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Abstract

We study the following question: if A and B are disjoint NP-complete sets, then is A ∪ B
NP-complete? We provide necessary and sufficient conditions under which the union of disjoint
NP-complete sets remain complete.

1 Introduction

A disjoint NP pair is a pair of languages (A,B) such that both A and B are in NP and are disjoint.
Given a disjoint pair (A,B), we can view strings from A as “yes” instances and strings from B as
“no” instances. We are interested in an algorithm that accepts all instances from A and rejects
all instances from B. Viewed this way, disjoint pairs are an equivalent formulation of promise
problems, where A ∪ B is the promise. Promise problems were introduced by Even, Selman, and
Yacobi [ESY84].

Promise problems and disjoint pairs arise naturally in many scenarios such as the study of com-
plete problems for semantic classes and the study of hardness of approximation problems. In some
instances promise problems more precisely capture the underlying computational problem rather
than decision problems. Sometimes unresolved questions about complexity classes can be answered
by considering promise versions of complexity classes. For example, we know that Promise-MA
does not have fixed polynomial-size circuits whereas we do not have an analogous result for the
class MA [San09]. For a recent survey on promise problems we refer the reader to [Gol06].

In addition to be able to capture several natural computational problems, disjoint pairs arise
naturally in the study of public key cryptosystems and propositional proof systems. The com-
putational problem capturing a public key cryptosystem can be formulated as a disjoint NP pair
(A,B) [ESY84, GS88]. A separator of such a pair (A,B) is a set S with A ⊆ S and S ⊆ B.
The class of pairs (A,B) whose separators do not belong to P are called P-inseparable pairs. The
existence of P-inseparable disjoint NP pairs is closely related the existence of secure public key
cryptosystems [ESY84, GS88]. Grollmann and Selman [GS88] showed that if P 6= UP, then there
exist P-inseparable disjoint NP pairs. More recently Fortnow, Lutz, and Mayordomo [FLM10]
showed that if NP does not have p-measure zero, then P-inseparable disjoint NP pairs exist.

Works of Razborov [Raz94] and Pudlak [Pud01] show that disjoint NP pairs are also closely
related to the study of propositional proof systems. Razborov identified a canonical disjoint NP pair
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(SAT∗,REFf ) for every propositional proof system f . Here SAT∗ is a padded version of SAT and
REFf is the set of all formulas that have short proofs of unsatisfiability with respect to f . Glaßer,
Selman, and Zhang [GSZ07] showed that for every disjoint NP pair (A,B) there is a propositional
proof system f such that its canonical pair (SAT∗,REFf ) is many-one equivalent to (A,B). Thus
disjoint NP pairs and propositional systems have identical degree structure.

There is a close relation between disjoint NP pairs and pairs whose both components are NP-
complete. For example, there is a P-inseparable disjoint NP pair if and only there is a P-inseparable
pair whose both components are NP-complete [GS88]. We also know that if there is a complete
pair for DisjNP, then there is such a pair where both components are NP-complete [GSS05].

In this article we focus on disjoint pairs whose both components are NP-complete. We in-
vestigate the following question: let (A,B) be a disjoint NP pair such that both A and B are
NP-complete. Is the union A ∪ B NP-complete? This question was first explicitly raised by Sel-
man [Sel88].

Apart from its connections to the study of public key cryptosystems and propositional proof
systems, our question is also of independent interest. We are interested in a simple closure property
of NP-complete sets—closure under disjoint unions. It is known that every NP-complete set can
be split into two disjoint NP-complete sets [GPSZ08]. Here we are raising the converse question, is
the combination of every two disjoint NP-complete sets NP-complete?

Glaßer et al. [GSTW08] showed that if A and B are disjoint NP-complete sets, then A ∪ B
is complete via strong nondeterministic Turing reductions. They also showed that if NP differs
from co-NP at almost all lengths, then A ∪ B is many-one complete via P/poly-reductions. If we
consider disjoint Turing complete sets, we know a little more. Glaßer et al. [GPSS06] showed that
if UP∩ co-UP contains bi-immune sets, then there exist disjoint Turing complete sets whose union
is not Turing complete.

The above mentioned results do not seem to shed light on the question of whether unions
of disjoint NP-complete sets remain NP-complete (under polynomial-time many-one reductions).
To date, we do not know of any reasonable hypothesis that either provides a positive answer or a
negative answer to this question. In this paper we provide necessary and sufficient conditions under
which the union of disjoint NP-complete sets remain NP-complete. We consider two statements
and show that one of the statements yields a positive answer to our question, whereas the other
statement yields a negative answer.

Our statements relate to the complexity of SAT. Let us assume that NP differs from co-NP,
thus there is no NP-algorithm for SAT. Could it still be the case that there is an NP-algorithm
that solves SAT in some “average-case/approximate” sense? Let B be a set in NP that is disjoint
from SAT. We can view B as an “approximate/average-case” NP-algorithm for SAT. Since B does
not coincide with SAT, there must exist unsatisfiable formulas on which B errs. How easy/hard is
it to produce such instances? Any machine that produces instances on which B differs from SAT
is called a refuter.

Given B, what is the complexity of the refuter? We can make two easy observations. If B
can be decided in time 2n

k
, then there exists a refuter that runs in time O(2n

k
2n). Using the fact

that B is in NP we can also design a PΣP
2 refuter. Can the complexity of these refuters be reduced

further? We show that if the complexity of such refuters can be improved to polynomial-time, then
unions of disjoint NP-complete sets remain NP-complete. On the other hand, we show that if the
complexity of the refuters can not be reduced, then there exist disjoint NP-complete sets whose
union is not NP-complete. More precisely, we show that if there exists a B ∈ NP that is disjoint
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from SAT such that any refuter for B must take 22n time, then there exist disjoint NP-complete
sets whose union is not NP-complete.

The notion of refuters can be made precise by using distinguishers and pseudo-classes. These
notions were first formally defined by Kabanets [Kab01]. These concepts have been proved to be
useful in learning theory [JS05], in the study of heuristics for solving NP-complete problems, and
in derandomization [IW01, Kab01]. In this paper, we provide yet another instance where such
concepts seem to be useful.

2 Preliminaries

Given two languages A and B, A∆B denotes the symmetric difference between A and B. A refuter
R is a deterministic Turing machine that on an input of length n outputs a string of length at least
n.

Definition 1. [Kab01] Let L and L′ be two languages and R be a refuter. We say that R distin-
guishes L from L′ if for infinitely many n, R(1n) outputs a string (of length ≥ n) from L∆L′. A
refuter R almost everywhere distinguishes L from L′ , if for all but finitely many n, R(1n) outputs
a string (of length ≥ n) from L∆L′.

If a refuter R does not distinguish L from L′, then for all but finitely many n, R(1n) ∈ (L ∩
L′) ∪ (L ∩ L′). If a refuter does not almost everywhere distinguish L from L′, then for infinitely
many n, R(1n) ∈ (L ∩ L′) ∪ (L ∩ L′).

Now we mention our statements.

Statement 1. There is a language L ∈ NP that is disjoint from SAT and no 22n-time bounded
refuter can distinguish SAT from L.

Informally, this means that no 22n-time bounded machine can output strings on which L differs
from SAT.

Statement 2. For every language L ∈ NP that is disjoint from SAT, there is a polynomial-time
refuter that almost everywhere distinguishes L from SAT.

This statement implies that for every language L ∈ NP that is disjoint from SAT, there is a
polynomial-bounded refuter R such that R(1n) outputs a string of length ≥ n at which L differs
from SAT.

Observe that if we replace P with 22n and remove the phrase “almost everywhere” from State-
ment 2, then it would be a converse to Statement 1.

Main Theorem 1: If Statement 1 is true, then there exist disjoint NP-complete sets whose union
is not NP-complete.

Main Theorem 2: If Statement 2 is true, then unions of disjoint NP-complete sets are NP-
complete.
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3 Main Theorems

We will show that if Statement 1 is true, then there exist two disjoint NP-complete sets whose
union is not NP-complete. On the other hand, we show that if the Statement 2 is true, then unions
of disjoint NP-complete sets remain NP-complete.

Let A be an NP-complete set and B be a set in NP that is disjoint from A. Let A′ = 0A ∪ 1B,
and B′ = 1A∪0B. Both A′ and B′ are NP-complete and are disjoint. The set A′∪B′ is NP-complete
if and only if A ∪B is NP-complete. Thus we have the following observation.

Observation 3.1. There exist two disjoint NP-complete sets whose union is not NP-complete if
and only if there exists an NP-complete set A and a set B in NP that is disjoint from A such that
A ∪B is not NP-complete.

Theorem 3.2. If Statement 1 is true, then there exist two disjoint NP-complete sets whose union
is not NP-complete.

Proof. Let L be a language in NP that is disjoint from SAT and for every 22n-time bounded refuter
R, for all but finitely many n, R(1n) ∈ SAT ∪ L (note that SAT ∩ L = ∅ and R(1n) /∈ SAT∆L
implies R(1n) ∈ SAT∪L). We exhibit an NP-complete set A and a disjoint set B in NP such that
A ∪B is not NP-complete.

Since L ∈ NP, there is a constant k ≥ 1 such that L can be decided in time 2n
k
. Let t1 = 2,

and ti+1 = tk
2

i .
Before we present a formal proof, we provide the main ideas behind the proof. Let us partition

Σ∗ into blocks B1, B2, · · · such that

Bi = {x | t1/ki ≤ |x| < tki }.

Note that Bi is disjoint from Bi+1 as the length of every string from Bi is less than tki and every

string from Bi+1 has length at least t
1/k
i+1 = (tk

2

i )1/k = tki . Let us take L1 = L ∩ (∪iB2i) and L2 to
be L ∩ (∪iB2i+1).

To better express the intuition, we make the following assumption: There exist infinitely many
strings of length t2i (for some i > 0) and do not belong to L. By the definition of L1, these strings
do not belong to L1.

Suppose that there is a many-one reduction f from L1 to L2. We will first argue that by using
this reduction, there is a procedure that outputs infinitely strings (of length n) that are not in L
in time less than 22n. Let us fix i. Consider a string x of length t2i that is not in L. Recall that
x lies in block B2i. What does f(x) look like? There are three possibilities: f(x) remains in block
B2i, f(x) is in block Bj for some j < 2i, or f(x) lies in block Bj for some j > 2i.

Suppose f(x) lies in block B2i. Observe that L2 ∩B2i is empty. This immediately implies that
f(x) does not belong to L2 and thus x does not belong to L1 (and thus x is not in L). If any string
of length t2i that is not in L is mapped into block B2i, then one can find and output such a string
in time 22t2i .

Now suppose f(x) lies in block Bj and j < 2i. Since every string from block Bj is of length

at most t
1/k
2i , we can decide whether f(x) belongs to L2 or not in time less than 2t2i . Thus if any

string of length t2i that is not in L is mapped into block Bj (j ≤ 2i), then one can find and output
such a string in time 22t2i .
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Now suppose that for every string x of length t2i that is not in L, f(x) lies in block Bj and
j > 2i. Consider f(x), its length is at least tk2i. We can now output a string that does not belong
to L as follows: by cycling through all strings of length t2i find a string x that does not belong to
L. Output f(x). This takes less than 22tk2i time, and it follows that f(x) does not belong to L.
Since f(x) belongs to block Bj and j > 2i, it must be the case that m = |f(x)| ≥ tk2i. Thus the
time taken to output f(x) (a string of length m) is at most 22m.

Thus for every string of length t2i that is not in L, we can output a string that is not in L. By
our assumption, there exist infinitely many strings of length t2i that are not in L, and so there is
procedure that outputs infinitely many string that are not in L.

In the actual proof, outputting strings that are not in L does not suffice. We have to output
strings on which L differs from SAT, i.e., strings that are not in SAT ∪ L. This presents additional
complications. For this we define three additional sets: an NP-complete set SATJ and two sets in
NP LJ and LO that are disjoint from SAT. We will show that if there is a reduction from LO to
SATJ ∪ LJ , then one can use this reduction to output strings that are not in SAT ∪ L. Now we
present a formal proof.

Let t1 = 2 and ti+1 = tk
2

i . Consider the following sets.

E = {x | ∃i > 0 such that x ∈ B2i}
O = {x | ∃i > 0 such that x ∈ B2i+1}
J = {x ||x| = ti and i is even}

Note that J is a subset of E.
If NP = co-NP, then SAT and SAT are NP-complete and their union is Σ∗. The set Σ∗ can not

be complete for any class under many-one reductions. Let us assume that NP 6= co-NP. Then, it
must be the case that SAT ∪ L is infinite. Since E ∪ O = Σ≥2, at least one of E ∩ (SAT ∪ L) or
O ∩ (SAT ∪ L) is infinite. From now on we will assume that O ∩ (SAT ∪ L) is infinite. If that were
not the case we can interchange the roles of E and O, take J = {x | |x| = ti and i odd}, and the
proof structure remains similar.

Let LJ = L ∩ J , LO = L ∩O, and SATJ = SAT ∩ J .

Lemma 3.3. The set SATJ ∪ LJ is not NP-complete.

Observe that SATJ is NP-complete. Clearly, LJ is disjoint from SATJ . Thus by Observation 3.1,
the theorem is implied by Lemma 3.3. The rest of the proof is dedicated to proving the above lemma.

Our proof proceeds by contradiction. Suppose SATJ ∪ LJ is NP-complete. Since LO is in NP,
there is a polynomial-time many-one reduction f from LO to SATJ ∪LJ . Using this reduction f , we
exhibit a 22n-time bounded refuter R that distinguishes SAT from L. This contradicts Statement 1.

Let
T = O ∩ (SAT ∪ L) = O ∩ SAT ∩ L.

Recall that T is infinite. Consider the following sets.

T1 = {x ∈ T | f(x) /∈ J}
T2 = {x ∈ T | f(x) ∈ J and |f(x)| < |x|}
T3 = {x ∈ T | f(x) ∈ J and |f(x)| ≥ |x|}

5



Clearly T = T1 ∪ T2 ∪ T3. We now show that each of T1, T2, and T3 is finite. Since T is infinite,
we obtain a contradiction.

Lemma 3.4. T1 is finite.

Proof. Suppose not. Since T ⊆ SAT ∪ L, T1 is an infinite subset of SAT ∪ L. Consider the following
refuter R.

1. Input 1n.

2. For every x ∈ Σn do

(a) If x /∈ O ∩ SAT, then go to the next x. Else compute f(x).

(b) If f(x) /∈ J , output x and stop. Else go to the next x.

3. Output ⊥.

The algorithm considers at most 2n strings x. Since f is polynomial-time computable and SAT
is in DTIME(2n), R runs in time 22n. We now claim that R distinguishes SAT from L. Consider
an input length n.

Claim 3.5. If z /∈ T1 ∩ Σn, then R(1n) does not output z.

Proof. If z /∈ T1, then either z /∈ T or f(z) ∈ J . Note that the above refuter outputs a string x
only when f(x) /∈ J . Thus if f(z) ∈ J , then it does not output z. Now consider the case z /∈ T . If
z /∈ O ∩ SAT, then the refuter does not output z. So assume z ∈ O ∩ SAT. Since z /∈ T , it follows
that z ∈ L. Since z ∈ O and z ∈ L, z ∈ LO. If z ∈ LO, then f(z) ∈ SATJ ∪ LJ and thus f(z) ∈ J .
Thus the above refuter does not output z.

Claim 3.6. If T1 ∩ Σn is not empty, then R(1n) outputs a string from T1 ∩ Σn.

Proof. Let y be the lexicographically first string from T1 ∩ Σn. By the previous claim, R(1n) does
not output any z < y. Thus the loop of the above algorithm considers y. Since y ∈ T1, both the
conditions y ∈ O ∩ SAT and f(y) /∈ J are satisfied. When this happens the refuter outputs y.

Thus for every n, R(1n) either outputs ⊥ or outputs a string from T1. If T1 is infinite, then
for infinitely many such n, R(1n) outputs a string from T1. Since T1 is a subset of T and T is a
subset of SAT ∪ L = L∆SAT, it follows that the output of R belongs to L∆SAT. This contradicts
Statement 1. Thus T1 is a finite set, which proves Lemma 3.4.

Lemma 3.7. T2 is finite.

Proof. If T2 is infinite, then T2 is an infinite subset of SAT ∪ L. Consider the following refuter R.

1. Input 1n.

2. For every x ∈ Σn do

(a) If x does not belong to O ∩ SAT, then go to the next x. Else, compute f(x).

(b) If f(x) /∈ J or |f(x)| ≥ |x|, then go to the next x.

(c) If f(x) ∈ J and |f(x)| < |x|, then output x if f(x) /∈ SATJ ∪ LJ . Else go to the next x.
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3. Output ⊥.

Checking whether x ∈ O∩SAT takes time O(2n). Now we argue that checking the membership
of f(x) in SATJ ∪ LJ takes 2|x| time. We will check whether f(x) is in SATJ ∪ LJ only when

|f(x)| < |x| and f(x) ∈ J . By Step 2a, x is in O. Thus t
1/k
i ≤ |x| < tki for some odd i. Since

f(x) ∈ J , |f(x)| = tj for some even j. Since |f(x)| < |x| and the interval [t
1/k
i , tki ) contains exactly

one tl and this unique member is ti, it follows that j < i.

Thus ti ≥ tk
2

j and so t
1/k
i ≥ tkj . Since |f(x)| = tj and |x| ≥ t

1/k
i , it follows that |f(x)| ≤ |x|1/k.

Since LJ is decidable in time 2n
k

and SATJ is decidable in time 2n, we can decide the membership
of f(x) in SATJ ∪ LJ in time O(2|x|).

The algorithm checks whether f(x) is in SATJ ∪ LJ only when |f(x)| < |x|. Thus the total
time taken by the above refuter is at most 22n.

Let n be the input length. As before, we make two claims.

Claim 3.8. If z /∈ T2 ∩ Σn, then R(1n) does not output z.

Proof. If z does not belong to T2, then either z /∈ T or f(z) /∈ J or |f(x)| ≥ |x|. If f(z) /∈ J or
|f(z)| ≥ |z|, the refuter does not output z. Suppose z /∈ T .

If z /∈ O ∩ SAT, the refuter does not output z. If z ∈ O ∩ SAT, it follows that z ∈ L. Since
z ∈ O, it follows that z ∈ LO. Thus f(z) ∈ SATJ ∪ LJ . The refuter does not output any string z
such that f(z) belongs to SATJ ∪ LJ . Thus the refuter does not output z.

Claim 3.9. If T2 ∩ Σn 6= ∅, then R(1n) outputs a string from T2 ∩ Σn.

Proof. Let y be the lexicographically first string from T2 ∩ Σn. Let z be a string of length n that
is smaller than y. By the previous claim, R(1n) does not output z. So the above refuter considers
y during some iteration. Since y ∈ T2, it must be the case that y ∈ T , f(y) ∈ J , and |f(y)| < |y|.
If y ∈ T2, then y /∈ LO. Since f is reduction from LO to SATJ ∪ LJ , f(y) /∈ SATJ ∪ LJ . Thus the
refuter outputs z.

Thus for every n, R(1n) either outputs ⊥ or outputs a string from T2∩Σn. If T2 is infinite then,
for infinitely many n, T2 ∩ Σn is not empty. Thus for infinitely many n, the refuter on input 1n

outputs a string from T2. Since T2 is a subset of SAT ∪ L, the output of R(1n) belongs to L∆SAT.
This is a contradiction. Thus T2 is also finite, which proves Lemma 3.7.

We now claim that T3 must also be finite.

Lemma 3.10. T3 is finite.

Proof. Consider the following refuter R.

1. Input 1n.

2. If n = ti for some even i, then proceed to step 3. Otherwise, output ⊥.

3. For each y, |y| ≤ n1/k, test whether |f(y)| = ti and y ∈ T . If there is no such y, output ⊥.

4. Let Y be the set of all y’s that pass the test and let X = {f(y) | y ∈ Y }. Output one y such
that f(y) is the smallest member of X.
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We first analyze the running time of R. There are at most 2 · 2n1/k
strings y that the refuter

considers in step 3. Moreover, f is polynomial-time computable and T is decidable in time O(2n
k
).

Therefore, the test in step 3 can be carried out in time 2n+n1/k
< 22n, which is a bound for the

total run time of the refuter R.
Let y be a string from T3. Since y ∈ T3, there exists an odd number i such that the length of y

lies between t
1/k
i and tki . By the definition of T3, we have that f(y) ∈ J and |f(y)| ≥ |y|. From this

it follows that there exists an even number r > i such that |f(y)| = tr. Since r > i and tr = tk
2

r−1,
it follows that |f(y)| ≥ |y|k.

Let n be a length at which T3 is not empty. Let m be the smallest number such that f(T3 ∩
Σn) ∩ Σm 6= ∅. By the previous discussion, it follows that m ≥ nk. Let z be the lexicographically
smallest string from f(T3) ∩ Σm.

Claim 3.11. If a string x of length m does not belong to f(T3), then R(1m) does not output x.

Proof. If x /∈ J or there is no string y of length at most m1/k for which f(y) = x, then clearly
R(1m) does not output x. Let us assume that x ∈ J and there is a y for which f(y) = x. Observe
that R outputs x only when y ∈ T . Since f(y) = x ∈ J and |f(y)| ≥ |y|, y ∈ T implies that y ∈ T3.
However x is not in f(T3). Thus y /∈ T and so R does not output x.

Claim 3.12. If z is the lexicographically smallest string from f(T3) ∩ Σm, then R(1m) outputs z.

Proof. By previous claim, R(1m) does not output any string smaller than z. Thus it considers z
during some iteration. Since z ∈ f(T3), we have that z ∈ J . Let y be a string from T3 such that
f(y) = z. By our previous discussion, |y| ≤ m1/k. Since y ∈ T3, y ∈ T . Thus the refuter outputs
z.

Thus every output of R is either ⊥ or a string z from f(T3). Since T3 ⊆ T , T ⊆ LO, and f is a
many-one reduction from LO to SATJ ∪ LJ , it follows that z /∈ SATJ ∪ LJ for each such z. Since
z ∈ J , we have that z ∈ SAT∆L.

If T3 is infinite, then f(T3) is also infinite. Thus for every m, R(1m) outputs ⊥ or outputs a
string from SAT∆L and for infinitely many m, R(1m) ∈ SAT∆L. This contradicts Statement 1
and so T3 is a finite set, which proves Lemma 3.10.

Thus it follows that T must be a finite set, which is a contradiction. Thus f can not be a
many-one reduction from Lo to SATJ ∪ LJ . Thus SATJ ∪ LJ is not many-one complete. This
finishes the proof of Theorem 3.2.

We will now show that if Statement 2 is true, then NP-complete sets are closed under disjoint
unions.

Let A and B be two disjoint NP-complete sets whose union is not NP-complete. Consider A×Σ∗

and B × Σ∗. These sets are disjoint and are NP-complete. Also, their union is not NP-complete.
Since A × Σ∗ and B × Σ∗ are paddable, they are isomorphic to SAT [BH77]. Thus if there exist
two disjoint NP-complete sets A and B such that A ∪B is not NP-complete, then there exist two
disjoint NP-complete sets C and D that are isomorphic to SAT such that C∪D is not NP-complete.

Since C is isomorphic to SAT, there is a polynomial-time invertible bijection f from Σ∗ to Σ∗

that is a reduction from C to SAT. Now consider the sets SAT and f(D). Since f is polynomial-time
invertible, f(D) belongs to NP. Moreover f(D) is disjoint from SAT. Suppose there is a reduction
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g from SAT to SAT ∪ f(D), then f−1g is a reduction from SAT to C ∪D. Thus if SAT ∪ f(D) is
NP-complete, so is C ∪D. Thus we have the following observation.

Observation 3.13. If there exist two disjoint NP-complete sets whose union is not NP-complete,
then there is a set B in NP that is disjoint from SAT such that SAT ∪B is not NP-complete.

Theorem 3.14. If Statement 2 is true, then unions of disjoint NP-complete sets are NP-complete.

Proof. By the previous observation, it suffices to show that if L is any set in NP that is disjoint
from SAT, then L ∪ SAT is NP-complete.

Consider the following set

B = {x | ∃ y, |y| ≤ |x|, and x ∨ y ∈ L},

where x ∨ y denotes the disjunction of the boolean formulas x and y. Clearly B ∈ NP, and is
disjoint from SAT. Thus by our Statement, there is a polynomial-time bounded refuter R such
that for all but finitely many n, R(1n) ∈ SAT∆B. Since B ⊆ SAT, R(1n) ∈ SAT ∪B.

Consider the following reduction from SAT to SAT ∪L. On input x, let y be the string having
some length m such that y = R(1|x|). Output y ∨ x.

Since y does not belong to SAT, x ∈ SAT if and only if (y ∨ x) ∈ SAT. It remains to show that
if x is not in SAT, then y ∨ x is not in L: Suppose x /∈ SAT and y ∨ x ∈ L. Then by the definition
of B, y must belong to B. However y belongs to SAT ∪B, which is a contradiction.

3.1 Length-Increasing Reductions

As mentioned in the preliminaries our two statements are not converses of each other. Thus
our sufficient and necessary conditions are not equivalent. Ideally, we would like to make them
equivalent. We observe that if we strengthen the notion of NP-completeness to “completeness
via length-increasing reductions,” then we can make the necessary and sufficient conditions to be
equivalent. Consider the following question: is the union of disjoint NP-complete sets complete via
length-increasing reductions?

Theorem 3.15. Unions of disjoint NP-complete sets are NP-complete under length-increasing
reductions if and only if Statement 2 is true.

Proof. As before, it is easy to see that there exist disjoint NP-complete sets whose union is NP-
complete via length-increasing reductions if and only if for every set B ∈ NP that is disjoint from
SAT it holds that SAT ∪B is complete via length-increasing reductions.

Let B be a set in NP that is disjoint from SAT. Let f be a length-increasing polynomial-time
many-one reduction from SAT to SAT∪B. Consider the following refuter R. On input 1n generate
an unsatisfiable formula φ of length ≥ n. Output f(φ). Since generating unsatisfiable formulas
is easy, the refuter runs in polynomial time. Since φ /∈ SAT, f(φ) /∈ SAT ∪ B. Thus f(φ) is an
unsatisfiable formula that does not belong to B, i.e., f(φ) ∈ B∆SAT. Since the length of φ is
at least n and f is length-increasing, the length of f(φ) is at least n. Thus R almost everywhere
distinguishes SAT from B.

The other direction follows from the proof of Theorem 3.14 as the reduction exhibited in that
proof is length-increasing.

9



Agrawal [Agr02] showed that if one-way permutations exist and E does not have 2εn size circuits,
then NP-complete sets are complete via length-increasing reductions. This yields the following
corollary.

Corollary 3.16. Assume that one-way permutations exist and there is a language in E that requires
2εn-size circuits for some ε > 0. Then unions of disjoint NP-completes are NP-complete if and only
if Statement 2 is true.

4 Discussion

Suppose NP 6= co-NP and let L be a language in NP that is disjoint from SAT. Since L is in NP L
can be decided in time 2n

k
. Since L does not equal SAT, there exists a refuter that distinguishes L

from SAT. What is the complexity of such a refuter? It is easy to see that there is a refuter that
distinguishes L from SAT and this refuter runs in time 2n

k+1
. Statement 1 implies that there is no

refuter whose running time is drastically better whereas Statement 2 implies that there is a refuter
that runs in polynomial time.

Our results indicate that to settle the question of whether unions of disjoint NP-complete sets
remain NP-complete, one must understand the complexity of refuters. We have provided necessary
and sufficient conditions for the answer to this question to be true. Clearly there is a gap between
the necessary and sufficient conditions. We can bridge this gap under certain believable hypotheses.
It would be interesting to bridge it unconditionally.
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