A Machine-Checked Model of MGU Axioms: Applications of Finite Maps and Functional Induction

Presented by Sunil Kothari Joint work with Prof. James Caldwell

Department of Computer Science, University of Wyoming, USA

23rd International Workshop on Unification August 2, 2009

Outline

Outline

Overview

• Type Reconstruction Algorithms

2 Introduction

- Substitution
- Coq

3 First-order unification algorithm

- Specification in Coq
- Termination

A model for MGU axioms

- Axiom iii
- Axiom iv

• Essential feature of many functional programming languages (ML, Haskell, OCaml, etc.).

Highlights

- Essential feature of many functional programming languages (ML, Haskell, OCaml, etc.).
- Automated type reconstruction is possible.

Highlights

- Essential feature of many functional programming languages (ML, Haskell, OCaml, etc.).
- Automated type reconstruction is possible.
 - Substitution-based algorithms.
 - Intermittent constraint generation and constraint solving.

- Essential feature of many functional programming languages (ML, Haskell, OCaml, etc.).
- Automated type reconstruction is possible.
 - Substitution-based algorithms.
 - Intermittent constraint generation and constraint solving.
 - Constraint-based algorithms.
 - Two distinct phases: constraint generation and constraint solving.

Substitution-based

- Algorithm W, J by Milner, 1978.
- Algorithm M by Leroy, 1993.

Substitution-based

- Algorithm W, J by Milner, 1978.
- Algorithm M by Leroy, 1993.

Constraint-based Frameworks/Algorithms

- Wand's algorithm [Wan87].
- Qualified types [Jon95].
- HM(X) [SOW97] by Sulzmann et al. 1999, Pottier and Rémy 2005 [PR05].
- Top quality error messages [Hee05].

Machine-Certified Correctness Proof

Algorithm W in Coq, Isabelle/HOL [DM99, NN99a, NN99b, NN96].

Machine-Certified Correctness Proof

- Algorithm W in Coq, Isabelle/HOL [DM99, NN99a, NN99b, NN96].
- Nominal verification of Algorithm W [UN09].

Machine-Certified Correctness Proof

- Algorithm W in Coq, Isabelle/HOL [DM99, NN99a, NN99b, NN96].
- Nominal verification of Algorithm W [UN09].
- We want to formalize multi-phase unification algorithm needed to handle polymorphic let.

Machine-Certified Correctness Proof

- Algorithm W in Coq, Isabelle/HOL [DM99, NN99a, NN99b, NN96].
- Nominal verification of Algorithm W [UN09].
- We want to formalize multi-phase unification algorithm needed to handle polymorphic let.
- POPLMark challenge also aims at mechanizing meta-theory.

Modeling MGU

• The most general unifier (MGU) is often a first-order unification algorithm over simple type terms.

Modeling MGU

- The *most general unifier* (MGU) is often a first-order unification algorithm over simple type terms.
- In machine checked correctness proofs, the MGU is modeled as a set of four axioms:

(i)
$$mgu \sigma (\tau_1 \stackrel{c}{=} \tau_2) \Rightarrow \sigma(\tau_1) = \sigma(\tau_2)$$

(ii) $mgu \sigma (\tau_1 \stackrel{c}{=} \tau_2) \land \sigma'(\tau_1) = \sigma'(\tau_2) \Rightarrow \exists \sigma''.\sigma' \approx \sigma \circ \sigma''$
(iii) $mgu \sigma (\tau_1 \stackrel{c}{=} \tau_2) \Rightarrow FTVS (\sigma) \subseteq FVC (\tau_1 \stackrel{c}{=} \tau_2)$
(iv) $\sigma(\tau_1) = \sigma(\tau_2) \Rightarrow \exists \sigma'. mgu \sigma'(\tau_1 \stackrel{c}{=} \tau_2)$

Outline

OverviewType Reconstruction Algorithms

Introduction

- Substitution
- Coq

First-order unification algorithm

- Specification in Coq
- Termination

A model for MGU axioms

- Axiom iii
- Axiom iv

Terms

• $\tau ::= \text{TyVar}(x) \mid \tau' \rightarrow \tau''$

Terms

- $\tau ::= \text{TyVar}(x) \mid \tau' \rightarrow \tau''$
- Atomic types (of the form TyVar *x*) are denoted by α, β, α' etc.

Terms

- $\tau ::= \text{TyVar}(x) \mid \tau' \rightarrow \tau''$
- Atomic types (of the form TyVar *x*) are denoted by α, β, α' etc.

Constraints

• Constraint are of the form $\tau \stackrel{c}{=} \tau'$.

Terms

- $\tau ::= \text{TyVar}(x) \mid \tau' \rightarrow \tau''$
- Atomic types (of the form TyVar *x*) are denoted by α, β, α' etc.

Constraints

- Constraint are of the form $\tau \stackrel{c}{=} \tau'$.
- A list of constraint is given as:

•
$$\mathbb{C} ::= [] \mid \tau \stackrel{c}{=} \tau' :: \mathbb{C}'$$

FTV and FVC

Free type variable (FTV)

 $\begin{array}{ll} \mathsf{FTV} \ (\mathsf{TyVar} \ x) & \stackrel{def}{=} & [x] \\ \mathsf{FTV} \ (\tau \to \tau') & \stackrel{def}{=} & \mathsf{FTV} \ (\tau) \ ++ \ \mathsf{FTV} \ (\tau') \end{array}$

FTV and FVC

Free type variable (FTV)

 $\begin{array}{ll} \mathsf{FTV} \ (\mathsf{TyVar} \ x) & \stackrel{\textit{def}}{=} & [x] \\ \mathsf{FTV} \ (\tau \to \tau') & \stackrel{\textit{def}}{=} & \mathsf{FTV} \ (\tau) \ ++ \ \mathsf{FTV} \ (\tau') \end{array}$

Free variables of a constraint list (FVC)

FVC []
$$\stackrel{def}{=}$$
[]FVC $((\tau_1 \stackrel{c}{=} \tau_2) :: \mathbb{C})$ $\stackrel{def}{=}$ FTV $(\tau_1) ++$ FTV $(\tau_2) ++$ FVC (\mathbb{C})

Related Concepts

• A *substitution* (denoted by ρ) maps type variables to types.

Related Concepts

- A substitution (denoted by ρ) maps type variables to types.
- Denoted by $\sigma, \sigma', \sigma_1$ etc.

Related Concepts

- A substitution (denoted by ρ) maps type variables to types.
- Denoted by $\sigma, \sigma', \sigma_1$ etc.
- Substitution application to a type τ is defined as:

$$\begin{array}{ll} \sigma \ (\mathsf{TyVar}(x)) & \stackrel{\textit{def}}{=} & \textit{if} \ \langle x, \tau \rangle \ \in \ \sigma \ \textit{then} \ \tau \ \textit{else} \ \mathsf{TyVar}(x) \\ \sigma \ (\tau_1 \to \tau_2) & \stackrel{\textit{def}}{=} & \sigma(\tau_1) \to \sigma(\tau_2) \end{array}$$

Related Concepts

- A substitution (denoted by ρ) maps type variables to types.
- Denoted by $\sigma, \sigma', \sigma_1$ etc.

1

• Substitution application to a type τ is defined as:

$$\begin{array}{ll} \sigma \left(\mathsf{TyVar}(x) \right) & \stackrel{\textit{def}}{=} & \textit{if } \langle x, \tau \rangle \ \in \ \sigma \ \textit{then} \ \tau \ \textit{else} \ \mathsf{TyVar}(x) \\ \sigma \left(\tau_1 \rightarrow \tau_2 \right) & \stackrel{\textit{def}}{=} & \sigma(\tau_1) \rightarrow \sigma(\tau_2) \end{array}$$

• Application of a substitution to a constraint is defined similarly:

$$\sigma(\tau_1 \stackrel{c}{=} \tau_2) \stackrel{def}{=} \sigma(\tau_1) \stackrel{c}{=} \sigma(\tau_2)$$

Substitution Composition

- Substitution composition definition using Coq's finite maps is complicated.
- But the following theorem holds

Theorem 1 (Composition apply)

 $\forall \sigma, \sigma'. \forall \tau. (\sigma \circ \sigma') \tau = \sigma'(\sigma(\tau))$

Substitution Composition

- Substitution composition definition using Coq's finite maps is complicated.
- But the following theorem holds

Theorem 1 (Composition apply)

 $\forall \sigma, \sigma'. \forall \tau. (\sigma \circ \sigma') \tau = \sigma'(\sigma(\tau))$

Substitution Composition

- Substitution composition definition using Coq's finite maps is complicated.
- But the following theorem holds

Theorem 1 (Composition apply)

 $\forall \sigma, \sigma'. \forall \tau. (\sigma \circ \sigma') \tau = \sigma'(\sigma(\tau))$

Extensional equality

• Substitutions are equal if they behave the same on all type variables.

$$\sigma \approx \sigma' \stackrel{\text{def}}{=} \forall \alpha. \ \sigma(\alpha) = \sigma'(\alpha)$$

Unifiers and MGUs

Unifier

• We write
$$\sigma \models (\tau_1 \stackrel{c}{=} \tau_2)$$
, if $\sigma(\tau_1) = \sigma(\tau_2)$.
• $\sigma \models \mathbb{C} \stackrel{\text{def}}{=} \forall c \in \mathbb{C}, \sigma \models c$.

Unifiers and MGUs

Unifier

• We write
$$\sigma \models (\tau_1 \stackrel{c}{=} \tau_2)$$
, if $\sigma(\tau_1) = \sigma(\tau_2)$.
• $\sigma \models \mathbb{C} \stackrel{\text{def}}{=} \forall c \in \mathbb{C}, \sigma \models c$.

Most General Unifier

• A unifier σ is the most general unifier(MGU) if for any other unifier σ'' there is a substitution σ' such that $\sigma \circ \sigma' \approx \sigma''$.

Overview

• Based on the Calculus of Constructions.

Coq

- Based on the Calculus of Constructions.
- System F extended with dependent types.

Coq

- Based on the Calculus of Constructions.
- System F extended with dependent types.
- Support for inductive datatypes.

Coq

- Based on the Calculus of Constructions.
- System F extended with dependent types.
- Support for inductive datatypes.
- Programs can be extracted from proofs.

Coq

- Based on the Calculus of Constructions.
- System F extended with dependent types.
- Support for inductive datatypes.
- Programs can be extracted from proofs.
- Lots of libraries.

Representing substitutions

• Substitution represented as a list of pairs, set of pairs, and normal function.

Cog

• We represent a substitution as a finite function.

Finite maps in Coq

Representing substitutions

- Substitution represented as a list of pairs, set of pairs, and normal function.
- We represent a substitution as a finite function.

Substitution as finite map

- Used the Coq's finite maps library Coq.FSets.FMapInterface.
- Axiomatic presentation.
- Provides no induction principle.
- Forward reasoning is often required.

Substitution Related Concepts in Coq

Domain

dom_subst(σ) $\stackrel{\text{def}}{=}$ List.map (λt .fst (t)) (M.elements(σ))

Substitution Related Concepts in Coq

Domain

dom_subst(σ) $\stackrel{\text{def}}{=}$ List.map (λt .fst (t)) (M.elements(σ))

Range

range_subst(σ) $\stackrel{\text{def}}{=}$ List.flat_map (λt .FTV (snd (t))) (M.elements(σ))

Substitution Related Concepts in Coq

Domain

dom_subst(σ) $\stackrel{\text{def}}{=}$ List.map (λt .fst (t)) (M.elements(σ))

Range

range_subst(σ) $\stackrel{\text{def}}{=}$ List.flat_map (λt .FTV (snd (t))) (M.elements(σ))

FTVS

$$\mathsf{FTVS}(\sigma) \stackrel{\textit{def}}{=} \mathsf{dom_subst}(\sigma) ++ \operatorname{range_subst}(\sigma)$$

Outline

Overview

• Type Reconstruction Algorithms

2 Introduction

- Substitution
- Coq

3 First-order unification algorithm

- Specification in Coq
- Termination

A model for MGU axioms

- Axiom iii
- Axiom iv

Unification

The Algorithm

unify $(\alpha \stackrel{c}{=} \alpha) :: \mathbb{C}$	def ≝	unify $\mathbb C$
unify $(\alpha \stackrel{c}{=} \beta) :: \mathbb{C}$	def	$\{\alpha \mapsto \beta\} \circ unify (\{\alpha \mapsto \beta\}\mathbb{C})$
unify $(\alpha \stackrel{c}{=} \tau) :: \mathbb{C}$	def ≡	if α occurs in $ au$
		then Fail
		else $\{\alpha \mapsto \tau\} \circ \text{unify} (\{\alpha \mapsto \tau\}\mathbb{C})$
unify $(\tau \stackrel{c}{=} \alpha) :: \mathbb{C}$	def	unify $(\alpha \stackrel{c}{=} \tau) :: \mathbb{C}$
unify ($ au_1 ightarrow au_2$	def	unify $(\tau_1 \stackrel{c}{=} \tau_3 :: \tau_2 \stackrel{c}{=} \tau_4 :: \mathbb{C})$
$\stackrel{c}{=} \tau_3 \rightarrow \tau_4$) ::	\mathbb{C}	
unify []	def ≝	ld

Unification

The Algorithm

$$\begin{array}{lll} \text{unify } (\alpha \stackrel{c}{=} \alpha) :: \mathbb{C} & \stackrel{\text{def}}{=} & \text{unify } \mathbb{C} \\ \text{unify } (\alpha \stackrel{c}{=} \beta) :: \mathbb{C} & \stackrel{\text{def}}{=} & \{\alpha \mapsto \beta\} \circ \text{unify } (\{\alpha \mapsto \beta\}\mathbb{C}) \\ \text{unify } (\alpha \stackrel{c}{=} \tau) :: \mathbb{C} & \stackrel{\text{def}}{=} & \text{if } \alpha \text{ occurs in } \tau \\ & \text{then Fail} \\ \text{else } \{\alpha \mapsto \tau\} \circ \text{unify } (\{\alpha \mapsto \tau\}\mathbb{C}) \\ \text{unify } (\tau \stackrel{c}{=} \alpha) :: \mathbb{C} & \stackrel{\text{def}}{=} & \text{if } \alpha \text{ occurs in } \tau \\ & \text{then Fail} \\ \text{else } \{\alpha \mapsto \tau\} \circ \text{unify } (\{\alpha \mapsto \tau\}\mathbb{C}) \\ \text{unify } (\tau_1 \to \tau_2 & \stackrel{\text{def}}{=} & \text{unify } (\tau_1 \stackrel{c}{=} \tau_3 :: \tau_2 \stackrel{c}{=} \tau_4 :: \mathbb{C}) \\ \stackrel{c}{=} \tau_3 \to \tau_4) :: \mathbb{C} \\ \text{unify } [] & \stackrel{\text{def}}{=} & Id \end{array}$$

Specification in Coq

```
Function unify (c:list constr) {wf meaPairMLt} : (option (M.t type)) :=
match c with
   nil => Some (M.empty type)
| h::t => (match h with
              EqCons (TyVar x) (TyVar y) =>
                  if eq_dec_stamp x y
                  then unify t
                  else (match unify (apply subst to constr list
                                         (M.add x (TvVar v)
                                            (M.empty type)) t) with
                           Some p => Some (compose subst
                                         (M.add x (TvVar v)
                                            (M.empty type)) p)
                          | None => None
                       end)
             | EqCons (TyVar x) (Arrow ty3 ty4) =>
                  if (member x (FTV ty3)) || (member x (FTV ty4))
                  then None
                  else (match (unify (apply subst to constr list
                                         (M.add x (Arrow ty3 ty4)
                                             (M.empty type)) t) with
                          Some p => Some (compose subst
                                                (M.add x (Arrow ty3 ty4)
                                                    (M.empty type)) p)
                        | None => None
                       end)
            | EgCons (Arrow tv3 tv4) (TvVar x) =>
                  if (member x (FTV ty3)) || (member x (FTV ty4))
                  then None
                  else (match (unify (apply_subst_to_constr_list
                                          (M.add x (Arrow tv3 tv4)
```

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms

First-order unification in Coq

Issues in formalization

- Raise exceptions, but that's not possible.
- We choose an option type defined as:

Inductive option $(A : Set) : Set := Some (_: A) | None.$

- Our specification of unification is general recursive so Coq will require a termination criteria.
 - Give a measure that reduces on each recursive call.
 - Give a well-founded ordering, and ...
 - Show that recursive call is lower in order w.r.t the above order (bunched together as proof obligations).
 - Show that the ordering is well-founded.
 - Others

Termination

Lexicographic Ordering

• The lexicographic ordering (\prec_3) on the two triples $\langle n_1, n_2, n_3 \rangle$ and $\langle m_1, m_2, m_3 \rangle$ is defined as $\langle n_1, n_2, n_3 \rangle \prec_3 \langle m_1, m_2, m_3 \rangle \stackrel{def}{=} (n_1 < m_1) \lor (n_1 = m_1 \land n_2 < m_2) \lor (n_1 = m_1 \land n_2 = m_2 \land n_3 < m_3)$, where < and = are the ordinary less-than inequality and equality on natural numbers.

The Triple

• The triple is $\langle |C_{FVC}|, |C_{\rightarrow}|, |C| \rangle$, where

C_{FVC} | - the number of unique free variables in a constraint list;

- C_{\rightarrow} | the total number of arrows in the constraint list;
- |C| the length of the constraint list.

Termination

Termination...contd

Original call	Recursive call	Conditions, if any	C _{FVC}	$ C_{\rightarrow} $	C
$(\alpha \stackrel{c}{=} \alpha) :: \mathbb{C}$	C	$\alpha \in (FVC \ \mathbb{C})$	-	-	Ļ
$(\alpha \stackrel{c}{=} \alpha) :: \mathbb{C}$	C	$\alpha \notin (FVC \ \mathbb{C})$	↓	-	↓
$(\alpha \stackrel{c}{=} \beta) :: \mathbb{C}$	$\{\alpha \mapsto \beta\}\mathbb{C}$	$\alpha \neq \beta$	↓	-	↓
$(\alpha \stackrel{c}{=} \tau) :: \mathbb{C}$	$\{\alpha \mapsto \tau\}\mathbb{C}$	$\alpha \notin (FTV \ \tau) \land \alpha \notin (FVC \ \mathbb{C})$	Ļ	↓	↓
$(\alpha \stackrel{c}{=} \tau) :: \mathbb{C}$	$\{\alpha \mapsto \tau\}\mathbb{C}$	$\alpha \notin (FTV \ \tau) \land \alpha \in (FVC \ \mathbb{C})$	Ļ	1	Ļ
$(\tau \stackrel{c}{=} \alpha) :: \mathbb{C}$	$\{\alpha \mapsto \tau\}\mathbb{C}$	$\alpha \notin (FTV \ \tau) \land \alpha \notin (FVC \ \mathbb{C})$	↓	↓	Ļ
$(\tau \stackrel{c}{=} \alpha) :: \mathbb{C}$	$\{\alpha \mapsto \tau\}\mathbb{C}$	$\alpha \notin (FTV \ \tau) \land \alpha \in (FVC \ \mathbb{C})$	↓	↑	↓
$(\tau_1 \rightarrow \tau_2$	$(\tau_1 \stackrel{c}{=} \tau_3)$	None	-	↓	Î
$\stackrel{c}{=} \tau_3 \rightarrow \tau_4$) :: \mathbb{C}	$:: (\tau_2 \stackrel{c}{=} \tau_4) :: \mathbb{C}$				

Table: Variation of termination measure components on the recursive call

Outline

Type Reconstruction Algorithms

Introduction

- Substitution
- Coq
- First-order unification algorithm
 - Specification in Coq
 - Termination

A model for MGU axioms

- Axiom iii
- Axiom iv

A model for MGU axioms

Functional Induction in Coq

• Requires an induction principle generated before.

Functional Induction in Coq

- Requires an induction principle generated before.
- functional induction (f x1 x2 x3 .. xn) is a short form for induction x1 x2 x3 ...xn f(x1 ... xn) using *id*, where *id* is the induction principle for *f*.

Functional Induction in Coq

- Requires an induction principle generated before.
- functional induction (f x1 x2 x3 .. xn) is a short form for induction x1 x2 x3 ...xn f(x1 ... xn) using *id*, where *id* is the induction principle for *f*.
 - functional induction (unify c) → induction c (unify c) using unif_ind.
- Important first step in proof of the axioms.

MGU axioms

Old Axioms

(i)
$$mgu \sigma (\tau_1 \stackrel{c}{=} \tau_2) \Rightarrow \sigma(\tau_1) = \sigma(\tau_2)$$

- (ii) $mgu \sigma (\tau_1 \stackrel{c}{=} \tau_2) \wedge \sigma'(\tau_1) = \sigma'(\tau_2) \Rightarrow \exists \delta. \sigma' \approx \sigma \circ \delta$
- (iii) $mgu \sigma (\tau_1 \stackrel{c}{=} \tau_2) \Rightarrow FTVS (\sigma) \subseteq FVC (\tau_1 \stackrel{c}{=} \tau_2)$
- (iv) $\sigma(\tau_1) = \sigma(\tau_2) \Rightarrow \exists \sigma' . mgu \sigma'(\tau_1 \stackrel{c}{=} \tau_2)$

MGU axioms

Old Axioms

(i)
$$mgu \sigma (\tau_1 \stackrel{c}{=} \tau_2) \Rightarrow \sigma(\tau_1) = \sigma(\tau_2)$$

(ii)
$$mgu \sigma (\tau_1 = \tau_2) \land \sigma'(\tau_1) = \sigma'(\tau_2) \Rightarrow \exists \delta \sigma' \approx \sigma \circ \delta$$

- (iii) mgu σ ($\tau_1 \stackrel{c}{=} \tau_2$) \Rightarrow FTVS (σ) \subseteq FVC ($\tau_1 \stackrel{c}{=} \tau_2$)
- (iv) $\sigma(\tau_1) = \sigma(\tau_2) \Rightarrow \exists \sigma' . mgu \sigma'(\tau_1 \stackrel{c}{=} \tau_2)$

New Generalized Axioms

(*i*) unify
$$\mathbb{C} = \text{Some } \sigma \Rightarrow \sigma \models \mathbb{C}$$

(*ii*) (unify $\mathbb{C} = \text{Some } \sigma \land \sigma' \models \mathbb{C}$) $\Rightarrow \exists \sigma''. \sigma' \approx \sigma \circ \sigma''$
(*iii*) unify $\mathbb{C} = \text{Some } \sigma \Rightarrow \text{FTVS}(\sigma) \subseteq \text{FVC}(\mathbb{C})$
(*iv*) $\sigma \models \mathbb{C} \Rightarrow \exists \sigma'.$ unify $\mathbb{C} = \text{Some } \sigma'$

Axiom iii

Lemma 2 (Compose and domain membership)

 $\forall x, y. \forall \tau. \forall \sigma. y \in \mathsf{dom_subst} (\{x \mapsto \tau\} \circ \sigma)) \\ \Rightarrow y \in \mathsf{dom_subst} \{x \mapsto \tau\} \lor y \in \mathsf{dom_subst} \sigma$

Lemma 3 (Compose and range membership)

$$\forall x, y. \forall \tau. \forall \sigma. (x \notin (\mathsf{FTV} \ \tau) \land y \in \mathsf{range_subst} (\{x \mapsto \tau\} \circ \sigma)) \\ \Rightarrow y \in \mathsf{range_subst} \{x \mapsto \tau\} \lor y \in \mathsf{range_subst} \ \sigma$$

Axiom iii

Axiom iii ...contd

Lemma 4 (Subst range abstraction)

 $\forall x. \forall \sigma. x \in \text{range_subst}(\sigma) \Leftrightarrow \exists y. y \in \text{dom_subst}(\sigma) \land x \in FTV(\sigma(\text{TyVar } y))$

Theorem 5

 $\forall \sigma, \sigma', \forall \mathbb{C}. \text{ unify } \mathbb{C} = \text{Some } \sigma \Rightarrow \text{FTVS}(\sigma) \subset \text{FVC}(\mathbb{C})$

Proof.

By functional induction on unify \mathbb{C} and lemmas 2, 3.

Axiom iv

Axiom iv

Proper Subterms Definition

def subterms α [] subterms $(\tau_1 \rightarrow \tau_2) \stackrel{\text{def}}{=} \tau_1 :: \tau_2 :: (\text{subterms } \tau_1) + + (\text{subterms } \tau_2)$

Lemma 6 (Containment)

 $\forall \tau, \tau', \tau \in (\text{subterms } \tau') \Rightarrow \forall \tau'', \tau'' \in (\text{subterms } \tau) \Rightarrow \tau'' \in (\text{subterms } \tau')$

Proof.

By induction on τ' .

Lemma 7 (Well founded types)

```
\forall \tau . \neg \tau \in (\text{subterms } \tau)
```

Proof.

By induction on τ and by lemma 6. A Machine-Checked Model of MGU Axioms Kothari Caldwell (U. of Wyoming)

UNIF'09

Axiom iv ... contd

Lemma 8 (Member subterms unequal)

 $\forall \tau, \tau'. \tau \in (\text{subterms } \tau') \Rightarrow \tau \neq \tau'$

Proof.

By case analysis on $\tau = \tau'$ and by lemma 7.

Lemma 9 (Member subterms and apply subst)

 $\forall \sigma. \forall \alpha. \forall \tau. \alpha \in (\text{subterms } \tau) \Rightarrow \sigma(\alpha) \neq \sigma(\tau)$

Proof.

By induction on τ and by lemma 8.

Axiom iv...contd

Lemma 10 (Member arrow and subterms)

 $\forall \sigma. \forall x. \forall \tau_1, \tau_2. \text{ member } x \text{ (FTV } \tau_1) = true \lor \text{ member } x \text{ (FTV } \tau_2) = true \Rightarrow \text{TyVar } (x) \in \text{subterms}(\tau_1 \to \tau_2)$

Proof.

By induction on τ_1 , followed by induction on τ_2 .

Corollary 11 (Member apply subst unequal)

 $\forall \sigma. \forall x. \forall \tau_1, \tau_2. \text{ member } x \text{ (FTV } \tau_1) = true \lor \text{ member } x \text{ (FTV } \tau_2) = true$ $\Rightarrow \sigma(\text{TyVar } (x)) \neq \sigma(\tau_1 \to \tau_2)$

Proof.

By lemma 9 and 10.

Axiom iv

Axiom iv ... contd

Theorem 12

 $\forall \sigma. \forall \mathbb{C}. \sigma \models \mathbb{C} \Rightarrow \exists \sigma'. \text{ unify } \mathbb{C} = \text{Some } \sigma'$

Proof.

By functional induction on unify \mathbb{C} and lemma **??** and corollary 11.

Outline

Type Reconstruction Algorithms

Introduction

- Substitution
- Coq
- First-order unification algorithm
 - Specification in Coq
 - Termination

4 Model for MGU axioms

- Axiom iii
- Axiom iv

 Some of the lemmas are more generalized version of the lemmas actually needed.

- Some of the lemmas are more generalized version of the lemmas actually needed.
- In many proofs we abstracted away from the actual construct or looked at its behavior.

- Some of the lemmas are more generalized version of the lemmas actually needed.
- In many proofs we abstracted away from the actual construct or looked at its behavior.
- The entire verification took almost 4400 lines of specification and tactics and is available online at http://www.cs.uwyo.edu/~skothari.

- Some of the lemmas are more generalized version of the lemmas actually needed.
- In many proofs we abstracted away from the actual construct or looked at its behavior.
- The entire verification took almost 4400 lines of specification and tactics and is available online at http://www.cs.uwyo.edu/~skothari.
- Many of the lemmas and theorems will be useful in our machine certified correctness proof of Wand's algorithm.

Merci!!!!!

Induction Principle

```
unify ind
     : forall P : list constr -> option (M.t type) -> Prop,
       (forall c : list constr, c = nil -> P nil (Some (M.empty type))) ->
       (forall (c : list constr) (h : constr) (t : list constr),
        c = h :: t ->
        forall x y : nat,
        h = EgCons (TvVar x) (TvVar v) ->
        forall x : x = y,
        eq dec stamp x y = left (x \langle \rangle y) x -\rangle
        P t (unify t) -> P (EqCons (TyVar x) (TyVar y) :: t) (unify t)) ->
       (forall (c : list constr) (h : constr) (t0 : list constr),
        c = h :: t_0 \to 0
        forall x v : nat.
        h = EqCons (TyVar x) (TyVar y) ->
        forall x : x <> y,
        eq dec stamp x y = right (x = y) x \rightarrow
        P (apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0)
          (unify
             (apply subst to constr list (M.add x (TyVar y) (M.empty type))
                t0)) ->
        forall p : M.t type,
        unifv
          (apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0) =
        Some p ->
        P (EqCons (TyVar x) (TyVar v) :: t0)
          (Some (compose subst (M.add x (TyVar y) (M.empty type)) p))) ->
       (forall (c : list constr) (h : constr) (t0 : list constr),
        c = h :: t_0 \to 0
        forall x y : nat,
        h = EqCons (TyVar x) (TyVar y) ->
        forall _x : x <> y,
```

Kothari Caldwell (U. of Wyoming)

Catherine Dubois and Valerie M. Morain.

Certification of a type inference tool for ml: Damas-milner within coq.

J. Autom. Reason., 23(3):319-346, 1999.

Bastiaan Heeren.

Top Quality Type Error Messages. PhD thesis, Universitiet Utrecht, 2005.

Mark P. Jones.

Qualified Types: Theory and Practice. Distinguished Dissertations in Computer Science. Cambridge University Press, 1995.

Dieter Nazareth and Tobias Nipkow.

Theorem Proving in Higher Order Logics, volume 1125, chapter Formal Verification of Alg. W: The Monomorphic Case, pages 331–345.

Springer Berlin / Heidelberg, 1996.

Wolfgang Naraschewski and Tobias Nipkow. Type inference verified: Algorithm w in isabelle/hol. *J. Autom. Reason.*, 23(3):299–318, 1999.

Wolfgang Naraschewski and Tobias Nipkow. Type Inference Verified: Algorithm W in Isabelle/HOL. Journal of Automated Reasoning, 23(3-4):299–318, 1999.

F. Pottier and D. Rémy.

The essence of ML type inference. In Benjamin C. Pierce, editor, *Advanced Topics in Types and*

Programming Languages, chapter 10, pages 389–489. MIT Press, 2005.

 Martin Sulzmann, Martin Odersky, and Martin Wehr.
 Type inference with constrained types.
 In Fourth International Workshop on Foundations of Object-Oriented Programming (FOOL 4), 1997.

Christian Urban and Tobias Nipkow.

From Semantics to Computer Science, chapter Nominal verification of algorithm W.

Cambridge University Press, 2009.

Mitchell Wand.

A simple algorithm and proof for type inference.

Fundamenta Informaticae, 10:115–122, 1987.