TEACHING NATURAL DEDUCTION AS A SUBVERSIVE ACTIVITY

James Caldwell

Department of Computer Science University of Wyoming Laramie, WY

Third International Congress on Tools for Teaching Logic 3 June 2011

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

TICTTL 2011 1 / 24

A Story

Lazy Professor: (To class) Do exercise xxx from the text.

The Problematic Exercise

Prove the following formula using Natural Deduction.

$$((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \lor (Q \Rightarrow R))$$

... Two days pass.

A Story

Lazy Professor: (To class) Do exercise xxx from the text.

The Problematic Exercise

Prove the following formula using Natural Deduction.

$$((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \lor (Q \Rightarrow R))$$

... Two days pass.

A Chorus of Students: There is a typo in the book! Student A: The formula is false.

Student A: Disputation

If P and Q together obtain R, then surely it is not always the case that either P alone or Q alone obtains R e.g. let P be over 18 and Q be male and R be must register for military service^a.

^aIn the US women do not register with the selective service.

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

The story continues

Lazy Professor: But it is valid.

(Expressing sympathy and explaining that the counterexample, though compelling, is incorrectly formulated as stated; that predicates and quantifiers are required to formulate it and that in fact, when properly formulated, the obviously false thing is not valid.) Student A: *Classical logic is clearly wrong.* A Chorus of Students: *Yes, classical logic is wrong.*

... More time passes ...

The story continues

Lazy Professor: But it is valid.

(Expressing sympathy and explaining that the counterexample, though compelling, is incorrectly formulated as stated; that predicates and quantifiers are required to formulate it and that in fact, when properly formulated, the obviously false thing is not valid.) Student A: Classical logic is clearly wrong. A Chorus of Students: Yes, classical logic is wrong.

... More time passes ...

Lazy Professor: Consider the student's disputation of the following formula, is the student correct? Professor A: It would seem so. Lazy Professor: But the formula is valid

After a moment of reflection ...

Professor A: Ah, of course, there is no way to falsify it.

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

- $((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \lor (Q \Rightarrow R))$
 - A so-called "paradox" of material implication.
 - ► Generalization of De Morgan (take *R* to be \perp and $\neg \phi \stackrel{def}{=} \phi \Rightarrow \perp$) $\neg (P \land Q) \Rightarrow (\neg P \lor \neg Q)$
 - It is a superintuitionistic theorem of classical logic (not intuitionistically provable) – such theorems are difficult to prove in natural deduction.

- $((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \lor (Q \Rightarrow R))$
 - ► A so-called "paradox" of material implication.
 - ► Generalization of De Morgan (take *R* to be \bot and $\neg \phi \stackrel{def}{=} \phi \Rightarrow \bot$) $\neg (P \land Q) \Rightarrow (\neg P \lor \neg Q)$
 - It is a superintuitionistic theorem of classical logic (not intuitionistically provable) – such theorems are difficult to prove in natural deduction.
- The Lazy Professor's students are in good company Intuitionist and Relevant logicians reject the formula.

- $((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \lor (Q \Rightarrow R))$
 - ► A so-called "paradox" of material implication.
 - ► Generalization of De Morgan (take *R* to be \perp and $\neg \phi \stackrel{def}{=} \phi \Rightarrow \perp$) $\neg (P \land Q) \Rightarrow (\neg P \lor \neg Q)$
 - It is a superintuitionistic theorem of classical logic (not intuitionistically provable) – such theorems are difficult to prove in natural deduction.
- The Lazy Professor's students are in good company Intuitionist and Relevant logicians reject the formula.
- The failure to find a proof led to reflection on the meaning of the formula (this is good) and rejection of classical logic (is this bad?).

- $((P \land Q) \Rightarrow R) \Rightarrow ((P \Rightarrow R) \lor (Q \Rightarrow R))$
 - A so-called "paradox" of material implication.
 - ► Generalization of De Morgan (take *R* to be \perp and $\neg \phi \stackrel{def}{=} \phi \Rightarrow \perp$) $\neg (P \land Q) \Rightarrow (\neg P \lor \neg Q)$
 - It is a superintuitionistic theorem of classical logic (not intuitionistically provable) – such theorems are difficult to prove in natural deduction.
- The Lazy Professor's students are in good company Intuitionist and Relevant logicians reject the formula.
- The failure to find a proof led to reflection on the meaning of the formula (this is good) and rejection of classical logic (is this bad?).

A Claim

These difficulties do not arise when students are taught to do sequent proofs instead of Natural Deduction proofs.

A Note on "Subversive" Activities

Subversive?

This is what Neil Postman^a called *Subversive Teaching* - the method leads students to raise interesting questions for themselves about accepted ideas.

^a Teaching as a Subversive Activity, Neil Postman and Charles Weingartner, Delta Books, NY 1971.

A Note on "Subversive" Activities

Subversive?

This is what Neil Postman^a called *Subversive Teaching* - the method leads students to raise interesting questions for themselves about accepted ideas.

^a Teaching as a Subversive Activity, Neil Postman and Charles Weingartner, Delta Books, NY 1971.

But is it the best way to teach classical logic?

Intuitionist and Relevant logicians raise serious questions about classical logic, but is a students first encounter with logic the best point to raise these questions?

Gentzen's Proof Systems

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

TICTTL 2011 6 / 24

Natural Deduction and Sequent Proof Systems

Natural Deduction and Sequent proof systems were introduced by Gentzen in 1935 in his paper *Investigations into Logical Deduction*¹

Proof Systems

 \mathcal{NJ} Intuitionistic Natural Deduction \mathcal{NK} Classical Natural Deduction \mathcal{LJ} Intuitionistic Sequent Calculus \mathcal{LK} Classical Sequent Calculus

¹M.E.Szabo, The Collected Works of Gerhard Gentzen, pp. 68-131, North Holland 1969.

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

Natural Deduction and Sequent Proof Systems

Natural Deduction and Sequent proof systems were introduced by Gentzen in 1935 in his paper *Investigations into Logical Deduction*¹

Proof Systems

 \mathcal{NJ} Intuitionistic Natural Deduction \mathcal{NK} Classical Natural Deduction \mathcal{LJ} Intuitionistic Sequent Calculus \mathcal{LK} Classical Sequent Calculus

Relationships

- \mathcal{NK} is obtained from \mathcal{NJ} by adding a rule for *Tertium non datur* or *Reductio ad Absurdum*.
- Rather surprisingly, \mathcal{LK} is obtained from \mathcal{LJ} simply by allowing multiple formula on the right side.

¹M.E.Szabo, The Collected Works of Gerhard Gentzen, pp. 68-131, North Holland 1969.

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

Natural Deduction Proof Rules

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

TICTTL 2011 8 / 24

• There is an elegant symmetry in the Introduction and Elimination rules for the logical connectives (NJ).

- There is an elegant symmetry in the Introduction and Elimination rules for the logical connectives (NJ).
- \bullet The Curry-Howard Isomorphism relates \mathcal{NJ} proofs with lambda terms.
 - Proofs \rightleftharpoons Programs
 - Propositions \rightleftharpoons Types

- There is an elegant symmetry in the Introduction and Elimination rules for the logical connectives (\mathcal{NJ}) .
- \bullet The Curry-Howard Isomorphism relates \mathcal{NJ} proofs with lambda terms.
 - Proofs \rightleftharpoons Programs
 - ▶ Propositions ⇒ Types
- $\bullet~\mathcal{N}\mathcal{K}~$ proofs require a combination of forward and backward reasoning.

- There is an elegant symmetry in the Introduction and Elimination rules for the logical connectives (\mathcal{NJ}) .
- \bullet The Curry-Howard Isomorphism relates \mathcal{NJ} proofs with lambda terms.
 - Proofs \rightleftharpoons Programs
 - ▶ Propositions ⇒ Types
- $\mathcal{N}\mathcal{K}\,$ proofs require a combination of forward and backward reasoning.
- RAA
 - ► Any theorem of NK not provable in NJ will require a use of RAA such theorems are called superintuitionistic.
 - ▶ RAA breaks the symmetry of the intro/elim rules.
 - ► There is a similarity between ¬i and RAA but the rule ¬i is easily derived from ⇒ i while RAA is not derivable and introduces a negation.

- There is an elegant symmetry in the Introduction and Elimination rules for the logical connectives (\mathcal{NJ}) .
- \bullet The Curry-Howard Isomorphism relates \mathcal{NJ} proofs with lambda terms.
 - Proofs \rightleftharpoons Programs
 - ▶ Propositions ⇒ Types

• \mathcal{NK} proofs require a combination of forward and backward reasoning.

• RAA

- Any theorem of \mathcal{NK} not provable in \mathcal{NJ} will require a use of RAA such theorems are called superintuitionistic.
- ▶ RAA breaks the symmetry of the intro/elim rules.
- ► There is a similarity between ¬i and RAA but the rule ¬i is easily derived from ⇒ i while RAA is not derivable and introduces a negation.
- \mathcal{NK} does not enjoy the subformula property proofs of superintuitionistic theorems containing no negations will will require the introduction of a negation.

- There is an elegant symmetry in the Introduction and Elimination rules for the logical connectives (\mathcal{NJ}) .
- \bullet The Curry-Howard Isomorphism relates \mathcal{NJ} proofs with lambda terms.
 - Proofs \rightleftharpoons Programs
 - ▶ Propositions ⇒ Types

• $\mathcal{N}\mathcal{K}$ proofs require a combination of forward and backward reasoning.

• RAA

- Any theorem of \mathcal{NK} not provable in \mathcal{NJ} will require a use of RAA such theorems are called superintuitionistic.
- ▶ RAA breaks the symmetry of the intro/elim rules.
- ► There is a similarity between ¬i and RAA but the rule ¬i is easily derived from ⇒ i while RAA is not derivable and introduces a negation.
- \mathcal{NK} does not enjoy the subformula property proofs of superintuitionistic theorems containing no negations will will require the introduction of a negation.
- Failure to find a proof does not provide evidence one does not exist.

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

• A Sequent characterizes the state of a proof.

²Velleman, How to Prove it: A Structured Approach, Cambridge Press 2006

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

TICTTL 2011 10 / 24

- A Sequent characterizes the state of a proof.
- \bullet A sequent is a pair of (possibly empty) formula lists $\langle \Gamma, \Delta \rangle$
 - We write $\Gamma \vdash \Delta$.
 - Γ is the antecedent.
 - Δ is the succedent.
 - Velleman calls these Givens and Goals²

²Velleman, How to Prove it: A Structured Approach, Cambridge Press 2006

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

TICTTL 2011 10 / 24

- A Sequent characterizes the state of a proof.
- A sequent is a pair of (possibly empty) formula lists $\langle \Gamma, \Delta \rangle$
 - We write $\Gamma \vdash \Delta$.
 - Γ is the antecedent.
 - Δ is the succedent.
 - Velleman calls these Givens and Goals²
- The semantics of a sequent is given by:

$$\llbracket \Gamma \vdash \Delta \rrbracket \stackrel{def}{=} (\bigwedge_{\phi \in \Gamma} \phi) \Rightarrow \bigvee_{\psi \in \Delta} \psi$$

Thus, a sequent is valid if some formula on the left is false or all formulas on the left are true and some formula on the right is as well.

²Velleman, *How to Prove it: A Structured Approach*, Cambridge Press 2006 Caldwell (University of Wyoming) Teaching Natural Deduction ... TICTTL 2011 10 / 24

- A Sequent characterizes the state of a proof.
- A sequent is a pair of (possibly empty) formula lists $\langle \Gamma, \Delta \rangle$
 - We write $\Gamma \vdash \Delta$.
 - Γ is the antecedent.
 - Δ is the succedent.
 - Velleman calls these Givens and Goals²
- The semantics of a sequent is given by:

$$\llbracket \Gamma \vdash \Delta \rrbracket \stackrel{def}{=} (\bigwedge_{\phi \in \Gamma} \phi) \Rightarrow \bigvee_{\psi \in \Delta} \psi$$

Thus, a sequent is valid if some formula on the left is false or all formulas on the left are true and some formula on the right is as well.

• \mathcal{LJ} restricts $|\Delta| \leq 1$ while \mathcal{LK} has no restriction on the length of the succedent.

²Velleman, *How to Prove it: A Structured Approach*, Cambridge Press 2006 Caldwell (University of Wyoming) Teaching Natural Deduction ... TICTTL 2011 10 / 24

Sequent Proof Rules

AXIOMS $\Gamma_1, \phi, \Gamma_2 \vdash \Delta_1, \phi, \Delta$ (Ax) $\overline{\Gamma_1, \bot, \Gamma_2 \vdash \Delta}$ ($\bot Ax$) LEFT RULES RIGHT RULES $\frac{\Gamma \vdash \Delta_1, \phi, \Delta_2 \quad \Gamma \vdash \Delta_1, \psi, \Delta_2}{\Gamma \vdash \Delta_1, \phi \land \psi, \Delta_2} (\land \mathsf{R})$ $\frac{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \Delta}{\Gamma_1, \phi \land \psi, \Gamma_2 \vdash \Delta} (\land \mathsf{L})$ $\frac{\Gamma_1, \phi, \Gamma_2 \vdash \Delta}{\Gamma_1, \phi \lor \psi, \Gamma_2 \vdash \Delta} (\lor \mathsf{L})$ $\frac{\Gamma \vdash \Delta_1, \phi, \psi, \Delta_2}{\Gamma \vdash \Delta_1, \phi \lor \psi, \Delta_2} (\lor \mathsf{R})$ $\frac{\Gamma_1, \Gamma_2 \vdash \phi, \Delta \quad \Gamma_1, \psi, \Gamma_2 \vdash \Delta}{\Gamma_1, \phi \Rightarrow \psi, \Gamma_2 \vdash \Delta} (\Rightarrow \mathsf{L})$ $\frac{\Gamma, \phi \vdash \Delta_1, \psi, \Delta_2}{\Gamma \vdash \Delta_1, \phi \Rightarrow \psi, \Delta_2} (\Rightarrow \mathsf{R})$ $\frac{1, \phi \vdash \Delta_1, \overline{\Delta_2}}{\Gamma \vdash \Delta_1, \neg \phi, \Delta_2} (\neg \mathsf{R})$ $\frac{\Gamma_1, \Gamma_2 \vdash \phi, \Delta}{\Gamma_1, \neg \phi, \Gamma_2 \vdash \Delta} (\neg \mathsf{L})$

Remarks on Sequent Rules and Derivations

• Left rules correspond to Elimination rules and Right rules correspond to Introduction rules - there is no rule corresponding to RAA.

Remarks on Sequent Rules and Derivations

- Left rules correspond to Elimination rules and Right rules correspond to Introduction rules - there is no rule corresponding to RAA.
- Construction of sequent derivations is syntax driven.
 - Non-deterministically choose a compound formula in the left or right side and apply the corresponding rule.
 - If all formulas are atomic, check if the sequent is an instance of one of the axiom rules.
 - Repeat until all leaves of the tree are instances of axioms (and you have a proof) or until some atomic sequent turns out *not* to be an instance of an axiom rule (and you can build a counter example.)

Remarks on Sequent Rules and Derivations

- Left rules correspond to Elimination rules and Right rules correspond to Introduction rules - there is no rule corresponding to RAA.
- Construction of sequent derivations is syntax driven.
 - Non-deterministically choose a compound formula in the left or right side and apply the corresponding rule.
 - If all formulas are atomic, check if the sequent is an instance of one of the axiom rules.
 - Repeat until all leaves of the tree are instances of axioms (and you have a proof) or until some atomic sequent turns out *not* to be an instance of an axiom rule (and you can build a counter example.)
- Failed derivations yield counterexamples.
 - Consider an atomic sequent of the form $\Gamma \vdash \Delta$ that is *not* an instance of an axiom rule
 - ► The assignment $(\lambda x.if(x \in \Delta) \text{ then True else False})$ falsifies $\Gamma \vdash \Delta$
 - It also falsifies any sequent rooting a derivation ending with $\Gamma \vdash \Delta$.

$\bullet\,$ Proofs from assumptions are obtained by adding the assumed formulas to $\Gamma.$

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

$\mathcal{N}\mathcal{K}$ $\mbox{ Proof of Excluded Middle}$

- We will prove $\phi \lor \neg \phi$ in both \mathcal{NK} and \mathcal{LK} .
- Examining the rules, it becomes clear that the explicit intro rules ∨i₁ and ∨i₂ can only arise from a proof of φ or a proof of ¬φ which is impossible without assumptions.
- The only rule that can help is RAA.

$$\frac{\begin{matrix} \chi \\ [\neg(\phi \lor \neg \phi)] \\ \vdots \\ \downarrow \\ \downarrow \\ \hline \hline \phi \lor \neg \phi \\ RAA \end{matrix}$$

• We must derive \perp from the assumption $\neg(\phi \lor \neg \phi)$.

\mathcal{NK} Proof of Excluded Middle (Cont.)

• The only rule having \perp as its conclusion is $\neg e$.

$$\frac{\left[\neg(\phi \lor \neg \phi)\right]}{\vdots} \\
\frac{\phi \lor \neg \phi \qquad \left[\neg(\phi \lor \neg \phi)\right]}{\left[\neg(\phi \lor \neg \phi)\right]} \neg e$$
^[1] $\frac{\bot}{\phi \lor \neg \phi}$ RAA

• Now we must derive $\phi \lor \neg \phi$ from $\neg(\phi \lor \neg \phi)$.

Caldwell (University of Wyoming)

\mathcal{NK} Proof of Excluded Middle (Cont.)

 Again, ¬e may be able to help. We need φ ∨ ¬φ so we assume φ and then use ∨i₁.

$$\frac{\begin{bmatrix} 2\\ \phi \end{bmatrix}}{\frac{\phi \lor \neg \phi}{} \lor i_{1}} \begin{bmatrix} 1\\ (\neg (\phi \lor \neg \phi) \end{bmatrix}} \neg e \\
\frac{\Box}{\vdots} \\ \frac{\phi \lor \neg \phi}{} \begin{bmatrix} \neg (\phi \lor \neg \phi) \end{bmatrix}} \neg e \\
\frac{1}{\begin{bmatrix} 1\\ \phi \lor \neg \phi \end{bmatrix}} \neg e$$

• Now of course we have a new hypothesis to discharge.

$\mathcal{N}\mathcal{K}$ $\mbox{ Proof of Excluded Middle}$

• An application of $\neg i$ can be used to discharge hypothesis 2 and yields $\neg \phi$.

$$\frac{\begin{bmatrix} \varphi \\ \phi \end{bmatrix}}{\hline \phi \lor \neg \phi} \lor i_{1} \qquad \begin{bmatrix} \neg (\phi \lor \neg \phi) \end{bmatrix}} \neg e \\
\frac{\begin{bmatrix} 2 \\ -\phi \\ \neg \phi \end{bmatrix}}{\begin{bmatrix} 2 \\ -\phi \\ -\phi \end{bmatrix}} \neg e \\
\frac{\begin{bmatrix} 2 \\ -\phi \\ \neg \phi \end{bmatrix}}{\begin{bmatrix} -\phi \\ \nabla \neg \phi \end{bmatrix}} \neg e \\
\frac{\begin{bmatrix} 1 \\ -\phi \\ \nabla \neg \phi \end{bmatrix}}{\begin{bmatrix} 1 \\ \phi \\ \nabla \neg \phi \end{bmatrix}} \neg e$$

 Now the goal is to derive φ ∨ ¬φ from ¬φ. This is easily done with the rule ∨i₂. \mathcal{NK} proof of Excluded Middle (Cont.)

• This completes the proof.

$$\frac{\begin{matrix} 2\\ [\phi] \\ \hline \phi \lor \neg \phi \end{matrix} \lor i_{1} & [\neg(\phi \lor \neg \phi)] \\ \hline \hline & \begin{matrix} i_{2} \\ \hline & \neg \phi \\ \hline & \neg \phi \end{matrix} \lor i_{2} & [\neg(\phi \lor \neg \phi)] \\ \hline & \begin{matrix} i_{1} \\ \hline & \hline & \downarrow \\ \hline & \phi \lor \neg \phi \end{matrix} RAA \end{matrix} \neg e$$

• This is the shortest natural deduction proof of excluded middle the author knows of.

Caldwell (University of Wyoming)

$\mathcal{LK}\xspace$ proof of Excluded Middle

• Now we derive the sequent $\vdash \phi \lor \neg \phi$ having no assumptions.

$\mathcal{LK}\xspace$ proof of Excluded Middle

- Now we derive the sequent $\vdash \phi \lor \neg \phi$ having no assumptions.
- The only rule that applies here is $\lor R$.

$$\frac{\vdash \phi, \neg \phi}{\vdash \phi \lor \neg \phi} \lor r$$

\mathcal{LK} proof of Excluded Middle

- Now we derive the sequent $\vdash \phi \lor \neg \phi$ having no assumptions.
- The only rule that applies here is $\lor R$.

$$\frac{\vdash \phi, \neg \phi}{\vdash \phi \lor \neg \phi} \lor r$$

- At this point we have two goals, it is enough to prove either one.
- The only rule that applies is $\neg R$.

$$\frac{\phi \vdash \phi}{\vdash \phi, \neg \phi} \neg R$$
$$\frac{\neg}{\vdash \phi \lor \neg \phi} \lor R$$

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

TICTTL 2011 18 / 24

\mathcal{LK} proof of Excluded Middle

- Now we derive the sequent $\vdash \phi \lor \neg \phi$ having no assumptions.
- The only rule that applies here is $\lor R$.

$$\frac{\vdash \phi, \neg \phi}{\vdash \phi \lor \neg \phi} \lor r$$

- At this point we have two goals, it is enough to prove either one.
- The only rule that applies is $\neg R$.

$$\frac{\phi \vdash \phi}{\vdash \phi, \neg \phi} \neg R$$
$$\frac{}{\vdash \phi \lor \neg \phi} \lor R$$

• This is an instance of the axiom rule and the proof is complete.

$$\frac{\overline{\phi \vdash \phi} Ax}{\overline{\vdash \phi, \neg \phi} \neg R}$$
$$\overline{\vdash \phi \lor \neg \phi} \lor R$$

Caldwell (University of Wyoming)

TICTTL 2011 18 / 24

$\mathcal{N}\mathcal{K}$ derivation of GDM

$$\frac{\begin{bmatrix} 3 & 4 \\ [\phi] & [\psi] \\ \hline \phi \land \psi & \land i \\ \hline [(\phi \land \psi) \Rightarrow \sigma] \\ \hline \hline \frac{\phi \Rightarrow \sigma}{\phi \Rightarrow \sigma} \Rightarrow i \\ \hline \hline \frac{(\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)}{(\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)} \lor i_{1} [\neg ((\phi \Rightarrow \sigma)^{2} (\psi \Rightarrow \sigma))] \\ \hline \hline \frac{(\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)}{(\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)} \lor i_{2} [\neg ((\phi \Rightarrow \sigma)^{2} (\psi \Rightarrow \sigma))] \\ \hline \frac{(\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)}{(\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)} \lor i_{2} [\neg ((\phi \Rightarrow \sigma)^{2} (\psi \Rightarrow \sigma))] \\ \hline \frac{(\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)}{((\phi \land \psi) \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)} \Rightarrow i \\$$

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

TICTTL 2011 19 / 24

Sequent derivation of GDM

$$\frac{\overline{\phi, \psi \vdash \phi, \sigma}}{\phi, \psi \vdash \phi, \psi, \sigma} Ax \qquad \overline{\phi, \psi \vdash \psi, \sigma} Ax \\
\frac{\overline{\phi, \psi \vdash \phi \land \psi, \sigma}}{\phi \vdash \phi \land \psi, \psi \Rightarrow \sigma} \Rightarrow R \qquad \overline{\sigma, \phi \vdash \sigma, \psi \Rightarrow \sigma} Ax \\
\frac{\overline{\phi \vdash \phi \land \psi, \psi \Rightarrow \sigma}}{(\phi \land \psi) \Rightarrow \sigma, \phi \vdash \sigma, \sigma \Rightarrow \psi} \Rightarrow R \\
\frac{\overline{(\phi \land \psi) \Rightarrow \sigma \vdash \phi \Rightarrow \sigma, \psi \Rightarrow \sigma}}{(\phi \land \psi) \Rightarrow \sigma \vdash (\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)} \Rightarrow R \\
\frac{\overline{(\phi \land \psi) \Rightarrow \sigma \vdash (\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma)}}{\vdash ((\phi \land \psi) \Rightarrow \sigma) \Rightarrow ((\phi \Rightarrow \sigma) \lor (\psi \Rightarrow \sigma))} \Rightarrow R$$

Caldwell (University of Wyoming)

Teaching Natural Deduction ...

TICTTL 2011 20 / 24

- It is often claimed that natural deduction proofs reflect the mathematical thought process but that sequents do not.
 - I claim it is the rules, not the tree structure of a proof, that serves to "explain" the logical laws.
 - ▶ Consider disjunction: "To prove $\phi \lor \psi$ prove ψ or prove ψ ."

The sequent rule works perfectly well as an explanation.

- It is often claimed that natural deduction proofs reflect the mathematical thought process but that sequents do not.
 - I claim it is the rules, not the tree structure of a proof, that serves to "explain" the logical laws.
 - ▶ Consider disjunction: "To prove $\phi \lor \psi$ prove ψ or prove ψ ."

- The sequent rule works perfectly well as an explanation.
- Sequent proofs require too much writing.
 - Not in superintuitionistic cases (see examples above).
 - Ink is cheap.
 - With tool support this claim is moot.
 - ▶ It is perfectly OK to elide unneeded formulas in the antecedent. $\frac{\Gamma' \vdash \Delta}{\Gamma, \vdash \Delta}$ (Thin) where $\Gamma' \subseteq \Gamma$

- Multiple formulas on the right are hard to motivate.
 - The sequent semantics and $\lor R$ are justification enough.

$$\llbracket \Gamma \vdash \Delta \rrbracket \stackrel{\text{def}}{=} (\bigwedge_{\phi \in \Gamma} \phi) \Rightarrow \bigvee_{\psi \in \Delta} \psi$$

Velleman (a best selling book on informal proof methods) uses them.

- Multiple formulas on the right are hard to motivate.
 - The sequent semantics and $\lor R$ are justification enough.

$$\llbracket \Gamma \vdash \Delta \rrbracket \stackrel{\text{def}}{=} (\bigwedge_{\phi \in \Gamma} \phi) \Rightarrow \bigvee_{\psi \in \Delta} \psi$$

Velleman (a best selling book on informal proof methods) uses them.

- Cut is hard to motivate?
 - I find this one hard to understand.

$$\frac{\Gamma \vdash \phi, \Delta \quad \Gamma, \phi \vdash \Delta}{\Gamma \vdash \Delta}$$
(Cut)

- Cut is not needed though it can be convenient in predicate logic proofs.
- More conveniently, we add a lemma rule for previously proved theorems.

$$\frac{\Gamma, \phi \vdash \Delta}{\Gamma \vdash \Delta}$$
 (Lemma) where $\vdash \phi$

Caldwell (University of Wyoming)

For Sequents

- The provide a decision procedure for propositional logic.
- Counter-examples are easily generated from failed proofs.
- Students gain confidence as they become more adept at manipulating the formalism.
- There is no question "Is this a proof?"
- Curry-Howard still holds (for \mathcal{LJ} proofs.)
- It is easy to identify the superintuitionistic theorems which ones necessarily have two formulas on the right at some point in the derivation.

Propositional Logic is Easy!

Teaching propositional logic using Natural Deduction is a bit like teaching arithmetic using Roman numerals

You could force students to suffer through it, but aren't Arabic numerals better suited to the task?