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Abstract

Juedes and Lutz (1995) proved a small span theorem for polynomial-time many-one reduc-
tions in exponential time. This result says that for language A decidable in exponential time,
either the class of languages reducible to A (the lower span) or the class of problems to which
A can be reduced (the upper span) is small in the sense of resource-bounded measure and, in
particular, that the degree of A is small. Small span theorems have been proven for increasingly
stronger polynomial-time reductions, and a small span theorem for polynomial-time Turing re-
ductions would imply BPP 6= EXP. In contrast to the progress in resource-bounded measure,
Ambos-Spies, Merkle, Reimann, and Stephan (2001) showed that there is no small span the-
orem for the resource-bounded dimension of Lutz (2003), even for polynomial-time many-one
reductions.

Resource-bounded scaled dimension, recently introduced by Hitchcock, Lutz, and Mayor-
domo (2004), provides rescalings of resource-bounded dimension. We use scaled dimension to
further understand the contrast between measure and dimension regarding polynomial-time
spans and degrees. We strengthen prior results by showing that the small span theorem holds
for polynomial-time many-one reductions in the −3rd-order scaled dimension, but fails to hold
in the −2nd-order scaled dimension. Our results also hold in exponential space.

As an application, we show that determining the −2nd- or −1st-order scaled dimension
in ESPACE of the many-one complete languages for E would yield a proof of P = BPP or
P 6= PSPACE. On the other hand, it is shown unconditionally that the complete languages for
E have −3rd-order scaled dimension 0 in ESPACE and −2nd- and −1st-order scaled dimension
1 in E.

1 Introduction

Resource-bounded measure [16] defines the relative size of classes of decision problems and has been
used very successfully to study polynomial-time reductions within exponential-time complexity
classes. Measure-theoretic arguments were the first to show that for all α < 1, every ≤p

nα−tt-hard
language for exponential time is exponentially dense [19]. The first plausible hypothesis on NP to
separate the ≤p

m and ≤p
T reducibilities within NP came from resource-bounded measure [20].

The degrees and spans of languages under polynomial-time reductions have also been studied
by several researchers using resource-bounded measure. For a reducibility ≤p

r and any A ⊆ {0, 1}∗,
the ≤p

r -lower span of A is the class Pr(A) of all languages that are ≤p
r -reducible to A, the ≤p

r -upper
span of A is the class P−1

r (A) of all languages to which A is ≤p
r -reducible, and the ≤p

r -degree of
∗This research was supported in part by National Science Foundation Grant 9988483.
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A is the class degp
r (A) = Pr(A) ∩ P−1

r (A). Juedes and Lutz [12] proved the following small span
theorem for ≤p

m reductions in both E and in EXP. Here the notation µ(C | D) denotes the measure
of C within D, where D is a suitable complexity class. If µ(C | D) = 0, then intuitively C ∩ D is a
negligible subset of D.

Theorem 1.1. (Juedes and Lutz [12]) Let D ∈ {E,EXP}. For every A ∈ D,

µ(Pm(A) | D) = 0

or
µ(P−1

m (A) | D) = 0.

In particular, µ(degp
m(A) | D) = 0.

That is, at least one of the upper or lower spans of A is small within D. Using a result of Bennett
and Gill [4], Juedes and Lutz [12] noted that strengthening Theorem 1.1 from ≤p

m reductions to ≤p
T

reductions would achieve the separation BPP 6= EXP. Pursuing this program, small span theorems
for reductions of progressively increasing strength between ≤p

m and ≤p
T have been obtained by

Lindner [14], Ambos-Spies, Neis, and Terwijn [3], and Buhrman and van Melkebeek [6].
Resource-bounded dimension was introduced by Lutz [18] as an effectivization of Hausdorff

dimension [9] to investigate the fractal structure of complexity classes. Just like resource-bounded
measure, resource-bounded dimension is defined within suitable complexity classes D. For any
complexity class C, the dimension of C within D is a real number in [0, 1] and is denoted by
dim(C | D). If dim(C | D) < 1, then µ(C | D) = 0, but the converse may fail. This means that
resource-bounded dimension is capable of quantitatively distinguishing among the measure 0 sets.
With regard to the measure 0 sets in Theorem 1.1, Ambos-Spies, Merkle, Reimann, and Stephan
[2] proved the following.

Theorem 1.2. (Ambos-Spies, Merkle, Reimann, and Stephan [2]) For every A ∈ E,

dim(degp
m(A) | E) = dim(Pm(A) | E).

In particular, as dim(E | E) = 1, the ≤p
m-complete degree for E has dimension 1 within E. This

implies that replacing “µ” by “dim” in Theorem 1.1 makes the statement for E no longer true. In
other words, there is no analogue of the small span theorem for dimension in E. Dimension in E
cannot distinguish between lower spans and degrees.

To overcome limitations of resource-bounded dimension for investigating complexity classes
within ESPACE, Hitchcock, Lutz, and Mayordomo [11] introduced for each integer i ∈ Z an ith-
order scaled dimension dim(i)(· | D). For any class C and i ∈ Z, dim(i)(C | D) ∈ [0, 1], and if it is less
than 1, then µ(C | D) = 0. The quantity dim(i)(C | D) is nondecreasing in i, and there is at most
one i ∈ Z for which 0 < dim(i)(C | D) < 1. The 0th-order dimension, dim(0)(· | D), is precisely the
standard unscaled dimension, and the other orders can be more useful than it for certain complexity
classes. To illustrate this, we mention some examples from circuit-size complexity. For a function
s : N → N, let SIZE(s(n)) consist of all languages decidable by nonuniform Boolean circuit families
of size at most s(n). Lutz [18] showed that

dim
(

SIZE
(

α
2n

n

)∣∣∣∣ ESPACE
)

= α (1.1)

2



for all α ∈ (0, 1). Circuit size bounds of the form 2αn and 2nα
are typically of more interest in

complexity theory, but (1.1) implies that SIZE(2αn) and SIZE(2nα
) have dimension 0 in ESPACE

for all α ∈ (0, 1). For these size bounds, the scaled dimensions are useful; in [11] it is shown that

dim(1)(SIZE(2αn) | ESPACE) = α

and
dim(2)(SIZE(2nα

) | ESPACE) = α

for any α ∈ (0, 1).
This paper uses scaled dimension to investigate polynomial-time spans and degrees and further

understand the contrast between Theorems 1.1 and 1.2. We show that the same dichotomy also
occurs between the −3rd- and −2nd-orders of scaled dimension. The main contribution of this
paper is a strengthening of Theorem 1.1 to give a small span theorem for scaled dimension. (The
following is a corollary of a stronger result proved in Theorem 6.3.)

Theorem 1.3. Let D ∈ {E,EXP,ESPACE,EXPSPACE}. For every A ∈ D,

dim(−3)(Pm(A) | D) = 0

or
dim(−3)(P−1

m (A) | D) = 0.

In particular, dim(−3)(degp
m(A) | D) = 0.

In contrast, Theorem 1.2 is extended to scaled dimension at orders i with |i| ≤ 2.

Theorem 1.4. Let D ∈ {E,EXP,ESPACE,EXPSPACE}. For every A ∈ D and −2 ≤ i ≤ 2,

dim(i)(degp
m(A) | D) = dim(i)(Pm(A) | D).

This implies that Theorem 1.3 cannot be improved to −2nd-order scaled dimension.
As an application of these results, we consider the scaled dimension of Cp

m(E), the class of
polynomial-time many-one complete sets for E, within ESPACE. Let i ∈ {−2,−1}. We extend a
theorem of Lutz [15] to show that

dim(i)(Cp
m(E) | ESPACE) > 0 ⇒ P = BPP.

On the other hand, we show that

dim(i)(Cp
m(E) | ESPACE) < 1 ⇒ P 6= PSPACE.

Therefore, determining the −1st or −2nd-order scaled dimension of Cp
m(E) in ESPACE would de-

randomize BPP or separate P from PSPACE. In contrast, we also show that

dim(−3)(Cp
m(E) | ESPACE) = 0

and
dim(−2)(Cp

m(E) | E) = dim(−1)(Cp
m(E) | E) = 1

hold without any hypothesis.
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This paper is organized as follows. Section 2 contains the basic preliminaries and Section 3
reviews resource-bounded scaled dimension. We develop some new tools for computing scaled
dimension in Section 4. The scaled dimensions of some auxiliary classes involving polynomial
reductions are calculated in Section 5. Our small span theorem for scaled dimension is proved in
Section 6. Section 7 shows that lower spans and degrees have the same dimension in orders i with
−2 ≤ i ≤ 2. Extensions of the results to ≤p

1−tt-reductions are discussed in Section 8. The results
on the scaled dimension of the complete sets for E are presented in Section 9. Section 10 concludes
with a brief summary.

2 Preliminaries

The set of all finite binary strings is {0, 1}∗. The empty string is denoted by λ. We use the
standard enumeration of binary strings s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . .. The length of a
string x ∈ {0, 1}∗ is denoted by |x|. We use the notation {0, 1}≤n = {x ∈ {0, 1}∗ | |x| ≤ n} and
{0, 1}>n = {x ∈ {0, 1}∗ | |x| > n}.

All languages (decision problems) in this paper are encoded as subsets of {0, 1}∗. For a language
A ⊆ {0, 1}∗, we define A≤n = {x ∈ A

∣∣|x| ≤ n}. We routinely identify A with its infinite binary
characteristic sequence according to the standard enumeration of binary strings. We write A � n
for the n-bit prefix of the characteristic sequence of A, and A[n] for the nth-bit of its characteristic
sequence.

Let ≤p
r be a polynomial-time reducibility. For any A ⊆ {0, 1}∗, let

Pr(A) = {B ⊆ {0, 1}∗ | B ≤p
r A}

be the ≤p
r -lower span of A,

P−1
r (A) = {B ⊆ {0, 1}∗ | A ≤p

r B}

be the ≤p
r -upper span of A, and

degp
r (A) = Pr(A) ∩ P−1

r (A)

be the ≤p
r -degree of A. For any complexity class D, the class of ≤p

r -hard languages for D is

Hp
r (D) = {A ⊆ {0, 1}∗ | D ⊆ Pr(A)},

and the class of ≤p
r -complete languages for D is

Cp
r (D) = D ∩Hp

r (D).

Let resource ∈ {time, space} and let t(n) be a resource bound. Let l ∈ N. A function f : Nl ×
{0, 1}∗ → [0,∞)∩Q is t(n)-resource exactly computable if there is a Turing machine that computes
f(k1, . . . , kl, w) using at most t(k1 + · · · + kl + |w|) resource for all (k1, . . . , kl, w) ∈ Nl × {0, 1}∗.
Let g : Nl × {0, 1}∗ → [0,∞) be a real-valued function. An approximation of g is a function
ĝ : Nl+1 × {0, 1}∗ → [0,∞) such that

|g(x)− ĝ(r, x)| ≤ 2−r

for all x ∈ Nl × {0, 1}∗ and r ∈ N. We say that g is t(n)-resource computable if there is an exactly
t(n)-resource computable approximation ĝ of g. A family of functions (fi : Nl × {0, 1}∗ → [0,∞) |
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i ∈ N) is uniformly t(n)-resource (exactly) computable if the function f(i, x) = fi(x) is t(n)-resource
(exactly) computable.

A function f is p-computable (respectively, pspace-computable) if it is O(nk)-time (respectively,
O(nk)-space) computable for some k ∈ N, and f is p2-computable (respectively, p2space-computable)
if it is O(2(log n)k

)-time (respectively, O(2(log n)k
)-space) computable for some k ∈ N. Throughout

this paper, unless otherwise specified, ∆ denotes any of the resource bounds p, p2 , pspace, or
p2space. The concept of an exactly ∆-computable function is defined analogously.

3 Scaled Dimension

Hitchcock, Lutz, and Mayordomo [11] introduced resource-bounded scaled dimension. This section
briefly reviews the essentials of this theory.

The principle concept is a scale, which is a function g : H × [0,∞) → R, where H = (a,∞) for
some a ∈ R ∪ {−∞}. A scale must satisfy certain properties that are given in [11] and will not be
discussed here. The canonical example of a scale is the function g0 : R × [0,∞) → R defined by
g0(m, s) = sm. This scale is used in the standard (unscaled) dimension. Other scales of interest
are obtained from g0 by rescaling and reflection operations.

Definition. Let g : H × [0,∞) → R be a scale.

1. The first rescaling of g is the scale g# : H# × [0,∞) −→ R defined by

H# = {2m | m ∈ H}

g#(m, s) = 2g(log m,s).

2. The reflection of g is the scale gR : H × [0,∞) → R defined by

gR(m, s) =
{

m + g(m, 0)− g(m, 1− s) if 0 ≤ s ≤ 1
g(m, s) if s ≥ 1.

A family of scales, one for each integer, is defined as follows.

Definition. 1. For each i ∈ N, define ai by the recurrence a0 = −∞, ai+1 = 2ai .

2. For each i ∈ Z, define the ith scale gi : (a|i|,∞)× [0,∞) → R by the following recursion.

(a) g0(m, s) = sm.
(b) For i ≥ 0, gi+1 = g#

i .
(c) For i < 0, gi = gR

−i.

For clarity, we compute the first few scales. For all s ∈ [0, 1], if m > a|i|, then gi(m, s) is defined
by

g3(m, s) = 22(log log m)s

g2(m, s) = 2(log m)s

g1(m, s) = ms

g0(m, s) = sm

g−1(m, s) = m + 1−m1−s

g−2(m, s) = m + 2− 2(log m)1−s

g−3(m, s) = m + 4− 22(log log m)1−s

.
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Scaled dimension is defined using functions called scaled gales. The more familiar concepts of
gales [18] and martingales [16] are special cases in the following definition.

Definition. Let i ∈ Z and let s ∈ [0,∞).

1. An ith-order scaled s-gale (briefly, an s(i)-gale) is a function d : {0, 1}>a|i| → [0,∞) such that
for all w ∈ {0, 1}∗ with |w| > a|i|,

d(w) = 2−∆gi(|w|,s)[d(w0) + d(w1)], (3.1)

where ∆gi : (a|i|,∞)× [0,∞) → R is defined by

∆gi(m, s) = gi(m + 1, s)− gi(m, s).

2. An s-gale is an s(0)-gale, that is, a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.

3. A martingale is a 1-gale, that is, a function d : {0, 1}∗ → [0,∞) satisfying

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗.

Success sets are a crucial concept for resource-bounded measure, and also for scaled dimension.

Definition. Let d : {0, 1}>a → [0,∞), where a ∈ Z.

1. We say that d succeeds on a language A ⊆ {0, 1}∗ if

lim sup
n→∞

d(A�n) = ∞.

2. The success set of d is

S∞[d] = {A ⊆ {0, 1}∗ | d succeeds on A}.

Resource-bounded measure is defined using success sets of martingales. Here ∆ denotes any of
the resource bounds {p,p2 ,pspace,p2space}, and R(∆) is the following exponential-time or -space
complexity class.

R(p) = E = DTIME(2O(n))
R(p2) = EXP = DTIME(2nO(1)

)
R(pspace) = ESPACE = DSPACE(2O(n))

R(p2space) = EXPSPACE = DSPACE(2nO(1)
)

Definition. Let C be a class of languages.

1. We say that C has ∆-measure 0, and write µ∆(C) = 0, if there is a ∆-computable martingale
d such that C ⊆ S∞[d].
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2. We say that C has measure 0 in R(∆), and write µ(C | R(∆)) = 0, if µ∆(C ∩R(∆)) = 0.

The measure conservation theorem of Lutz [16] asserts that µ∆(R(∆)) 6= 0, justifying the
definition of measure in R(∆) above.

Success sets of scaled gales are used to define scaled dimension.

Definition. Let C be a class of languages and i ∈ Z.

1. The ith-order scaled ∆-dimension of C is

dim(i)
∆ (C) = inf

{
s

∣∣∣∣ there exists a ∆-computable
s(i)-gale d for which C ⊆ S∞[d]

}
.

2. The ith-order scaled dimension of C within R(∆) is

dim(i)(C | R(∆)) = dim(i)
∆ (C ∩R(∆)).

The 0th-order dimension dim(0)
∆ (·) is precisely the dimension dim∆(·) of Lutz [18], and the other

orders are interpreted as rescalings of this concept.
The following lemma relates resource-bounded scaled dimension to resource-bounded measure.

Lemma 3.1. ([11]) For any class C of languages and i ∈ Z,

dim(i)
∆ (C) < 1 ⇒ µ∆(C) = 0

and
dim(i)(C | R(∆)) < 1 ⇒ µ(C | R(∆)) = 0.

The following is another key property of scaled dimension.

Theorem 3.2. ([11]) Let C be a class of languages and i ∈ Z. If dim(i+1)
∆ (C) < 1, then dim(i)

∆ (C) =
0.

This theorem tells us that for every class C, the sequence of dimensions dim(i)
∆ (C) for i ∈ Z

satisfies exactly one of the following three conditions.

(i) dim(i)
∆ (C) = 0 for all i ∈ Z.

(ii) dim(i)
∆ (C) = 1 for all i ∈ Z.

(iii) There exist i∗ ∈ Z such that dim(i)
∆ (C) = 0 for all i < i∗ and dim(i)

∆ (C) = 1 for all i > i∗.

4 Measures, Log-Loss, and Scaled Dimension

This section provides some tools involving measures and the log-loss concept that are useful for
working with the scaled dimensions. It was shown in [10] that log-loss unpredictability is equivalent
to dimension. Here we characterize scaled dimension using the log-loss of measures. A similar
approach to classical fractal dimension using measures has been used by Cutler [7] (see also [8]).
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Definition. A measure is a function ρ : {0, 1}∗ → [0,∞) satisfying

ρ(w) = ρ(w0) + ρ(w1)

for all w ∈ {0, 1}∗.

Measures have the following fundamental relationship with scaled gales. This extends Schnorr’s
“likelihood ratio” characterization of martingales [23].

Observation 4.1. Let i ∈ Z and s ∈ [0,∞).

1. If ρ : {0, 1}∗ → [0,∞) is a measure, then the function dρ : {0, 1}>a|i| → [0,∞) defined by

dρ(w) = 2gi(|w|,s)ρ(w)

for all w ∈ {0, 1}>a|i| is an s(i)-gale.

2. If d : {0, 1}>a|i| → [0,∞) is an s(i)-gale, then the function ρd : {0, 1}∗ → [0,∞) defined by

ρd(w) = 2−gi(|w|,s)d(w)

for all w ∈ {0, 1}>a|i| and
ρd(w) =

∑
|v|=a|i|+1−|w|

ρd(wv)

for all w ∈ {0, 1}≤a|i| is a measure.

The following lemma relates the scaled dimension of a class to limits involving scales and
logarithms of measures.

Lemma 4.2. Let C be a class of languages and let i ∈ Z.

1. If s > dim(i)
∆ (C), then there is a ∆-computable measure ρ such that

lim sup
n→∞

[
gi(n, s) + log ρ(A�n)

]
= ∞

for all A ∈ C.

2. If s < dim(i)
∆ (C), then for any ∆-computable measure ρ there is an Aρ ∈ C such that

lim
n→∞

[
gi(n, s) + log ρ(Aρ �n)

]
= −∞.

Proof. Let r be rational with s > r > dim(i)
∆ (C) and let d be a ∆-computable r(i)-gale succeeding

on C. Then the measure ρd from Observation 4.1 is also ∆-computable. Let A ∈ C. There are
infinitely many n ∈ N such that d(A�n) ≥ 1 since A ∈ S∞[d]. For such n,

gi(n, s) + log ρd(A�n) = gi(n, s)− gi(n, r) + log d(A�n)
≥ gi(n, s)− gi(n, r).

Part 1 follows because r < s.
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For part 2, let ρ be a ∆-computable measure. Let t be rational with s < t < dim(i)
∆ (C) and

obtain the t(i)-gale dρ from Observation 4.1. Then C 6⊆ S∞[dρ] because dρ is ∆-computable, so
there is an Aρ ∈ C and a constant c such that d(A�n) ≤ c for all n > a|i|. Then

gi(n, s) + log ρ(A�n) = gi(n, s)− gi(n, t) + log dρ(A�n)
≤ gi(n, s)− gi(n, t) + log c,

so the claim follows because s < t.

Lemma 4.2 asserts that if the ith-order scaled dimension of a class C is less than s then there is
a measure ρ such that for every A ∈ C, there are prefixes w v A where the log-loss quantity

− log ρ(w)

is arbitrarily less than gi(|w|, s).
It is often convenient to replace computable measures by exactly computable measures. The

following lemma is proved in the same way as the Exact Computation Lemma for martingales [13].

Lemma 4.3. Let ρ be a measure that is computable in t(n) time (respectively, space), where t(n) ≥
n is nondecreasing. Then there is a measure ρ̃ that is exactly computable in n · t(2n + 2) time
(respectively, space) such that ρ̃(w) ≥ ρ(w) for all w ∈ {0, 1}∗.

The measures that are exactly computable within a fixed time or space bound are uniformly
exactly computable with slightly more time or space.

Lemma 4.4. For any nondecreasing time constructible function t(n) ≥ n the family of exactly
t(n)-time computable measures is uniformly exactly computable in O(n2t(n) log t(n)) time. The
family of exactly t(n)-space computable measures is uniformly exactly computable in O(t(n)) space.

Proof. There is a uniform enumeration (Mi | i ∈ N) of all t(n)-time clocked Turing machines such
that for all i ∈ N, Mi(w) can be computed in i · t(|w|) log t(|w|) time for all w ∈ {0, 1}∗. Define
ρi : {0, 1}∗ → [0,∞) inductively by ρi(λ) = Mi(λ) and

ρi(w0) =

{
Mi(w0) if Mi(w0) ≤ ρi(w)
ρi(w) otherwise,

ρi(w1) = ρi(w)− ρi(w0)

for all w ∈ {0, 1}∗. Then each ρi is a measure. Also, if ν is a measure that is exactly computed by Mi

in t(n) time, then ρi(w) = ν(w) for all w. We can compute ρi(w) by using |w| computations of Mi

on strings of length at most |w|, so the function ρ : N×{0, 1}∗ → [0,∞) defined by ρ(i, w) = ρi(w)
is computable in O(n2t(n) log t(n)) time. The argument for space is similar.

Uniformly exactly computable families of measures can be combined into a single measure in
an efficient manner.

Lemma 4.5. Let (ρk | k ∈ N) be a uniformly exactly ∆-computable family of measures. There is
a ∆-computable measure ρ∗ such that for any k, there is a constant ck such that

log ρ∗(w) ≥ log ρk(w)− ck

for all w ∈ {0, 1}∗.
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Proof. Define

ρ∗(w) =
∞∑

k=0

ρk(w)
2kρk(λ)

.

Then ρ is a measure by linearity. Also, ρ∗ is ∆-computable by the approximation function ρ̂∗ :
N× {0, 1}∗ → [0,∞) defined by

ρ̂∗(r, w) =
r∑

k=0

ρk(w)
2kρk(λ)

since ∣∣∣ρ∗(w)− ρ̂∗(r, w)
∣∣∣ =

∞∑
k=r+1

ρk(w)
2kρk(λ)

≤
∞∑

k=r+1

ρk(λ)
2kρk(λ)

= 2−r.

Let k ∈ N. For any w ∈ {0, 1}∗,

log ρ∗(w) ≥ log
ρk(w)

2kρk(λ)
= log ρk(w)− k − ρk(λ),

so the lemma holds with ck = k + ρk(λ).

We now combine the preceding lemmas to obtain a tool that will be useful in calculating scaled
dimensions.

Theorem 4.6. Let C be a class of languages, i ∈ Z, and k ∈ N.

1. If for each A ∈ C there is a measure ρA computable in O(nk) time such that

(∃cA ∈ Z)(∃∞n)gi(n, s) + log ρA(A�n) ≥ cA, (4.1)

then dim(i)
p (C) ≤ s.

2. If for each A ∈ C there is a measure ρA computable in O(2(log n)k
) time such that (4.1) holds,

then dim(i)
p2

(C) ≤ s.

3. If for each A ∈ C there is a measure ρA computable in O(nk) space such that (4.1) holds, then
dim(i)

pspace(C) ≤ s.

4. If for each A ∈ C there is a measure ρA computable in O(2(log n)k
) space such that (4.1) holds,

then dim(i)
p2space(C) ≤ s.

Proof. From Lemmas 4.3, 4.4, and 4.5 we obtain an exactly ∆-computable measure ρ such that
log ρ(w) ≥ log ρA(w)− bA for all w ∈ {0, 1}∗ where bA is a constant that depends on A but not on
w.
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Let t > s. For any A ∈ C,

gi(n, t) + log ρ(A�n) ≥ gi(n, t)− gi(n, s) + cA − bA

for infinitely many n. Therefore

lim sup
n→∞

gi(n, t) + log ρ(A�n) = ∞

since t > s. It follows from the contrapositive of Lemma 4.2(2) that dim∆(C) ≤ t.

5 Scaled Non-Bi-Immunity and Compressibility

In this section we introduce some classes involving scales, non-bi-immunity, and compressibility by
polynomial-time reductions and calculate their scaled dimensions.

A Turing machine M is consistent with a language A ⊆ {0, 1}∗ if for all x ∈ {0, 1}∗,

M(x) halts ⇐⇒ M(x) = A(x).

Let t be a time bound. The fast set of M with respect to t is

F t
M = {x ∈ {0, 1}∗ | timeM (x) ≤ t(|x|)}.

Recall that A is not DTIME(t)-bi-immune if there is a machine M consistent with A such that F t
M

is infinite.

Definition. For any time bound t, let X(t) be the class of all languages that are not DTIME(t)-
bi-immune.

Let A ⊆ {0, 1}∗ and f : {0, 1}∗ → {0, 1}∗. We say that f is a many-one reduction of A if there
is some B ⊆ {0, 1}∗ such that x ∈ A ⇐⇒ f(x) ∈ B. The collision set of f is

Cf = {si|(∃j < i)f(si) = f(sj)}.

Recall that A is compressible by ≤DTIME(t)
m -reductions if there exists an f ∈ DTIMEF(t) that is a

many-one reduction of A and has Cf infinite [12].

Definition. For any time bound t, let C(t) be the class of all languages that are compressible by
≤DTIME(t)

m -reductions.

The following theorem asserts that almost every language in E is DTIME(2cn)-bi-immune [21]
and incompressible by ≤DTIME(2cn)

m -reductions [12].

Theorem 5.1. (Mayordomo [21], Juedes and Lutz [12]) For all c ∈ N,

µp(X(2cn)) = µp(C(2cn)) = 0

and
µp2

(X(2nc
)) = µp2

(C(2nc
)) = 0.

The next two definitions introduce scaled versions of X(t) and C(t).
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Definition. For any i ∈ Z, α ∈ [0, 1], and time bound t, let

X(i)
α (t) =

{
A ⊆ {0, 1}∗

∣∣∣∣ (∃M)M is consistent with A and
(∃∞n)#(1, F t

M �n) ≥ n− gi(n, α)

}
.

That is, X
(i)
α (t) consists of the languages that are not DTIME(t)-bi-immune in a particular strong

way: for infinitely many n, all but gi(n, α) of the first n strings can be decided in less than t time
by a consistent Turing machine.

Definition. For any i ∈ Z, α ∈ [0, 1], and time bound t, let

C(i)
α (t) =

{
A ∈ {0, 1}∗

∣∣∣∣ (∃f ∈ DTIMEF(t)) f is a many-one reduction of A
and (∃∞n)#(1, Cf �n) ≥ n− gi(n, α)

}
.

In other words, C
(i)
α (t) is the class of languages compressible by ≤DTIME(t)

m -reductions where for
infinitely many n, all but gi(n, α) of the first n strings have downward collisions under some reduc-
tion.

For α < 1, X
(i)
α (2n) ⊆ X(2n) and C

(i)
α (2n) ⊆ C(2n), so Theorem 5.1 implies that X

(i)
α (2n) and

C
(i)
α (2n) have measure 0. We now refine this by calculating their scaled dimensions.

Theorem 5.2. For all i ∈ Z, c ≥ 1, and α ∈ [0, 1],

dim(i)
p (X(i)

α (2cn)) = dim(i)
p (C(i)

α (2cn)) = α

and
dim(i)

p2
(X(i)

α (2nc
)) = dim(i)

p2
(C(i)

α (2nc
)) = α.

Proof. We focus on the p-dimension portion of the theorem; the argument for p2-dimension is
identical. Let α ∈ (0, 1) and let s, t > 0 be arbitrary rationals with s < α < t. It suffices to show
that

s ≤ dim(i)
p (X(i)

α (2cn)) ≤ dim(i)
p (C(i)

α (2cn)) ≤ t.

The inequality dim(i)
p (X(i)

α (2cn)) ≤ dim(i)
p (C(i)

α (2cn)) holds because of the inclusion X
(i)
α (2cn) ⊆

C
(i)
α (2cn).

For the lower bound, let ρ be any p-computable measure; assume without loss of generality
that ρ(λ) ≤ 1. We define a language A inductively by lengths. Let s < s′′ < s′ < α with s′

rational. The first dgi(2n, s′)e bits of A=n are set by diagonalization to minimize ρ. The remaining
2n − dgi(2n, s′)e bits are identically 0. More formally, if x is the characteristic string of A≤n−1,
we choose v ∈ {0, 1}dgi(2

n,s′)e so that ρ(xv) is minimized, and let A=n have characteristic string
v02n−dgi(2

n,s′)e. Then A is in X
(i)
α (2cn). Let w v A, and let n be such that 2n− 1 ≤ |w| < 2n+1− 1.

Then

log ρ(w) ≤

n−1∑
j=0

−gi(2j , s′)

−min
{
|w| − (2n − 1), gi(2n, s′)

}
,

which is at most −gi(|w|, s′′) if |w| is sufficiently large by Lemma 5.3 below. Then

log ρ(w) + gi(|w|, s) ≤ −gi(|w|, s′′) + gi(|w|, s),

12



so
lim

n→∞
log ρ(A�n) + gi(n, s) = −∞

since s′′ > s. Since ρ is an arbitrary p-computable measure, the contrapositive of Lemma 4.2(1)
implies that dim(i)

p (X(i)
α (2cn)) ≥ s.

Now we prove the upper bound. Let A ∈ C
(i)
α (2cn) by a function f ∈ DTIMEF(2cn). Define a

measure ρ inductively by ρ(λ) = 1 and for all w ∈ {0, 1}∗, b ∈ {0, 1},

1. If f(si) 6= f(s|w|) for all i < |w|, then

ρ(wb) =
ρ(w)

2
.

2. Otherwise, let i = min{i < |w| | f(si) = f(s|w|)} and define

ρ(wb) =

{
ρ(w) if b = w[i]
0 if b 6= w[i].

Then for all w v A,

log ρ(w) = −#(0, Cf � |w|)
= #(1, Cf � |w|)− |w|.

Whenever #(1, Cf �n) ≥ n− gi(n, α), we have

gi(n, t) + log ρ(A�n) = gi(n, t) + #(1, Cf �n)− n

≥ gi(n, t)− gi(n, α).

This happens infinitely often, so

lim sup
n→∞

gi(n, t) + log ρ(A�n) = ∞

because t > α. Also, ρ is computable in O(|w| · 2c log |w|) = O(|w|c+1) time. Such a ρ can be defined
for each A ∈ C

(i)
α (2cn), so dim(i)

p (C(i)
α (2cn)) ≤ t follows by Theorem 4.6.

Lemma 5.3. Let i ∈ Z, 0 < r < r′ < 1. Then for all sufficiently large n and k with 2n − 1 ≤ k <
2n+1 − 1,

n−1∑
j=0

gi(2j , r′) + min{k − (2n − 1), gi(2n, r′)} ≥ gi(k, r).

Proof. If i = 0, then the left-hand side is

r′(2n − 1) + min{k − (2n − 1), r′2n} ≥ r′k = g0(k, r′) > g0(k, r).

If i = 1, then the left-hand side is

n−1∑
j=0

2jr′ + min{k − (2n − 1), 2nr′} > 2(n−1)r′ > 2(n+1)r > kr = g1(k, r)
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when n is large enough. The argument for i > 1 is similar.
If i = −1, then the left-hand side is

2n − 1−
n−1∑
j=0

2j(1−r′) + n + min{k − (2n − 1), 2n − 2n(1−r′) + 1}

≥ k − (n + 1)2n(1−r′)

≥ k − 2n(1−r) + 1
= g−1(k, r)

if n is sufficiently large. The argument for i < −1 is similar.

6 Small Span Theorem

In this section we establish our small span theorem for scaled dimension. We begin with a simple,
but important, lemma about the scales.

Lemma 6.1. For all k ≥ 1 and s, t ∈ (0, 1), g3(2nk
, s) = o(g2(2n, t)).

Proof. We have

g3(2nk
, s) = 22

(
log log 2nk

)s

= 22(k log n)s

and
g2(2n, t) = 2(log 2n)t

= 2nt
= 22t log n

.

The lemma holds since (k log n)s = o(t log n).

Juedes and Lutz [12] proved that the upper spans of incompressible languages are small. Specif-
ically, for any language A ∈ EXP that is incompressible by ≤p

m-reductions, they showed that
µp2

(P−1
m (A)) = 0, and if additionally A ∈ E, then µp(P−1

m (A)) = 0. The following theorem is a
scaled dimension analogue of this. For any i ∈ Z, let

C(i)
α (poly) =

⋃
c∈N

C(i)
α (nc + c).

Theorem 6.2. Let α ∈ (0, 1).

1. Let ∆ ∈ {p,pspace}. For any B ∈ R(∆)− C
(1)
α (poly), dim(−3)

∆ (P−1
m (B)) = 0.

2. Let ∆ ∈ {p2 ,p2space}. For any B ∈ R(∆)− C
(2)
α (poly), dim(−3)

∆ (P−1
m (B)) = 0.

Proof. We first give the proof for ∆ = p. Let B ∈ E− C
(1)
α (poly) and let M be a Turing machine

that decides B in O(2cn) time. Assume B ≤p
m C via f where f is computable in nk time almost

everywhere. Then for all sufficiently large n,

f({0, 1}≤n) ⊆ {0, 1}≤nk
(6.1)

and ∣∣f({0, 1}≤n)
∣∣ ≥ g1(2n+1 − 1, α) ≥ g1(2n, α), (6.2)
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with the latter holding because B 6∈ C
(1)
α (poly).

Let r ∈ N such that 1
r < α. Define d : N → N by d(n) = bn/rc. For each n ∈ N we define a

measure ρn : {0, 1}∗ → [0, 1] by
ρn(λ) = 2−n

and for all w ∈ {0, 1}∗ and b ∈ {0, 1},

1. If |w| < 2d(n) or
[
(∀i < 2n+1 − 1)f(si) 6= s|w|

]
, then

ρn(wb) =
ρn(w)

2
.

2. Otherwise, let i = min
{

i < 2n+1 − 1
∣∣ f(si) = s|w|

}
and define

ρn(wb) =

{
ρn(w) if b = B[i]
0 if b 6= B[i].

If |w| < 2d(n), then ρn(w) is computable in O(|w|) time. If |w| ≥ 2d(n), we can compute ρn(w) by
using 2n+1 − 1 = O(|w|n/d(n)) = O(|w|r) computations of M and f on strings with length at most
n = O(log |w|). Therefore ρn(w) is computable in O(|w|r(2c log |w| + (log |w|)k)) = O(|w|r+c) time
for all w ∈ {0, 1}∗.

Let wn = C �2nk+1 − 1 be the characteristic string of C≤nk . Then letting

m(n) =
∣∣∣ {

j < |wn|
∣∣(∀i < 2n+1 − 1)f(si) 6= sj

} ∣∣∣,
we have

ρn(wn) ≥ ρn(λ)2−2d(n)−m(n) = 2−2d(n)−m(n)−n.

By (6.1) and (6.2), we have
m(n) ≤ 2nk+1 − 1− g1(2n, α)

if n is sufficiently large. In this case,

log ρn(wn) ≥ g1(2n, α)− 2d(n) − 2nk+1 − n. (6.3)

The function ρ : {0, 1}∗ → [0,∞) defined by

ρ(w) =
∞∑

n=0

ρn(w)

for all w is a measure by linearity. Notice that ρ(w) can be approximated to a precision of 2−l in
O(|w|r+cl) time by adding the first l + 1 terms of the sum.

Using (6.3), for all sufficiently large n, we have

g−3(|wn|, s) + log ρn(wn) = 2nk+1 + 4− g3(2nk+1 − 1, 1− s) + log ρn(wn)

≥ g1(2n, α)− g3(2nk+1 − 1, 1− s)− 2d(n) − n.
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By Lemma 6.1, g3(2nk+1− 1, 1− s) = o(g1(2n, α)). Also, 2d(n) = 2bn/rc is little-o of g1(2n, α) = 2αn

because α > 1/r. Using these facts, it follows that

lim sup
n→∞

g−3(n, s) + log ρn(C �n) = ∞.

Appealing to Theorem 4.6, we establish dim(−3)
p (P−1

m (B)) ≤ s. As s > 0 is arbitrary, the ∆ = p
part of the theorem holds. The argument is identical for ∆ = pspace.

The proof for ∆ ∈ {p2 ,p2space} is very similar, so we only sketch the differences for ∆ =
p2 . Let B ∈ EXP − C

(2)
α (2n) and let M be a Turing machine that decides B in O(2nc

) time.
Assume B ≤p

m C via f . The measures ρn and ρ are defined in the same way, except we use a
different function d(n). For this, we let r > 1/α and define d(n) = bnεc where ε = 1/r. Then,
if |w| ≥ 2d(n), as before we can compute ρn(w) by using 2n+1 − 1 computations of M and f

on strings with length at most n = O(log |w|). Since 2n = 2(log 2nε
)r

= O(2(log |w|)r
), we can

compute ρn(w) in O(2(log |w|)r · 2(log |w|)c
) = O(2(log |w|)max(r,c)

) time. Instead of (6.3), we arrive at
log ρn(wn) ≥ g2(2n, α)− 2d(n) − 2nk+1 − n. The proof is completed in the same way using the fact
that 2d(n) = o(g2(2n, α)) because ε < α.

We are now ready to prove our main theorem.

Theorem 6.3.

1. Let ∆ ∈ {p,pspace}. For every A ∈ R(∆),

dim(1)(Pm(A) | R(∆)) = 0

or
dim(−3)(P−1

m (A) | R(∆)) = dim(−3)
∆ (P−1

m (A)) = 0.

2. Let ∆ ∈ {p2 ,p2space}. For every A ∈ R(∆),

dim(2)(Pm(A) | R(∆)) = 0

or
dim(−3)(P−1

m (A) | R(∆)) = dim(−3)
∆ (P−1

m (A)) = 0.

Proof. Let ∆ ∈ {p,pspace} and let A ∈ R(∆). As in the proof of the small span theorem in [12],
we consider two cases.

(I.) Suppose that
Pm(A) ∩R(∆) ⊆

⋂
α∈(0,1)

C(1)
α (2n).

Then dim(1)
∆ (Pm(A) ∩ R(∆)) ≤ dim(1)

p (C(1)
α (2n)) ≤ α by Theorem 5.2 for all α ∈ (0, 1), so

dim(1)(Pm(A) | R(∆)) = dim(1)
∆ (Pm(A) ∩R(∆)) = 0.

(II.) Otherwise, there is an α ∈ (0, 1) such that

Pm(A) ∩R(∆) 6⊆ C(1)
α (2n).

Let B ∈ Pm(A) ∩ R(∆) − C
(1)
α (2n). Then by Theorem 6.2, dim(−3)

∆ (P−1
m (B)) = 0. Since

P−1
m (A) ⊆ P−1

m (B), we have dim(−3)
∆ (P−1

m (A)) = 0.

16



Part 2 is proved in the same way.

Theorem 6.3 implies that there is a small span theorem for −3rd-order scaled dimension, but it
is stronger than the following.

Corollary 6.4. For every A ∈ R(∆),

dim(−3)(Pm(A) | R(∆)) = 0

or
dim(−3)(P−1

m (A) | R(∆)) = dim(−3)
∆ (P−1

m (A)) = 0.

Proof. This follows immediately from Theorem 6.3 using Theorem 3.2.

The small span theorem of Juedes and Lutz [12] is also a corollary.

Corollary 6.5. (Juedes and Lutz [12]) Let ∆ ∈ {p,p2}. For every A ∈ R(∆),

µ(Pm(A) | R(∆)) = 0

or
µ(P−1

m (A) | R(∆)) = µ∆(P−1
m (A)) = 0.

Proof. This follows immediately from Theorem 6.3 and Lemma 3.1.

We also have the following regarding the scaled dimensions of the hard languages for EXP and
NP.

Corollary 6.6. 1. dim(−3)
p (Hp

m(EXP)) = dim(−3)
p2

(Hp
m(EXP)) = 0.

2. If dim(1)(NP | E) > 0, then dim(−3)
p (Hp

m(NP)) = 0.

3. If dim(2)(NP | EXP) > 0, then dim(−3)
p2

(Hp
m(NP)) = 0.

Proof. Let H ∈ Cp
m(E). Then also H ∈ Cp

m(EXP), so P−1
m (H) = Hp

m(EXP). Since dim(Pm(H) |
E) = dimp(E) = 1, Theorem 6.3 tells us that dimp(Hp

m(EXP)) = dimp(P−1
m (H)) = 0.

Parts 2 and 3 follow from Theorem 6.3 using any NP-complete language A.

Juedes and Lutz [12] concluded from their small span theorem that every≤p
m-degree has measure

0 in E and in EXP. From Theorem 6.3 we similarly derive a stronger version of this fact: every
≤p

m-degree actually has −3rd-order dimension 0.

Corollary 6.7. For every A ⊆ {0, 1}∗,

dim(−3)(degp
m(A) | R(∆)) = 0.

Proof. If degp
m(A) is disjoint from R(∆), then dim(−3)(degp

m(A) | R(∆)) = dim(−3)
p (∅) = 0, so

assume that there is some B ∈ degp
m(A)∩R(∆). Because degp

m(A) = degp
m(B) = Pm(B)∩P−1

m (B),
we have

dim(−3)(degp
m(A) | R(∆)) ≤ dim(−3)(Pm(B) | R(∆))

and
dim(−3)(degp

m(A) | R(∆)) ≤ dim(−3)(P−1
m (B) | R(∆)).

By Corollary 6.4, we have either dim(−3)(Pm(B) | R(∆)) = 0 or dim(−3)(P−1
m (B) | R(∆)) = 0.

Therefore dim(−3)(degp
m(A) | R(∆)) = 0.
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The ≤p
m-complete languages for any complexity class have −3rd-order dimension 0 in every

R(∆).

Corollary 6.8. For any class D of languages, dim(−3)(Cp
m(D) | R(∆)) = 0.

Proof. If Cp
m(D) = ∅, this is trivial. Assume Cp

m(D) 6= ∅ and let A ∈ Cp
m(D). Then Cp

m(D) ⊆
degp

m(A), so this follows from Corollary 6.7.

7 Lower Spans vs. Degrees in Orders -2 Through 2

We now present some results that stand in contrast to the small span theorem of the previous
section. We begin by extending the work of Ambos-Spies, Merkle, Remainn, and Stephan [2] to
show that lower spans and degrees have the same scaled dimension in orders i with |i| ≤ 2.

Theorem 7.1. For any A ∈ R(∆) and −2 ≤ i ≤ 2,

dim(i)(degp
m(A) | R(∆)) = dim(i)(Pm(A) | R(∆))

and
dim(i)

∆ (degp
m(A)) = dim(i)

∆ (Pm(A)).

Proof. We write the proof for dimension in R(p) = E; the rest of theorem is proved in the same
manner. The proof is based on [2].

Let A ∈ E be decidable in O(2cn) time. By monotonicity, dim(i)(degp
m(A) | E) ≤ dim(i)(Pm(A) |

E). For the other inequality, let t > s > dim(i)(degp
m(A) | E). By Lemmas 4.2 and 4.3, for some

l ∈ N there is an exactly nl-time computable measure ρ satisfying

lim sup
m→∞

gi(m, s) + log ρ(C �m) = ∞ (7.1)

for all C ∈ degp
m(A) ∩ E.

Letting k ≥ 1 be a natural number to be specified later, we define a padding function f :
{0, 1}∗ → {0, 1}∗ by

f(x) = 0|x|
k−|x|x

for all x. Let R = f({0, 1}∗) be the range of f .
Let B ∈ Pm(A). We define another language B′ as

B′ = (B −R) ∪ f(A).

Then B′ ∈ degp
m(A). Intuitively, B′ is a language that is very similar to B but has A encoded

sparsely in it. Define a function τ : {0, 1}∗ → {0, 1}∗ inductively by τ(λ) = 1 and

τ(wb) =


τ(w)b if s|w| 6∈ R

τ(w)1 if s|w| ∈ R ∩B′

τ(w)0 if s|w| ∈ R−B′

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. Notice that

τ(B �n) = B′ �n
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for all n.
Define a measure γ by γ(λ) = 1 and

γ(wb) =

{
γ(w)

2 if s|w| ∈ R
ρ(τ(w)b)
ρ(τ(w)) γ(w) if s|w| 6∈ R

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. Intuitively, γ is designed to have performance on B that is
similar to ρ’s performance on B′. This is done by mimicking the conditional probabilities of ρ for
strings that are not in R. Note that γ(w) can be exactly computed in O(|w| · (|w|l + 2c log |w|) =
O(|w|max(l,c)+1) time.

Let n ∈ N and let 2(n−1)k+1 ≤ m ≤ 2nk+1 − 1. Then

log γ(B �m) =
∑

1≤i≤m

log
γ(B � i)

γ(B � i− 1)

=
∑

1≤i≤m
si 6∈R

log
ρ(τ(B � i− 1)B[i])

ρ(τ(B � i− 1))
+

∑
1≤i≤m
si∈R

log
1
2

=
∑

1≤i≤m
si 6∈R

log
ρ(B′ � i)

ρ(B′ � i− 1)
−

∣∣{1 ≤ i ≤ m | si ∈ R}
∣∣

≥
∑

1≤i≤m

log
ρ(B′ � i)

ρ(B′ � i− 1)
−

∣∣{1 ≤ i ≤ 2nk+1 − 1 | si ∈ R}
∣∣

= log ρ(B′ �m)−
n∑

i=0

2n

= log ρ(B′ �m)− 2n+1 + 1.

Now assume that gi(m, s) + log ρ(B′ �m) ≥ 1. Then we have gi(m, t) + log γ(B �m) ≥ 1 if

2n+1 + gi(m, s) < gi(m, t). (7.2)

To establish
lim sup

n→∞
gi(m, t) + log γ(B �m) ≥ 1, (7.3)

it now suffices to show we can choose k so that (7.2) holds for all sufficiently large m. For each
−2 ≤ i ≤ 2, we now give an appropriate choice of k that yields this.

• i = 2: Let k > 1/t. Then g2(m, t) ≥ g2(2(n−1)k
, t) = 2(n−1)kt

, so 2n+1 = o(g2(m, t)) because
kt > 1. Also, g2(m, s) = o(g2(m, t)) since s < t, so (7.2) holds when m is sufficiently large.

• i = 1: Let k = 2. Then g1(m, t) ≥ g1(2(n−1)2 , t) = 2t(n−1)2 , so 2n+1 = o(g1(m, t)). Also,
g1(m, s) = o(g1(m, t)), so (7.2) holds for sufficiently large m.

• i = 0: Let k = 2. Then g0(m, t) ≥ g0(2(n−1)2 , t) = t2(n−1)2 , so 2n+1 = o(g0(m, t)). Also,
g0(m, s) = o(g0(m, t)), so (7.2) holds for sufficiently large m.

• i = −1: We have g−1(m, t) = m + 1 − g1(m, 1 − t), so (7.2) is true if 2n+1 + g1(m, 1 − t) <
g1(m, 1− s). Taking k = 2, this follows from the argument for i = 1 above since 1− s > 1− t.
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• i = −2: Just as in the i = −1 case, (7.2) is true if 2n+1 + g2(m, 1− t) < g2(m, 1− s). Taking
k > 1/(1− s), this follows from the argument for i = 2 above since 1− s > 1− t.

For each B ∈ Pm(A), we have given a O(nmax(l,c))-time computable measure γ such that (7.3)
holds. By Theorem 4.6, dim(i)(Pm(A) | E) ≤ t. As t > dim(i)(degp

m(A) | E) is arbitrary, this
establishes dim(i)(Pm(A) | E) ≤ dim(i)(degp

m(A) | E).

Theorem 7.1 for (unscaled) dimension was proved in [2] for ∆ = p.

Corollary 7.2. (Ambos-Spies, Merkle, Reimann, and Stephan [2]) For any A ∈ E,

dim(degp
m(A) | E) = dim(Pm(A) | E)

and
dimp(degp

m(A)) = dimp(Pm(A)).

Theorem 7.1 implies that Theorem 6.3 cannot be improved in one respect. For any i, j ∈ Z, let
SST[i, j] be the following statement.

SST[i, j]: For every A ∈ E, dim(i)(Pm(A) | E) = 0 or dim(j)(P−1
m (A) | E) = 0.

Let H ∈ Cp
m(E). Then

dim(i)(Pm(H) | E) = dim(i)(E | E) = 1

for all i and dim(−2)(degp
m(H) | E) = 1 by Theorem 7.1, which in turn implies

dim(−2)(P−1
m (H) | E) = 1.

Therefore, SST[i, j] is false if j ≥ −2. Theorem 6.3 says that SST[1,−3] is true; now we know that
the −3 in it cannot be improved to −2.

We have the following corollary regarding the classes of complete sets for E, EXP, and NP.

Corollary 7.3. Let −2 ≤ i ≤ 2.

1. dim(i)(Cp
m(E) | E) = dim(i)(Cp

m(EXP) | EXP) = 1.

2. dim(i)(NP | E) = dim(i)(Cp
m(NP) | E).

3. dim(i)(NP | EXP) = dim(i)(Cp
m(NP) | EXP).

Proof. Let H ∈ Cp
m(E). Then Cp

m(E) = degp
m(H)∩E, so dim(i)(Cp

m(E) | E) = dim(i)(degp
m(H) | E) =

dim(i)(Pm(H) | E) = dim(i)
p (E) = 1 by Theorem 7.1. The other statements follow similarly.

We can now observe a difference between the −3rd- and −2nd-order scaled dimensions regarding
complete degrees. Corollaries 6.8 and 7.3 together with Theorem 3.2 tell us that for D ∈ {E,EXP},

dim(i)(Cp
m(D) | D) =

{
0 if i ≤ −3
1 if i ≥ −2

and

dim(i)(Cp
m(NP) | D) =

{
0 if i ≤ −3
dim(i)(NP | D) if i ≥ −2.

In Section 9 we will discuss the scaled dimension of Cp
m(E) within ESPACE. The following

extension of Theorem 7.1 will be useful.
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Theorem 7.4. For all −2 ≤ i ≤ 2,

dim(i)(Cp
m(E) | ESPACE) = dim(i)(E | ESPACE).

Proof. We use the construction from the proof of Theorem 7.1. Let t > s > dim(i)(Cp
m(E) |

ESPACE) and take an exactly nl-space computable measure ρ satisfying (7.1) for all C ∈ Cp
m(E).

Fix an A ∈ Cp
m(E). For any B ∈ E, the set B′ constructed from A and B is in Cp

m(E). The
arguments then show dim(i)(E | ESPACE) ≤ t.

8 ≤p
1−tt-Lower Spans vs. ≤p

m-Lower Spans

Theorem 7.1 is also true for most other polynomial-time reducibilities. (This fact was mentioned
in [2] for Corollary 7.2 when it was proved.) To replace ≤p

m by ≤p
r in the theorem, we only need to

have B′ ∈ degp
r (A) for the set B′ that was constructed in the proof from B ∈ Pr(A). In particular,

Theorem 7.1 is true for the ≤p
1−tt reducibility. In this section we show that this holds because of

another reason: the scaled dimensions of ≤p
1−tt-lower spans and ≤p

m-lower spans are always the
same.

The following proposition was used to show that a set is weakly ≤p
m-complete for exponential

time if and only if it is ≤p
1−tt-complete.

Proposition 8.1. (Ambos-Spies, Mayordomo, and Zheng [1]) Let A ≤p
1−tt B. Then there is a

language C ∈ P such that
Â = (A ∩ C) ∪ (Ac ∩ Cc) ≤p

m B.

The idea of the following lemma also comes from [1].

Lemma 8.2. Let i ∈ Z. Let C, Ĉ be classes of languages such that for any A ∈ C, there is some
C ∈ R(∆) such that Â = (A ∩ C) ∪ (Ac ∩ Cc) ∈ Ĉ. Then dim(i)

∆ (C) ≤ dim(i)
∆ (Ĉ).

Proof. We prove this for ∆ = p. The other cases are proved by identical arguments.
Let s > dim(i)

p (Ĉ) be rational and obtain ρ computable in O(nr) time from Lemma 4.2 such
that

lim sup
n→∞

gi(n, s) + log ρ(Â�n) = ∞ (8.1)

for all Â ∈ Ĉ.
Let A ∈ C and let C ∈ DTIME(nk) such that Â = (A ∩ C) ∪ (Ac ∩ Cc) ∈ Ĉ. Define a function

τ : {0, 1}∗ → {0, 1}∗ by

τ(w)[j] =

{
w[j] if sj ∈ C

1− w[j] if sj 6∈ C

for each 0 ≤ j < |w|. Define another measure ρ′ by

ρ′(w) = ρ(τ(w)).

Then for all n,
ρ′(A�n) = ρ(τ(A�n)) = ρ(Â�n).

Therefore
lim sup

n→∞
gi(n, s) + log ρ′(A�n) = ∞
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because of (8.1). As ρ′ is computable in time O(|w| · (log |w|)k + |w|r), it follows by Theorem 4.6
that dim(i)

p (C) ≤ s.

We now show that the scaled dimension of a ≤p
m-lower span is always equal to the scaled

dimension of the ≤p
1−tt-lower span.

Theorem 8.3. Let B ⊆ {0, 1}∗ and let i ∈ Z. Then

dim(i)
∆ (Pm(B)) = dim(i)

∆ (P1−tt(B))

and
dim(i)(Pm(B) | R(∆)) = dim(i)(P1−tt(B) | R(∆)).

Proof. By Proposition 8.1, for each A ∈ P1−tt(B) there is a language C ∈ P such that Â =
(A ∩ C) ∪ (Ac ∩ Cc) ∈ Pm(B). Let Ĉ be the set of all such Â as A ranges over P1−tt(B). Then by
Lemma 8.2,

dim(i)
∆ (P1−tt(B)) ≤ dim(i)

∆ (Ĉ).

As Ĉ ⊆ Pm(B) ⊆ P1−tt(B), we also have

dim(i)
∆ (Ĉ) ≤ dim(i)

∆ (Pm(B)) ≤ dim(i)
∆ (P1−tt(B)),

so the first equality holds. The proof for dimension in R(∆) is analogous.

We can now give a stronger version of Theorem 7.1.

Corollary 8.4. For any A ∈ R(∆) and −2 ≤ i ≤ 2,

dim(i)(Pm(A) | R(∆)) = dim(i)(degp
m(A) | R(∆))

q q
dim(i)(P1−tt(A) | R(∆)) = dim(i)(degp

1−tt(A) | R(∆)),

and similarly with dim(i)(· | R(∆)) replaced by dim(i)
∆ (·).

Proof. From Theorems 7.1 and 8.3 we have

dim(i)(degp
m(A) | R(∆)) = dim(i)(Pm(A) | R(∆)) = dim(i)(P1−tt(A) | R(∆)).

By monotonicity, we have

dim(i)(degp
m(A) | R(∆)) ≤ dim(i)(degp

1−tt(A) | R(∆)) ≤ dim(i)(P1−tt(A) | R(∆)),

so the corollary follows. The proof for dim(i)
∆ (·) is analogous.

Theorem 8.3 also yields a strengthening of Theorem 6.3: the Pm(A) in it can be replaced by
P1−tt(A). In fact, it is also possible to replace the P−1

m (A) in Theorem 6.3 by P−1
1−tt(A) by extending

Theorems 5.2 and 6.2 to deal with ≤p
1−tt-reductions. We omit the details.
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9 The Scaled Dimension of Cp
m(E) in ESPACE

Lutz [17] proved a small span theorem for nonuniform Turing reductions in ESPACE. This implies
that Cp

m(E) has measure 0 in ESPACE. In Corollary 6.8 we saw that Cp
m(E) actually has −3rd-order

scaled dimension 0 in ESPACE. In this section we show that determining the −2nd- or −1st-order
scaled dimension of Cp

m(E) in ESPACE would yield a proof of P = BPP or P 6= PSPACE.
The P = BPP hypothesis was related to the measure of E in ESPACE by Lutz [15].

Theorem 9.1. (Lutz [15]) If µ(E | ESPACE) 6= 0, then P = BPP.

We will extend this result to scaled dimension. We now recall the tools Lutz used to prove it.
Nisan and Wigderson [22] showed that BPP can be derandomized if there is a decision problem

in E that requires exponential-size circuits to be approximately solved. The hardness of a decision
problem at a given length is the minimum size of a circuit that can approximately solve it. The
details of the definition of this hardness are not needed in this paper; we only need to recall existing
results regarding classes of languages with exponential hardness.

Definition. Let Hα be the class of all languages that have hardness at least 2αn almost everywhere
in the sense of [22].

The aforementioned derandomization of BPP can be stated as follows.

Theorem 9.2. (Nisan and Wigderson [22]) If E ∩Hα 6= ∅ for some α > 0, then P = BPP.

We will also need space-bounded Kolmogorov complexity.

Definition. Given a machine M , a space bound s : N → N, a language L ⊆ {0, 1}∗, and a natural
number n, the s-space-bounded Kolmogorov complexity of L=n with respect to M is

KSs
M (L=n) = min

{
|π|

∣∣∣M(π, n) = χL=n in ≤ s(2n) space
}

,

i.e., the length of the shortest program π such that M , on input (π, n), outputs the characteristic
string of L=n and halts without using more than s(2n) workspace.

Well-known simulation techniques show that there exists a machine U which is optimal in the sense
that for each machine M there is a constant c such that for all s, L, and n we have

KScs+c
U (L=n) ≤ KSs

M (L=n) + c.

As usual, we fix such a universal machine and omit it from the notation.

Definition. For each space bound s : N → N and function f : N → N define the complexity class

KSs
i.o.(f) = {L ⊆ {0, 1}∗ | (∃∞n)KSs(L=n) < f(n)}.

Lutz showed that Hα has measure 1 in ESPACE (i.e., that Hc
α has measure 0 in ESPACE) if

α < 1/3 by showing that languages not in Hα have low space-bounded Kolmogorov complexity.

Lemma 9.3. (Lutz [15]) There exist a polynomial q and a constant c such that for all 0 < α <
β < 1,

Hc
α ⊆ KSq

i.o.(2
n − c2(1−2α)n + 2βn).
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The class on the right in Lemma 9.3 has measure 0 in ESPACE [16]. The scaled dimensions of
similar space-bounded Kolmogorov complexity classes were studied in [11].

Theorem 9.4. (Hitchcock, Lutz, and Mayordomo [11]) For any i ≤ −1, polynomial q(n) = Ω(n2),
and α ∈ [0, 1],

dim(i)(KSq
i.o.(gi(2n, α)) | ESPACE) = α.

Lemma 9.3 and Theorem 9.4 provide an easy upper bound on the −1st-order scaled dimension
of Hc

α in ESPACE.

Corollary 9.5. If 0 < α < 1/3, then

dim(−1)(Hc
α | ESPACE) ≤ 2α.

Proof. Let ε > 0 and β ∈ (α, 1− 2α). Then for all sufficiently large n,

2n − c2(1−2α)n + 2βn < 2n + 1− 2(1−2α−ε)n

= g−1(2n, 2α + ε),

so Lemma 9.3 implies Hc
α ⊆ KSq

i.o.(g−1(2n, 2α + ε)). Therefore dim(−1)(Hc
α | ESPACE) ≤ 2α + ε by

Theorem 9.4.

We can now state a stronger version of Theorem 9.1. The hypothesis has been weakened, but
the conclusion remains the same.

Theorem 9.6. If dim(−1)(E | ESPACE) > 0, then P = BPP.

Proof. Assume the hypothesis and let s = min{1/2,dim(−1)(E | ESPACE)}. Then by Corollary
9.5, E 6⊆ Hc

s/2, i.e., E ∩Hs/2 6= ∅. Therefore P = BPP by Theorem 9.2.

We now relate the scaled dimension of Cp
m(E) to the P ?= PSPACE and P ?= BPP problems.

Theorem 9.7. For i ∈ {−2,−1},

dim(i)(Cp
m(E) | ESPACE) < 1 ⇒ P 6= PSPACE

and
dim(i)(Cp

m(E) | ESPACE) > 0 ⇒ P = BPP.

Proof. From Theorem 7.4 we know that dim(i)(Cp
m(E) | ESPACE) = dim(i)(E | ESPACE). Also,

dim(i)(E | ESPACE) < 1 implies E 6= ESPACE which implies P 6= PSPACE [5]. This proves the
first implication. The second one follows from Theorem 9.6 since dim(i)(Cp

m(E) | ESPACE) > 0
implies dim(−1)(E | ESPACE) > 0.

In other words, establishing any nontrivial upper or lower bound on dim(−1)(Cp
m(E) | ESPACE)

or dim(−2)(Cp
m(E) | ESPACE) would derandomize BPP or separate P from PSPACE. This is in

contrast to the unconditional facts from Corollaries 6.7 and 7.3 that

dim(−3)(Cp
m(E) | E) = 0

and
dim(−2)(Cp

m(E) | E) = dim(−1)(Cp
m(E) | E) = 1.
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10 Conclusion

Our main results, Theorems 6.3 and 7.1, use resource-bounded scaled dimension to strengthen from
both ends the contrasting theorems of Juedes and Lutz [12] and Ambos-Spies, Merkle, Reimann,
and Stephan [2] regarding spans under polynomial-time reductions.

1. The small span theorem for ≤p
m-reductions [12] was strengthened from measure to −3rd-order

scaled dimension. (In fact, Theorem 6.3 is even stronger than this.)

2. The result that lower spans and degrees have the same dimension [2] was extended to all
orders −2 ≤ i ≤ 2 of scaled dimension. This implies that there is no small span theorem in
−2nd-order scaled dimension.

These results suggest that the contrast between the −2nd- and −3rd-orders of resource-bounded
scaled dimension will be useful for studying complexity classes involving polynomial-time reduc-
tions. For example, regarding the many-one complete degree of NP, Corollaries 6.7 and 7.3 say
that

dim(−3)(Cp
m(NP) | E) = 0

and
dim(−2)(Cp

m(NP) | E) = dim(−2)(NP | E).

Scaled dimension therefore provides two different types of dimension for studying NP. The NP-
complete degree provides all the dimension of NP in order -2, but in order -3 the NP-complete
degree unconditionally has dimension 0.
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