
John Paul et al.: Toward a Formal Evaluation of Refactorings, Proceedings of The Sixth NASA Langley Formal
Methods Workshop, p.33–35

Toward a Formal Evaluation of Refactorings

John Paul, Nadya Kuzmina, Ruben Gamboa, James Caldwell⋆

University of Wyoming, Laramie, Wyoming 82071-3315, USA

{jpaul, nadya, ruben, jlc}@cs.uwyc.edu

1. Introduction

Refactoring is a software development strategy that characteristically alters the syntactic struc-
ture of a program without changing its external behavior [2]. In this talk we present a methodology
for extracting formal models from programs in order to evaluate how incremental refactorings af-
fect the verifiability of their structural specifications. We envision that this same technique may
be applicable to other types of properties such as those that concern the design and maintenance
of safety-critical systems.

2. Formal Methodology

An object-oriented design D consists of a set of classes expressed in Java or another class-based
object-oriented language. For the purposes of reasoning about D and formally comparing it to its
refactorings we model D as a first-order theory of the form 〈Σ,R〉 where Σ is a relational signature
extracted from D’s structural features, and R is a finite set of Σ-sentences expressing facts or
axioms that partially capture D’s class-level behavior [5]. R may result from the direct study of
D or its documentation. We will consider the case when R is the output of a particular program
analysis.

An additional set of Σ-sentences, S, provides an abstract specification of what it means for D
to be correct. The extent to which the set of facts R, that we hold about D, implies S, is indicative
of how verifiable the design is by us. Any refactoring, D′, of D will have the same correctness
criteria as D. To compare the verifiability of the two designs we assume that there is a signature
morphism σ : Σ → Σ′ between the original and the refactored designs1, but σ only needs to be
defined on the subset of Σ used to express S. Letting R and R′ be the two sets of facts that we
hold with respect to each design, we say that D′ is better verifiable than D under the following
conditions.

1. For every ψ ∈ S, if R implies ψ, then R′ implies the translated formula σ(ψ).

2. For some ψ ∈ S, R′ implies σ(ψ), but R does not imply ψ.

The first requirement merely states that D′ is a behavior-preserving refactoring of D with respect
to the verifiable behavior of D. While the second requirement states that we are able to verify D′

more thoroughly than we are D.

⋆ This material is based upon work supported by the National Science Foundation under Grant No. NSF
CNS-0613919.

1More precisely the notion of a derivor[3] can be used.

Proceedings of The Sixth NASA Langley Formal Methods Workshop 33

John Paul et al.: Toward a Formal Evaluation of Refactorings

public class Employee {
stat ic f ina l int ENGINEER = 0;
stat ic f ina l int SALESMAN = 1;
stat ic f ina l int MANAGER = 2;

private int type ;
private int monthlySalary ;
private int commission ;
private int bonus ;

. . .

public int payAmount () {
switch (type) {
case ENGINEER:

return monthlySalary ;
case SALESMAN:

return monthlySalary + commission ;
case MANAGER:

return monthlySalary + bonus ;
}

}
}

Initial Design D Refactored Design D′

Figure 1. Initial design D and refactored design D′ of the Employee class.

Alloy [4] is a relational language based on first-order logic that allows us to express theories
about designs. When combined with the Alloy Analyzer it offers a practical way to implement our
methodology and to check 1) and 2) in practice. Once 〈Σ,R〉 is presented as an Alloy theory, the
Alloy Analyzer enumerates its models up to a user specified depth and reports any counterexample
that it finds for a particular ψ ∈ S, each of which is encoded as an Alloy assertion. The same is
done for 〈Σ′,R′〉 and each σ(ψ). While not a proof, the absence of a counterexample serves as
evidence that an assertion may be valid within a theory and hence verifiable about a particular
design.

3. Implementation

Next, we describe how we used Alloy and two different automatic constraint detectors to apply
this methodology to the Employee example of the ‘replace conditional with state’ refactoring from
Fowler’s book [2]. Figure 1 presents the initial design D as a single class, Employee, providing
a payAmount method which uses a switch-statement to compute the monthly earnings of an
employee based on his or her occupation (type). In the refactored design D′, however, Employee
delegates the earnings computation to a polymorphic state object, type, which is no longer just
a simple int, and the computation is now distributed over three different kinds of EmployeeType
objects. The right side of Figure 1 depicts this design.

The extraction of Σ and Σ′ is based on the class structures of D and D′ and is virtually
automatic. Each class or datatype is presented as its own disjoint set of atoms, while attributes
and methods are presented as relations on these sets. The signature morphism σ : Σ → Σ′ must be
constructed by hand. In our example, σ is the identity mapping for all sorts and relations except
for type. The assertions standing for the specification S must also be constructed by hand. For
instance, one assertion about the payAmount method is that an Engineer’s monthly earnings are

34 Proceedings of The Sixth NASA Langley Formal Methods Workshop

John Paul et al.: Toward a Formal Evaluation of Refactorings

equal to his or her salary.
Finally, R and R′ consist of the machine translated invariants output by one of the two program

analysis tools, Daikon [1] or ContExt. One fact that Daikon recovered from the design D′ states
that the payAmount method for the Engineer class returns the monthlySalary of its Employee

attribute. After the two respective Alloy theories, 〈Σ,R〉 and 〈Σ′,R′〉 have been created for designs
D and D′ by either Daikon or ContExt, we use the Alloy Analyzer to check whether the set of
assertions that hold in the refactored theory is a proper superset of the assertions that hold in
the unrefactored theory. If so, then we conclude that there is evidence to suggest that D′ may be
better verifiable than D in light of the facts obtainable by either tool.

In this example the Alloy analyzer considered all possible models consisting of two Employee

entities, two EmployeeType entities and each int from -16 to 15. Our study suggests that the
verifiability of the refactored design improves with respect to the facts obtained by Daikon, while
the verifiability of either design is sufficiently good in light of the facts obtained by ConText.

4. Conclusions

Insofar as some structural properties of programs are safety-critical, the methodology presented
here already applies to them. For instance, a specification for a controller may contain a safety-
critical class invariant that states which configurations are reachable. Our methodology allows
a way to monitor the verifiability of such properties as refactorings are applied throughout the
software lifecycle. More investigation is needed to evaluate our approach on a real world example.

References

[1] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao. The
Daikon system for dynamic detection of likely invariants. Science of Computer Programming, 2007.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 1999.

[3] J. A. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the specification, correctness,
and implementation of abstract data types. In R. T. Yeh, editor, Current Trends in Programming

Methodology, volume 4. Prentice Hall, 1978.

[4] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.

[5] V. Kuncak and D. Jackson. Relational analysis of algebraic datatypes. In Proceedings of Foundations

of Software Egineering, pages 207–216, Lisbon, Portugal, 2005.

Proceedings of The Sixth NASA Langley Formal Methods Workshop 35

