | S[i] = 1} and S− = {i | S[i] = 0}. Then, if n is large enough to ensure that
log∗ if ≤ 1 + log∗ n for all i < n, we have

Lf
n(S) =

(log∗ n)+1∑
k=(log∗ n)−1

∣∣In
k ∩ S+

∣∣ log
1

κ(k)
+
∣∣In

k ∩ S−
∣∣ log

1
1− κ(k)

.

For any n and k, write i(n, k) = |In
k |. Let Tn be the set of all tuples (l−1, l0, l1) satisfying 0 ≤ lr ≤

i(n, j + r) for −1 ≤ r ≤ 1 and

1∑
r=−1

lr log
1

κ(j + r)
+ (i(n, j + r)− lr) log

1
1− κ(j + r)

≥ Hf
n + εn,

where j = log∗ n. Then we have

µ~γ(Yn) =
∑

(l−1,l0,l1)∈Tn

1∏
r=−1

(
i(n, j + r)

lr

)
κ(j + r)lr(1− κ(j + r))i(n,j+r)−lr .

We can write a similar formula for µ~γ(Yn|Cw) when w 6= λ. From this it follows that the mapping
(n, w) 7→ dn(w) is exactly computable in O(n3) time.
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By Theorem 5.29, there exists δ ∈ (0, 1) such that for all n ∈ N with Yn 6= ∅, we have

µ~γ(Yn) < 2δn−#Cf (n) < 2δθn.

It follows that the series
∞∑

n=0
dn(λ) is p-convergent, so the polynomial-time first Borel-Cantelli

Lemma [33] (extended to ~γ as indicated in [8]) tells us that µ~γ
n5(Xε) = 0. � Claim.

Let R ∈ RAND~γ(n5). Let ε > 0 and θ < H(α) be rational. Then by the above claim, Jf
θ,ε(R)

is finite. That is, for all but finitely many n,

#Cf (n) ≥ (1− θ)n or Lf
n(R) < Hf

n + εn. (5.5)

Writing wn = Af (R)[0..n− 1], (5.5) combined with (5.3) and (5.4) implies that

Llog(πf
0 , wn) ≤ θn < H(α)n (5.6)

or
Llog(πf

1 , wn) < Hf
n + εn + (1 + log n) log∗ n. (5.7)

As

lim sup
n→∞

Hf
n

n
≤ H(β),

it follows that

lim sup
n→∞

min{Llog(πf
0 , wn),Llog(πf

1 , wn)}
n

≤ H(β) + ε. (5.8)

If (5.6) holds for infinitely many n, then

Llog(πf
0 , Af (R)) ≤ H(α). (5.9)

Otherwise, (5.7) holds for almost all n. Assuming

lim inf
n→∞

Hf
n

n
≤ H(α), (5.10)

in this case we have
Llog(πf

1 , Af (R)) ≤ H(α) + ε. (5.11)

We now verify (5.10). For each n, let m(n) = t2n. Then for sufficiently large n, we have if < tn+1

for all i < m(n). Using the sets Ik
n from the proof of the claim, we then have

Hf
m(n) =

∣∣∣Im(n)
n

∣∣∣H(κ(n)) +
∣∣∣Im(n)

n+1

∣∣∣H(κ(n + 1))

≤ (tn + 1)H(κ(n)) + m(n)H(κ(n + 1)).

As tn = o(m(n)) and κ(2n) → α as n →∞, we have

lim inf
n→∞

Hf
n

n
≤ lim inf

n→∞

Hf
m(2n+1)

m(2n + 1)
≤ H(α).

For each polynomial-time reduction f , we have defined and analyzed two predictors πf
0 and πf

1 .
We now show how to combine all these predictors into a single predictor that will establish the
lemma.
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Let {fj | j ∈ N} be a uniform enumeration of all polynomial-time functions fj : {0, 1}∗ → {0, 1}∗
such that fj(x) is computable in O(2|x|+j) steps. For any predictor ρ, define a probability measure
µ[ρ] by

µ[ρ](w) =
|w|−1∏
i=0

ρ(w[0..i− 1], w[i])

for all w ∈ {0, 1}∗. For each m ∈ N and w ∈ {0, 1}m, let

µm(w) = 2−(2m+1) +
m−1∑
j=0

2−(2j+3)

(
µ[πfj

0 ](w) +
1
2
µ[πfj

1 ](w)
)

.

Then

µm+1(w0) + µm+1(w1) = 2−(2m+3) +
m∑

j=0

2−(2j+3)

(
µ[πfj

0 ](w0) +
1
2
µ[πfj

1 ](w0)
)

+2−(2m+3) +
m∑

j=0

2−(2j+3)

(
µ[πfj

0 ](w1) +
1
2
µ[πfj

1 ](w1)
)

= 2−(2m+2) +
m∑

j=0

2−(2j+3)

(
µ[πfj

0 ](w) +
1
2
µ[πfj

1 ](w)
)

= 2−(2m+3)

(
2 + µ[πfm

0 ](w) +
1
2
µ[πfm

1 ](w)
)

+ µm(w)− 2−(2m+1)

≤ µm(w) + 2−(2m+3)

(
3 +

1
2

)
− 2−(2m+1)

< µm(w).

Now define a predictor π by

π(w, 1) =
µ|w|+1(w1)

µ|w|(w)
π(w, 0) = 1− π(w, 1).

Then for all w ∈ {0, 1}∗ and b ∈ {0, 1},

π(w, b) ≥
µ|w|+1(wb)

µ|w|(w)
.

For all w ∈ {0, 1}∗, k ∈ {0, 1}, and j < |w|, we have

Llog(π,w) =
|w|−1∑
i=0

log
1

π(w[0..i− 1], w[i])

≤
|w|−1∑
i=0

log
µi(w[0..i− 1])
µi+1(w[0..i])

= log
µ0(λ)

µ|w|(w)

≤ log
22j+3+i

µ[πfj

k ](w)

= 2j + 3 + i + Llog(πfj

k , w).
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For any j ∈ N, it follows that
Llog

str (π,Afj (R)) ≤ H(β) + ε

by using f = fj in (5.8). Also, since either (5.9) or (5.11) holds for f = fj , we have

Llog(π,Afj (R)) ≤ H(α) + ε.

As π is (exactly) polynomial-time computable, this establishes that

Pm(R) = {Afj (R) | j ∈ N}

has p-dimension at most H(α) + ε and strong p-dimension at most H(β) + ε by Theorem 3.33. As
ε > 0 was arbitrary, the lemma follows.

We now have the machinery we need to prove the main result of this section.

Proof of Theorem 5.27. Let x and y be ∆0
2-computable real numbers with 0 ≤ x ≤ y ≤ 1. Then

there exist ∆0
2-computable real numbers α and β with 0 ≤ α ≤ β ≤ 1

2 , H(α) = x, andH(β) = y. Let
~γ be the bias sequence defined from α and β above (just prior to Lemma 5.35). It is well-known
[33, 4] that almost every language in E is n5-~γ-random. In particular, there exists a language
A ∈ RAND~β(n5) ∩ E. By Theorems 5.2 and 5.28, it suffices to prove that

dimp(Pm(A)) = dim(Pm(A) | E) = H(α)

and
Dimp(Pm(A)) = Dim(Pm(A) | E) = H(β).

By Lemma 5.35, then, it suffices to prove that

dim(Pm(A) | E) ≥ H(α) (5.12)

and
Dim(Pm(A) | E) ≥ H(β). (5.13)

Note that (5.12) is trivial if α = 0, and (5.13) is trivial if β = 0. If α > 0, let s ∈ [0,H(α)) ∩ Q,
and let d− be an nk-time computable s-gale. Similarly, if β > 0, let t ∈ [0,H(β)) ∩ Q, and let d+

be an nk-time computable t-gale. It suffices to show that

α > 0 ⇒ Pm(A) ∩ E 6⊆ S∞[d−] (5.14)

and
β > 0 ⇒ Pm(A) ∩ E 6⊆ S∞str[d

+]. (5.15)

Let B = g−1
k+3(A). It is clear that B ∈ Pm(A) ∩ E. Also, by Lemma 5.34, B ∈ RAND~γ′(nk), where

~γ′ = ~γgk+3 . Since
s < H(α) = H−(~γ) = H−(~γ′),

t < H(β) = H+(~γ) = H+(~γ′),

and ~γ′ is O(n)-time-computable, Lemma 5.31 tells us that α > 0 ⇒ B 6∈ S∞[d−] and β > 0 ⇒ B 6∈
S∞str[d

+]. Thus (5.14) and (5.15) hold.

In light of Theorem 5.27, the following question concerning the relativized feasible dimension
of NP is natural.

Open Question 5.36. For which pairs of real numbers α, β ∈ [0, 1] does there exist an oracle A
such that dimpA(NPA) = α and DimpA(NPA) = β?
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5.3 Reductions to Nondense Languages

The hypothesis that NP does not have p-measure 0, written µp(NP) 6= 0, has been used extensively
in computational complexity theory and has been shown to have many plausible consequences that
are not known to follow from the weaker P 6= NP hypothesis. If µp(NP) 6= 0, then dimp(NP) = 1,
but if µp(NP) = 0, dimp(NP) could be any number between 0 and 1. This means that the hypothesis
that NP has positive p-dimension, written dimp(NP) > 0, is potentially weaker than µp(NP) 6= 0.

This positive dimension hypothesis on NP was used in [19] to extend the inapproximability
result of H̊astad [16] for Max3Sat. The main theorem of [19] asserts that if dimp(NP) > 0, then
Max3Sat is exponentially hard to approximate in that any approximation algorithm must either
use exponential time or fail to approximate well on a set of exponential density.

Theorem 5.37. (Hitchcock [19]) If dimp(NP) > 0, then any approximation algorithm A for the
Max3Sat optimization problem must satisfy at least one of the following.

1. There is some δ > 0 such that A uses at least 2nδ
time.

2. For all ε > 0, A has performance ratio less than 7
8 + ε on an exponentially dense set of

satisfiable instances.

Here we say that a language B ⊆ {0, 1}∗ is (exponentially) dense if there is a δ > 0 such that for
all sufficiently large n, |B≤n| ≥ 2nδ

. Let DENSE be the class of all dense languages. The following
theorem asserts that the classes of languages reducible to nondense languages under reductions
with a restricted number of queries has p-measure 0.

Theorem 5.38. Let α < 1.

1. (Lutz and Mayordomo [37]) µp (Pnα−tt(DENSEc)) = 0.

2. (Lutz and Zhao [39]) µp

(
Pnα/2−T(DENSEc)

)
= 0.

It seems difficult to extend Theorem 5.38 from p-measure to p-dimension. However, the follow-
ing result is true. This was a key ingredient in the proof of Theorem 5.37.

Theorem 5.39. (Hitchcock [19]) dimp (Pm(DENSEc)) = 0.

In this section we use the unpredictability characterization of dimension to extend Theorem
5.39 in two ways. Theorem 5.43 strengthens it from many-one reductions to conjunctive reductions.
Before that, in Theorem 5.42, we give a related result for strong dimension. Both results make use
of Theorem 3.33. The following two propositions about combining predictors will be useful in the
proofs.

Proposition 5.40. Let {πl | l ∈ N} be a family of predictors uniformly computable in O(nk) time.
Then there is a predictor π exactly computable in O(nk+2) time such that for all l ∈ N, for all
w ∈ {0, 1}>l, Llog(π,w) ≤ Llog(πl, w) + c(l + 1), where c is a constant independent of l and w.

Proof. Let f be computable in O
(
(l + r + |w|)k

)
time such that

|f(l, w, b, r)− πl(w, b)| ≤ 2−r

for all l, r ∈ N, w ∈ {0, 1}∗, and b ∈ {0, 1}. We can assume that

f(l, w, b, r) = k2−r
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for some 1 ≤ k ≤ 2r − 1 and that

f(l, w, 0, r) + f(l, w, 1, r) = 1.

For any l ∈ N, w ∈ {0, 1}∗, and b ∈ {0, 1}, let

π̂n(w, b) =


f(l, w, b, |w|)− 2−|w| if f(l, w, b, |w|) ∈ (1

2 , 1)
f(l, w, b, |w|) + 2−|w| if f(l, w, b, |w|) ∈ (0, 1

2)
f(l, w, b, |w|) if f(l, w, b, |w|) ∈ {0, 1

2 , 1} .

Using the inequality

log
1
x̂
≤ log

1
x

+ 2−r+2

for x ≤ x̂ + 2−r when x̂ ≥ 1
2 , notice that

Llog(π̂l, w) ≤ Llog(πl, w) +
|w|−1∑
i=0

2−i+2 ≤ Llog(πl, w) + 8.

For any l ∈ N and w ∈ {0, 1}∗, let

µ̂l(w) =
|w|−1∏
i=0

π̂l(w[0..i− 1], w[i]).

For any m ∈ N and w ∈ {0, 1}m, define

ρm(w) = 2−(2m+1) +
m−1∑
j=0

2−(2j+3)µ̂j(w).

Then we have

ρm+1(w0) + ρm+1(w1) = 2−(2m+3) +
m∑

j=0

2−(2j+3)µ̂j(w0) + 2−(2m+3) +
m∑

j=0

2−(2j+3)µ̂j(w1)

= 2−(2m+2) +
m∑

j=0

2−(2j+3)µ̂j(w)

= 2−(2m+3)(2 + µ̂m(w)) + ρm(w)− 2−(2m+1)

≤ ρm(w) + 2−(2m+3)(3− 4)
< ρm(w)

for all w ∈ {0, 1}m. The predictor π is defined by

π(w, 1) =
ρ|w|+1(wb)

ρ|w|(w)
,

π(w, 0) = 1− π(w, 1)
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for all w ∈ {0, 1}∗. For any l ∈ N, if |w| > l, we have

Llog(π,w) =
|w|−1∑
i=0

log
1

π(w[0..i− 1], w[i])

≤
|w|−1∑
i=0

log
ρi(w[0..i− 1])
ρi+1(w[0..i])

= log
ρ0(λ)

ρ|w|(w)

≤ log
22l+3

µ̂l(w)

= Llog(π̂l, w) + 2l + 3
≤ Llog(πn, w) + 2l + 11.

As π(w, b) is exactly computable in time O(|w|k+2), the proposition holds.

The following proposition allows us to only be concerned with individual languages when inves-
tigating the dimension of a class. This proposition is similar to one given by Ambos-Spies, Merkle,
Stephan, and Reimann [2].

Proposition 5.41. Let C be a class of languages and let r ∈ N. If for each A ∈ C there is some
predictor πA computable in O(nr) time such that Llog(πA, A) ≤ s, then dimp(C) ≤ s. Analogously,
if for each A ∈ C there is a predictor πA computable in O(nr) time satisfying Llog

str (πA, A) ≤ s, then
Dimp(C) ≤ s.

Proof. This follows from Proposition 5.40 because the family of predictors computable in O(nr)
time is uniformly computable in O(nr+1) time.

Now we come to the first main result of this section. Here we say that B is i.o.-dense if there
is a δ > 0 such that for infinitely many n, |B≤n| ≥ 2nδ

. Let DENSEi.o. be the class of all i.o. dense
languages.

Theorem 5.42. Dimp (Pctt(DENSEc
i.o.)) = 0.

Proof. Assume that A ≤p
ctt D ∈ DENSEc

i.o. via a reduction f that is computable in nr time almost
everywhere. For each w ∈ {0, 1}∗, define the set of strings

Tw =
⋃

i:w[i]=1

f(si).

Then if we define
T =

⋃
wvA

Tw,

we have T ⊆ D and A ≤p
ctt T via f . In fact, T is the minimal set to which A is conjunctively

reduced via f . This useful idea comes from [9].
Let k ≥ 1 and let ε = 1

k+1 . Define a predictor π for A as follows.

• If f(s|w|) ⊆ Tw, then π(w, 1) = 1 and π(w, 0) = 0.
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• Otherwise, π(w, 0) = 1− ε and π(w, 1) = ε.

That is, when predicting the membership of a string x in A, π computes the portion of T that has
already been determined by the previous strings. If all the queries for x are already known to be
in T , then π can be certain that x is a member of A. Otherwise, π predicts with high confidence
that x is not in A.

Observe that if |w| = n, π(w, b) is computable in time O(n(log n)r) = O(n2). We will show that
the strong log-loss rate of π on A is at most 2

k . By Proposition 5.41, this will imply that

Dimp (Pctt(DENSEc
i.o.)) ≤

2
k
.

As k ≥ 1 is arbitrary, the theorem follows.
To compute the loss of π on A we define an auxiliary sequence J by

J [n] = 1 ⇐⇒ f(sn) ⊆ TA[0..n−1].

Intuitively, J is the sequence of bits forecast by π, and our goal is to show that J is close to A. We
consider the following three cases for each j ∈ N.

(1) J [j] = 1: This implies that A[j] = 1 and log 1
π(A[0..j−1],A[j]) = log 1 = 0.

(2) J [j] = 0 and A[j] = 1: Then log 1
π(A[0..j−1],A[j]) = log 1

ε = log(k + 1).

(3) J [j] = 0 and A[j] = 0: Then log 1
π(A[0..j−1],A[j]) = log 1

1−ε = log k+1
k .

For each i ∈ {1, 2, 3}, let #i(n) =
∣∣∣{0 ≤ j < n| Case (i) holds for j}

∣∣∣. Cases (1) and (3) are good
for π. We will show that Case (2) is rare.

More specifically, we claim that

lim sup
n→∞

#2(n)
n

= 0.

To see this, let α be the value of this limit superior, suppose that α > 0, and let 0 < α′ < α.
Whenever Case (2) holds for some j, we have f(sj) 6⊆ TA[0..j−1] and A[j] = 1, so |TA[0..j]| >
|TA[0..j−1]|. This implies that |TA[0..n]| ≥ #2(n) for all n. We then have infinitely many n for which

|TA[0..n]| ≥ α′n. (5.1)

Suppose that (5.1) holds for some m where 2n − 1 < m ≤ 2n+1 − 1. Then

|TA[0..2n+1−1]| ≥ |TA[0..m]| ≥ α′m ≥ α′2n. (5.2)

Since nr bounds the lengths of f ’s queries almost everywhere, we have

TA[0..2n+1−1] ⊆ T≤nr (5.3)

for all sufficiently large n as A[0..2n+1− 1] is the characteristic string of A≤n. Combining (5.2) and
(5.3), we have

|T≤nr | ≥ α′2n
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for infinitely many n. This implies that

|T≤n| ≥ 2n
1

r+1

for infinitely many n, so T ∈ DENSEi.o., a contradiction. Therefore we must have α = 0.
Finally, we have

Llog
str (π,A) = lim sup

n→∞

Llog
π (A[0..n− 1])

n

= lim sup
n→∞

#1(n) · 0 + #2(n) · log(k + 1) + #3(n) · log k+1
k

n

= log(k + 1) lim sup
n→∞

#2(n)
n

+ log
k + 1

k
lim sup

n→∞

#3(n)
n

≤ log
k + 1

k
≤ 1

k ln 2
<

2
k
.

We now extend the proof of Theorem 5.42 to show that a larger class has p-dimension 0. This
is a strengthening of Theorem 5.39.

Theorem 5.43. dimp (Pctt(DENSEc)) = 0.

Proof. Assume that A ≤p
ctt D ∈ DENSEc via a reduction f that is computable in a polynomial

time bound q. For each n ∈ N and w ∈ {0, 1}∗, define the set of strings

T (n)
w =

⋃
i≥2n−1:w[i]=1

f(si).

Let k ≥ 1 and let ε = 1
k+1 . For each n ∈ N, define a predictor πn for A as follows.

• If |w| ≥ 2n − 1, then:

– If f(s|w|) ⊆ T
(n)
w , then πn(w, 1) = 1 and πn(w, 0) = 0.

– Otherwise, πn(w, 0) = 1− ε and πn(w, 1) = ε.

• Otherwise, πn(w, 0) = πn(w, 1) = 1
2 .

That is, πn behaves just like the predictor from the previous proof, except that it makes no predic-
tion on strings of length less than n and ignores the queries these strings make.

Let p(n) = n2 and let δ > 0. Then for infinitely many n, we have

|D≤q(p(n))| ≤ 2nδ
. (5.4)

Letting vn = A[0..2p(n)+1 − 2], the characteristic string of A on {0, 1}≤p(n), we have

T (n)
vn

⊆ D≤q(p(n)) (5.5)

for all n.
Fix n and assume that (5.4) is true. Define a sequence J (n) by

J (n)[j] = 1 ⇐⇒ f(sj) ⊆ T
(n)
A[0..j−1].

As in the previous proof, we consider the following three cases for each j where 2n − 1 ≤ j <
2p(n)+1 − 1. (Here j ranges over the indices for the strings of lengths n through p(n).)
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(1) J (n)[j] = 1: This implies that A[j] = 1 and log 1
πn(A[0..j−1],A[j]) = log 1 = 0.

(2) J (n)[j] = 0 and A[j] = 1: Then log 1
πn(A[0..j−1],A[j]) = log(k + 1).

(3) J (n)[j] = 0 and A[j] = 0: Then log 1
πn(A[0..j−1],A[j]) = log k+1

k .

For each i ∈ {1, 2, 3}, let #(n)
i =

∣∣∣{2n− 1 ≤ j < 2p(n)+1− 2 | Case (i) holds for j}
∣∣∣. Then, as in the

previous proof, we have
|T (n)

vn
| ≥ #(n)

2 . (5.6)

Combining (5.6), (5.5), and (5.4), we have

#(n)
2 ≤ 2nδ

.

Now we can upper bound the log-loss of πn on vn whenever (5.4) holds:

Llog(πn, vn) = (2n − 1) · log
1
2

+ #(n)
1 · 0 + #(n)

2 · log(k + 1) + #(n)
3 · log

k + 1
k

≤ 2n + 2nδ
log(k + 1) + |vn| · log

k + 1
k

≤ 2
k
|vn|+ 2n + 2nδ

.

As πn(w, b) is computable in O(|w|2) time, Proposition 5.40 yields a predictor πA computable
in O(|w|4) time such that for all n where (5.4) holds,

Llog(πA, vn)
|vn|

≤ 2
k

+
2n + 2nδ

+ c(n + 1)
2n2+1 − 1

.

This happens infinitely often, so Llog(πA) ≤ 2
k .

Proposition 5.41 implies that

dimp (Pctt(DENSEc)) ≤ 2
k

as A is an arbitrary member of the class. This holds for all k ≥ 1, so the theorem follows.

Theorem 5.43 can be immediately extended using the work done in Section 5.1.4.

Corollary 5.44. dimp(P1−tt(Pctt(DENSEc))) = 0.

Proof. By Theorem 5.17 we know that P1−tt(Pctt(DENSEc)) and Pm(Pctt(DENSEc)) have the
same p-dimension. Since Pm(Pctt(DENSEc)) = Pctt(DENSEc), the corollary follows from Theorem
5.43.

We now have a new proof of the following known result about hard languages for E.

Corollary 5.45. (Watanabe [63]) Every ≤p
ctt-hard language for E is dense.

Proof. Because dimp(E) = 1 and p-dimension is monotone, we have E 6⊆ Pctt(DENSEc) by Theorem
5.43.
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