
A Machine-Checked Model of MGU Axioms:
Applications of Finite Maps and Functional

Induction

Presented by Sunil Kothari
Joint work with Prof. James Caldwell

Department of Computer Science,
University of Wyoming, USA

23rd International Workshop on Unification
August 2, 2009

Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Substitution
Coq

3 First-order unification algorithm
Specification in Coq
Termination

4 A model for MGU axioms
Axiom iii
Axiom iv

5 Conclusions and Future Work

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 2 / 31

Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Substitution
Coq

3 First-order unification algorithm
Specification in Coq
Termination

4 A model for MGU axioms
Axiom iii
Axiom iv

5 Conclusions and Future Work

Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).

Automated type reconstruction is possible.
Substitution-based algorithms.

Intermittent constraint generation and constraint solving.
Constraint-based algorithms.

Two distinct phases: constraint generation and constraint solving.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 3 / 31

Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).
Automated type reconstruction is possible.

Substitution-based algorithms.
Intermittent constraint generation and constraint solving.

Constraint-based algorithms.
Two distinct phases: constraint generation and constraint solving.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 3 / 31

Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).
Automated type reconstruction is possible.

Substitution-based algorithms.
Intermittent constraint generation and constraint solving.

Constraint-based algorithms.
Two distinct phases: constraint generation and constraint solving.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 3 / 31

Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).
Automated type reconstruction is possible.

Substitution-based algorithms.
Intermittent constraint generation and constraint solving.

Constraint-based algorithms.
Two distinct phases: constraint generation and constraint solving.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 3 / 31

Overview Type Reconstruction Algorithms

Type Reconstruction Algorithms...contd

Substitution-based
Algorithm W, J by Milner, 1978.
Algorithm M by Leroy, 1993.

Constraint-based Frameworks/Algorithms
Wand’s algorithm [Wan87].
Qualified types [Jon95].
HM(X) [SOW97] by Sulzmann et al. 1999, Pottier and Rémy 2005
[PR05].
Top quality error messages [Hee05].

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 4 / 31

Overview Type Reconstruction Algorithms

Type Reconstruction Algorithms...contd

Substitution-based
Algorithm W, J by Milner, 1978.
Algorithm M by Leroy, 1993.

Constraint-based Frameworks/Algorithms
Wand’s algorithm [Wan87].
Qualified types [Jon95].
HM(X) [SOW97] by Sulzmann et al. 1999, Pottier and Rémy 2005
[PR05].
Top quality error messages [Hee05].

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 4 / 31

Overview Type Reconstruction Algorithms

Type Reconstruction Algorithms... Contd

Machine-Certified Correctness Proof
Algorithm W in Coq, Isabelle/HOL [DM99, NN99a, NN99b, NN96].

Nominal verification of Algorithm W [UN09].
We want to formalize multi-phase unification algorithm needed to
handle polymorphic let.
POPLMark challenge also aims at mechanizing meta-theory.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 5 / 31

Overview Type Reconstruction Algorithms

Type Reconstruction Algorithms... Contd

Machine-Certified Correctness Proof
Algorithm W in Coq, Isabelle/HOL [DM99, NN99a, NN99b, NN96].
Nominal verification of Algorithm W [UN09].

We want to formalize multi-phase unification algorithm needed to
handle polymorphic let.
POPLMark challenge also aims at mechanizing meta-theory.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 5 / 31

Overview Type Reconstruction Algorithms

Type Reconstruction Algorithms... Contd

Machine-Certified Correctness Proof
Algorithm W in Coq, Isabelle/HOL [DM99, NN99a, NN99b, NN96].
Nominal verification of Algorithm W [UN09].
We want to formalize multi-phase unification algorithm needed to
handle polymorphic let.

POPLMark challenge also aims at mechanizing meta-theory.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 5 / 31

Overview Type Reconstruction Algorithms

Type Reconstruction Algorithms... Contd

Machine-Certified Correctness Proof
Algorithm W in Coq, Isabelle/HOL [DM99, NN99a, NN99b, NN96].
Nominal verification of Algorithm W [UN09].
We want to formalize multi-phase unification algorithm needed to
handle polymorphic let.
POPLMark challenge also aims at mechanizing meta-theory.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 5 / 31

Overview Type Reconstruction Algorithms

Type Reconstruction Algorithms... Contd

Modeling MGU
The most general unifier (MGU) is often a first-order unification
algorithm over simple type terms.

In machine checked correctness proofs, the MGU is modeled as a
set of four axioms:

(i) mgu σ (τ1
c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃σ′′.σ′ ≈ σ ◦ σ′′

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 6 / 31

Overview Type Reconstruction Algorithms

Type Reconstruction Algorithms... Contd

Modeling MGU
The most general unifier (MGU) is often a first-order unification
algorithm over simple type terms.
In machine checked correctness proofs, the MGU is modeled as a
set of four axioms:

(i) mgu σ (τ1
c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃σ′′.σ′ ≈ σ ◦ σ′′

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 6 / 31

Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Substitution
Coq

3 First-order unification algorithm
Specification in Coq
Termination

4 A model for MGU axioms
Axiom iii
Axiom iv

5 Conclusions and Future Work

Introduction

Terms and Constraint Syntax

Terms
τ ::= TyVar(x) | τ ′ → τ ′′

Atomic types (of the form TyVar x) are denoted by α, β, α′ etc.

Constraints

Constraint are of the form τ
c
=τ ′.

A list of constraint is given as:
C ::= [] | τ c

=τ ′ :: C′

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 7 / 31

Introduction

Terms and Constraint Syntax

Terms
τ ::= TyVar(x) | τ ′ → τ ′′

Atomic types (of the form TyVar x) are denoted by α, β, α′ etc.

Constraints

Constraint are of the form τ
c
=τ ′.

A list of constraint is given as:
C ::= [] | τ c

=τ ′ :: C′

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 7 / 31

Introduction

Terms and Constraint Syntax

Terms
τ ::= TyVar(x) | τ ′ → τ ′′

Atomic types (of the form TyVar x) are denoted by α, β, α′ etc.

Constraints

Constraint are of the form τ
c
=τ ′.

A list of constraint is given as:
C ::= [] | τ c

=τ ′ :: C′

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 7 / 31

Introduction

Terms and Constraint Syntax

Terms
τ ::= TyVar(x) | τ ′ → τ ′′

Atomic types (of the form TyVar x) are denoted by α, β, α′ etc.

Constraints

Constraint are of the form τ
c
=τ ′.

A list of constraint is given as:
C ::= [] | τ c

=τ ′ :: C′

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 7 / 31

Introduction

FTV and FVC

Free type variable (FTV)

FTV (TyVar x)
def
= [x]

FTV (τ → τ ′)
def
= FTV (τ) ++ FTV (τ ′)

Free variables of a constraint list (FVC)

FVC []
def
= []

FVC ((τ1
c
=τ2) :: C)

def
= FTV (τ1) ++ FTV (τ2) ++ FVC (C)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 8 / 31

Introduction

FTV and FVC

Free type variable (FTV)

FTV (TyVar x)
def
= [x]

FTV (τ → τ ′)
def
= FTV (τ) ++ FTV (τ ′)

Free variables of a constraint list (FVC)

FVC []
def
= []

FVC ((τ1
c
=τ2) :: C)

def
= FTV (τ1) ++ FTV (τ2) ++ FVC (C)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 8 / 31

Introduction Substitution

Substitution

Related Concepts
A substitution (denoted by ρ) maps type variables to types.

Denoted by σ, σ′, σ1 etc.
Substitution application to a type τ is defined as:

σ (TyVar(x))
def
= if 〈x , τ〉 ∈ σ then τ else TyVar(x)

σ (τ1 → τ2)
def
= σ(τ1)→ σ(τ2)

Application of a substitution to a constraint is defined similarly:

σ(τ1
c
=τ2)

def
= σ(τ1)

c
=σ(τ2)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 9 / 31

Introduction Substitution

Substitution

Related Concepts
A substitution (denoted by ρ) maps type variables to types.
Denoted by σ, σ′, σ1 etc.

Substitution application to a type τ is defined as:

σ (TyVar(x))
def
= if 〈x , τ〉 ∈ σ then τ else TyVar(x)

σ (τ1 → τ2)
def
= σ(τ1)→ σ(τ2)

Application of a substitution to a constraint is defined similarly:

σ(τ1
c
=τ2)

def
= σ(τ1)

c
=σ(τ2)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 9 / 31

Introduction Substitution

Substitution

Related Concepts
A substitution (denoted by ρ) maps type variables to types.
Denoted by σ, σ′, σ1 etc.
Substitution application to a type τ is defined as:

σ (TyVar(x))
def
= if 〈x , τ〉 ∈ σ then τ else TyVar(x)

σ (τ1 → τ2)
def
= σ(τ1)→ σ(τ2)

Application of a substitution to a constraint is defined similarly:

σ(τ1
c
=τ2)

def
= σ(τ1)

c
=σ(τ2)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 9 / 31

Introduction Substitution

Substitution

Related Concepts
A substitution (denoted by ρ) maps type variables to types.
Denoted by σ, σ′, σ1 etc.
Substitution application to a type τ is defined as:

σ (TyVar(x))
def
= if 〈x , τ〉 ∈ σ then τ else TyVar(x)

σ (τ1 → τ2)
def
= σ(τ1)→ σ(τ2)

Application of a substitution to a constraint is defined similarly:

σ(τ1
c
=τ2)

def
= σ(τ1)

c
=σ(τ2)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 9 / 31

Introduction Substitution

Substitution

Substitution Composition
Substitution composition definition using Coq’s finite maps is
complicated.
But the following theorem holds

Theorem 1 (Composition apply)

∀σ, σ′.∀τ.(σ ◦ σ′)τ = σ′(σ(τ))

Extensional equality
Substitutions are equal if they behave the same on all type
variables.

σ ≈ σ′ def
= ∀α. σ(α) = σ′(α)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 10 / 31

Introduction Substitution

Substitution

Substitution Composition
Substitution composition definition using Coq’s finite maps is
complicated.
But the following theorem holds

Theorem 1 (Composition apply)

∀σ, σ′.∀τ.(σ ◦ σ′)τ = σ′(σ(τ))

Extensional equality
Substitutions are equal if they behave the same on all type
variables.

σ ≈ σ′ def
= ∀α. σ(α) = σ′(α)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 10 / 31

Introduction Substitution

Substitution

Substitution Composition
Substitution composition definition using Coq’s finite maps is
complicated.
But the following theorem holds

Theorem 1 (Composition apply)

∀σ, σ′.∀τ.(σ ◦ σ′)τ = σ′(σ(τ))

Extensional equality
Substitutions are equal if they behave the same on all type
variables.

σ ≈ σ′ def
= ∀α. σ(α) = σ′(α)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 10 / 31

Introduction Substitution

Unifiers and MGUs

Unifier

We write σ |= (τ1
c
=τ2), if σ(τ1) = σ(τ2).

σ |= C def
= ∀c ∈ C, σ |= c.

Most General Unifier
A unifier σ is the most general unifier(MGU) if for any other unifier
σ′′ there is a substitution σ′ such that σ ◦ σ′ ≈ σ′′.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 11 / 31

Introduction Substitution

Unifiers and MGUs

Unifier

We write σ |= (τ1
c
=τ2), if σ(τ1) = σ(τ2).

σ |= C def
= ∀c ∈ C, σ |= c.

Most General Unifier
A unifier σ is the most general unifier(MGU) if for any other unifier
σ′′ there is a substitution σ′ such that σ ◦ σ′ ≈ σ′′.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 11 / 31

Introduction Coq

Coq

Overview
Based on the Calculus of Constructions.

System F extended with dependent types.
Support for inductive datatypes.
Programs can be extracted from proofs.
Lots of libraries.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 12 / 31

Introduction Coq

Coq

Overview
Based on the Calculus of Constructions.
System F extended with dependent types.

Support for inductive datatypes.
Programs can be extracted from proofs.
Lots of libraries.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 12 / 31

Introduction Coq

Coq

Overview
Based on the Calculus of Constructions.
System F extended with dependent types.
Support for inductive datatypes.

Programs can be extracted from proofs.
Lots of libraries.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 12 / 31

Introduction Coq

Coq

Overview
Based on the Calculus of Constructions.
System F extended with dependent types.
Support for inductive datatypes.
Programs can be extracted from proofs.

Lots of libraries.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 12 / 31

Introduction Coq

Coq

Overview
Based on the Calculus of Constructions.
System F extended with dependent types.
Support for inductive datatypes.
Programs can be extracted from proofs.
Lots of libraries.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 12 / 31

Introduction Coq

Finite maps in Coq

Representing substitutions
Substitution represented as a list of pairs, set of pairs, and normal
function.
We represent a substitution as a finite function.

Substitution as finite map
Used the Coq’s finite maps library Coq.FSets.FMapInterface.
Axiomatic presentation.
Provides no induction principle.
Forward reasoning is often required.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 13 / 31

Introduction Coq

Finite maps in Coq

Representing substitutions
Substitution represented as a list of pairs, set of pairs, and normal
function.
We represent a substitution as a finite function.

Substitution as finite map
Used the Coq’s finite maps library Coq.FSets.FMapInterface.
Axiomatic presentation.
Provides no induction principle.
Forward reasoning is often required.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 13 / 31

Introduction Coq

Substitution Related Concepts in Coq

Domain

dom_subst(σ)
def
= List.map (λt .fst (t)) (M.elements(σ))

Range

range_subst(σ)
def
= List.flat_map (λt .FTV (snd (t))) (M.elements(σ))

FTVS

FTVS(σ)
def
= dom_subst(σ) ++ range_subst(σ)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 14 / 31

Introduction Coq

Substitution Related Concepts in Coq

Domain

dom_subst(σ)
def
= List.map (λt .fst (t)) (M.elements(σ))

Range

range_subst(σ)
def
= List.flat_map (λt .FTV (snd (t))) (M.elements(σ))

FTVS

FTVS(σ)
def
= dom_subst(σ) ++ range_subst(σ)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 14 / 31

Introduction Coq

Substitution Related Concepts in Coq

Domain

dom_subst(σ)
def
= List.map (λt .fst (t)) (M.elements(σ))

Range

range_subst(σ)
def
= List.flat_map (λt .FTV (snd (t))) (M.elements(σ))

FTVS

FTVS(σ)
def
= dom_subst(σ) ++ range_subst(σ)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 14 / 31

Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Substitution
Coq

3 First-order unification algorithm
Specification in Coq
Termination

4 A model for MGU axioms
Axiom iii
Axiom iv

5 Conclusions and Future Work

First-order unification algorithm Specification in Coq

Unification

The Algorithm

unify (α
c
=α) :: C def

= unify C
unify (α

c
=β) :: C def

= {α 7→ β} ◦ unify ({α 7→ β}C)

unify (α
c
=τ) :: C def

= if α occurs in τ
then Fail
else {α 7→ τ} ◦ unify ({α 7→ τ}C)

unify (τ
c
=α) :: C def

= unify (α
c
=τ) :: C

unify (τ1 → τ2
def
= unify (τ1

c
=τ3 :: τ2

c
=τ4 :: C)

c
=τ3 → τ4) :: C

unify []
def
= Id

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 15 / 31

First-order unification algorithm Specification in Coq

Unification

The Algorithm

unify (α
c
=α) :: C def

= unify C
unify (α

c
=β) :: C def

= {α 7→ β} ◦ unify ({α 7→ β}C)

unify (α
c
=τ) :: C def

= if α occurs in τ
then Fail
else {α 7→ τ} ◦ unify ({α 7→ τ}C)

unify (τ
c
=α) :: C def

= if α occurs in τ
then Fail
else {α 7→ τ} ◦ unify ({α 7→ τ}C)

unify (τ1 → τ2
def
= unify (τ1

c
=τ3 :: τ2

c
=τ4 :: C)

c
=τ3 → τ4) :: C

unify []
def
= Id

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 16 / 31

First-order unification algorithm Specification in Coq

Specification in Coq

Function unify (c:list constr){wf meaPairMLt} :(option (M.t type)) :=
match c with

nil => Some (M.empty type)
| h::t => (match h with

EqCons (TyVar x) (TyVar y) =>
if eq_dec_stamp x y
then unify t
else (match unify (apply_subst_to_constr_list

(M.add x (TyVar y)
(M.empty type)) t) with

Some p => Some (compose_subst
(M.add x (TyVar y)

(M.empty type)) p)
| None => None

end)
| EqCons (TyVar x) (Arrow ty3 ty4) =>

if (member x (FTV ty3)) || (member x (FTV ty4))
then None
else (match (unify (apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4)
(M.empty type)) t) with

Some p => Some (compose_subst
(M.add x (Arrow ty3 ty4)

(M.empty type)) p)
| None => None
end)

| EqCons (Arrow ty3 ty4)(TyVar x) =>
if (member x (FTV ty3)) || (member x (FTV ty4))
then None
else (match (unify (apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4)
(M.empty type))t)) with

Some p => Some (compose_subst
(M.add x (Arrow ty3 ty4)

(M.empty type)) p)
| None => None

end)
| EqCons (Arrow ty3 ty4)(Arrow ty5 ty6)=>

unify ((EqCons ty3 ty5)::
((EqCons ty4 ty6)::t))

end)
end.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 17 / 31

First-order unification algorithm Specification in Coq

First-order unification in Coq

Issues in formalization
Raise exceptions, but that’s not possible.
We choose an option type defined as:

Inductive option (A : Set) : Set := Some (_ : A) | None.

Our specification of unification is general recursive – so Coq will
require a termination criteria.

Give a measure that reduces on each recursive call.
Give a well-founded ordering, and ...

Show that recursive call is lower in order w.r.t the above order
(bunched together as proof obligations).
Show that the ordering is well-founded.

Others

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 18 / 31

First-order unification algorithm Termination

Termination

Lexicographic Ordering
The lexicographic ordering (≺3) on the two triples 〈n1,n2,n3〉 and
〈m1,m2,m3〉 is defined as
〈n1,n2,n3〉 ≺3 〈m1,m2,m3〉

def
=

(n1 < m1)∨ (n1 = m1 ∧n2 < m2)∨ (n1 = m1 ∧n2 = m2 ∧n3 < m3),
where < and = are the ordinary less-than inequality and equality on
natural numbers.

The Triple
The triple is <|CFVC |, |C→ |, |C |>, where

|CFVC | - the number of unique free variables in a constraint list;
|C→ | - the total number of arrows in the constraint list;
|C | - the length of the constraint list.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 19 / 31

First-order unification algorithm Termination

Termination...contd

Original call Recursive call Conditions, if any |CFVC | |C→ | |C |
(α

c
=α) :: C C α ∈ (FVC C) - - ↓

(α
c
=α) :: C C α /∈ (FVC C) ↓ - ↓

(α
c
=β) :: C {α 7→ β}C α 6= β ↓ - ↓

(α
c
=τ) :: C {α 7→ τ}C α /∈ (FTV τ) ∧ α /∈ (FVC C) ↓ ↓ ↓

(α
c
=τ) :: C {α 7→ τ}C α /∈ (FTV τ) ∧ α ∈ (FVC C) ↓ ↑ ↓

(τ
c
=α) :: C {α 7→ τ}C α /∈ (FTV τ) ∧ α /∈ (FVC C) ↓ ↓ ↓

(τ
c
=α) :: C {α 7→ τ}C α /∈ (FTV τ) ∧ α ∈ (FVC C) ↓ ↑ ↓

(τ1 → τ2 (τ1
c
=τ3) None - ↓ ↑

c
=τ3 → τ4) :: C :: (τ2

c
=τ4) :: C

Table: Variation of termination measure components on the recursive call

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 20 / 31

Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Substitution
Coq

3 First-order unification algorithm
Specification in Coq
Termination

4 A model for MGU axioms
Axiom iii
Axiom iv

5 Conclusions and Future Work

A model for MGU axioms

Functional Induction in Coq

Requires an induction principle generated before.

functional induction (f x1 x2 x3 .. xn) is a short
form for induction x1 x2 x3 ...xn f(x1 ... xn)
using id, where id is the induction principle for f .

functional induction (unify c) induction c
(unify c) using unif_ind.

Important first step in proof of the axioms.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 21 / 31

A model for MGU axioms

Functional Induction in Coq

Requires an induction principle generated before.
functional induction (f x1 x2 x3 .. xn) is a short
form for induction x1 x2 x3 ...xn f(x1 ... xn)
using id, where id is the induction principle for f .

functional induction (unify c) induction c
(unify c) using unif_ind.

Important first step in proof of the axioms.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 21 / 31

A model for MGU axioms

Functional Induction in Coq

Requires an induction principle generated before.
functional induction (f x1 x2 x3 .. xn) is a short
form for induction x1 x2 x3 ...xn f(x1 ... xn)
using id, where id is the induction principle for f .

functional induction (unify c) induction c
(unify c) using unif_ind.

Important first step in proof of the axioms.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 21 / 31

A model for MGU axioms

MGU axioms

Old Axioms
(i) mgu σ (τ1

c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃δ.σ′ ≈ σ ◦ δ

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

New Generalized Axioms

(i) unify C = Some σ ⇒ σ |= C
(ii) (unify C = Some σ ∧ σ′ |= C)⇒ ∃σ′′. σ′ ≈ σ ◦ σ′′
(iii) unify C = Some σ ⇒ FTVS(σ) ⊆ FVC (C)
(iv) σ |= C ⇒ ∃σ′. unify C = Some σ′

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 22 / 31

A model for MGU axioms

MGU axioms

Old Axioms
(i) mgu σ (τ1

c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃δ.σ′ ≈ σ ◦ δ

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

New Generalized Axioms

(i) unify C = Some σ ⇒ σ |= C
(ii) (unify C = Some σ ∧ σ′ |= C)⇒ ∃σ′′. σ′ ≈ σ ◦ σ′′
(iii) unify C = Some σ ⇒ FTVS(σ) ⊆ FVC (C)
(iv) σ |= C ⇒ ∃σ′. unify C = Some σ′

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 22 / 31

A model for MGU axioms Axiom iii

Axiom iii

Lemma 2 (Compose and domain membership)

∀x , y . ∀τ.∀σ. y ∈ dom_subst ({x 7→ τ} ◦ σ))
⇒ y ∈ dom_subst {x 7→ τ} ∨ y ∈ dom_subst σ

Lemma 3 (Compose and range membership)

∀x , y . ∀τ. ∀σ. (x /∈ (FTV τ) ∧ y ∈ range_subst ({x 7→ τ} ◦ σ))
⇒ y ∈ range_subst {x 7→ τ} ∨ y ∈ range_subst σ

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 23 / 31

A model for MGU axioms Axiom iii

Axiom iii ...contd

Lemma 4 (Subst range abstraction)

∀x . ∀σ. x ∈ range_subst (σ)⇔ ∃y .y ∈ dom_subst (σ) ∧ x ∈ FTV (σ(TyVar y))

Theorem 5
∀σ, σ′. ∀C. unify C = Some σ ⇒ FTVS(σ) ⊆ FVC(C)

Proof.
By functional induction on unify C and lemmas 2, 3.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 24 / 31

A model for MGU axioms Axiom iv

Axiom iv

Proper Subterms Definition

subterms α def
= []

subterms (τ1 → τ2)
def
= τ1 :: τ2 :: (subterms τ1) ++ (subterms τ2)

Lemma 6 (Containment)

∀τ, τ ′. τ ∈ (subterms τ ′) ⇒ ∀τ ′′. τ ′′ ∈ (subterms τ)⇒ τ ′′ ∈ (subterms τ ′)

Proof.
By induction on τ ′.

Lemma 7 (Well founded types)

∀τ. ¬ τ ∈ (subterms τ)

Proof.
By induction on τ and by lemma 6.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 25 / 31

A model for MGU axioms Axiom iv

Axiom iv ... contd

Lemma 8 (Member subterms unequal)

∀τ, τ ′. τ ∈ (subterms τ ′)⇒ τ 6= τ ′

Proof.
By case analysis on τ = τ ′ and by lemma 7.

Lemma 9 (Member subterms and apply subst)

∀σ. ∀α. ∀τ. α ∈ (subterms τ)⇒ σ(α) 6= σ(τ)

Proof.
By induction on τ and by lemma 8.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 26 / 31

A model for MGU axioms Axiom iv

Axiom iv...contd

Lemma 10 (Member arrow and subterms)

∀σ. ∀x . ∀τ1, τ2.member x (FTV τ1) = true ∨member x (FTV τ2) = true
⇒ TyVar (x) ∈ subterms(τ1 → τ2)

Proof.
By induction on τ1, followed by induction on τ2.

Corollary 11 (Member apply subst unequal)

∀σ. ∀x . ∀τ1, τ2.member x (FTV τ1) = true ∨member x (FTV τ2) = true
⇒ σ(TyVar (x)) 6= σ(τ1 → τ2)

Proof.
By lemma 9 and 10.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 27 / 31

A model for MGU axioms Axiom iv

Axiom iv ... contd

Theorem 12
∀σ. ∀C. σ |= C ⇒ ∃σ′. unify C = Some σ′

Proof.
By functional induction on unify C and lemma ?? and corollary 11.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 28 / 31

Outline

1 Overview
Type Reconstruction Algorithms

2 Introduction
Substitution
Coq

3 First-order unification algorithm
Specification in Coq
Termination

4 A model for MGU axioms
Axiom iii
Axiom iv

5 Conclusions and Future Work

Conclusions and Future Work

Conclusions and Future Work

Some of the lemmas are more generalized version of the lemmas
actually needed.

In many proofs we abstracted away from the actual construct or
looked at its behavior.
The entire verification took almost 4400 lines of specification and
tactics and is available online at
http://www.cs.uwyo.edu/~skothari.
Many of the lemmas and theorems will be useful in our machine
certified correctness proof of Wand’s algorithm.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 29 / 31

http://www.cs.uwyo.edu/~skothari

Conclusions and Future Work

Conclusions and Future Work

Some of the lemmas are more generalized version of the lemmas
actually needed.
In many proofs we abstracted away from the actual construct or
looked at its behavior.

The entire verification took almost 4400 lines of specification and
tactics and is available online at
http://www.cs.uwyo.edu/~skothari.
Many of the lemmas and theorems will be useful in our machine
certified correctness proof of Wand’s algorithm.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 29 / 31

http://www.cs.uwyo.edu/~skothari

Conclusions and Future Work

Conclusions and Future Work

Some of the lemmas are more generalized version of the lemmas
actually needed.
In many proofs we abstracted away from the actual construct or
looked at its behavior.
The entire verification took almost 4400 lines of specification and
tactics and is available online at
http://www.cs.uwyo.edu/~skothari.

Many of the lemmas and theorems will be useful in our machine
certified correctness proof of Wand’s algorithm.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 29 / 31

http://www.cs.uwyo.edu/~skothari

Conclusions and Future Work

Conclusions and Future Work

Some of the lemmas are more generalized version of the lemmas
actually needed.
In many proofs we abstracted away from the actual construct or
looked at its behavior.
The entire verification took almost 4400 lines of specification and
tactics and is available online at
http://www.cs.uwyo.edu/~skothari.
Many of the lemmas and theorems will be useful in our machine
certified correctness proof of Wand’s algorithm.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 29 / 31

http://www.cs.uwyo.edu/~skothari

Conclusions and Future Work

Merci!!!!!

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 30 / 31

Conclusions and Future Work

Induction Principle

unify_ind
: forall P : list constr -> option (M.t type) -> Prop,

(forall c : list constr, c = nil -> P nil (Some (M.empty type))) ->
(forall (c : list constr) (h : constr) (t : list constr),
c = h :: t ->
forall x y : nat,
h = EqCons (TyVar x) (TyVar y) ->
forall _x : x = y,
eq_dec_stamp x y = left (x <> y) _x ->
P t (unify t) -> P (EqCons (TyVar x) (TyVar y) :: t) (unify t)) ->
(forall (c : list constr) (h : constr) (t0 : list constr),
c = h :: t0 ->
forall x y : nat,
h = EqCons (TyVar x) (TyVar y) ->
forall _x : x <> y,
eq_dec_stamp x y = right (x = y) _x ->
P (apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0)

(unify
(apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type))

t0)) ->
forall p : M.t type,
unify

(apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0) =
Some p ->
P (EqCons (TyVar x) (TyVar y) :: t0)

(Some (compose_subst (M.add x (TyVar y) (M.empty type)) p))) ->
(forall (c : list constr) (h : constr) (t0 : list constr),
c = h :: t0 ->
forall x y : nat,
h = EqCons (TyVar x) (TyVar y) ->
forall _x : x <> y,
eq_dec_stamp x y = right (x = y) _x ->
P (apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0)

(unify
(apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type))

t0)) ->
unify

(apply_subst_to_constr_list (M.add x (TyVar y) (M.empty type)) t0) =
None -> P (EqCons (TyVar x) (TyVar y) :: t0) None) ->
(forall (c : list constr) (h : constr) (t0 : list constr),
c = h :: t0 ->
forall (x : nat) (ty3 ty4 : type),
h = EqCons (TyVar x) (Arrow ty3 ty4) ->
member x (FTV ty3) || member x (FTV ty4) = true ->
P (EqCons (TyVar x) (Arrow ty3 ty4) :: t0) None) ->
(forall (c : list constr) (h : constr) (t0 : list constr),
c = h :: t0 ->
forall (x : nat) (ty3 ty4 : type),
h = EqCons (TyVar x) (Arrow ty3 ty4) ->
member x (FTV ty3) || member x (FTV ty4) = false ->
P

(apply_subst_to_constr_list
(M.add x (Arrow ty3 ty4) (M.empty type)) t0)

(unify
(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)) ->
forall p : M.t type,
unify

(apply_subst_to_constr_list
(M.add x (Arrow ty3 ty4) (M.empty type)) t0) = Some p ->

P (EqCons (TyVar x) (Arrow ty3 ty4) :: t0)
(Some (compose_subst (M.add x (Arrow ty3 ty4) (M.empty type)) p))) ->

(forall (c : list constr) (h : constr) (t0 : list constr),
c = h :: t0 ->
forall (x : nat) (ty3 ty4 : type),
h = EqCons (TyVar x) (Arrow ty3 ty4) ->
member x (FTV ty3) || member x (FTV ty4) = false ->
P

(apply_subst_to_constr_list
(M.add x (Arrow ty3 ty4) (M.empty type)) t0)

(unify
(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)) ->
unify

(apply_subst_to_constr_list
(M.add x (Arrow ty3 ty4) (M.empty type)) t0) = None ->

P (EqCons (TyVar x) (Arrow ty3 ty4) :: t0) None) ->
(forall (c : list constr) (h : constr) (t0 : list constr),
c = h :: t0 ->
forall (ty3 ty4 : type) (x : nat),
h = EqCons (Arrow ty3 ty4) (TyVar x) ->
member x (FTV ty3) || member x (FTV ty4) = true ->
P (EqCons (Arrow ty3 ty4) (TyVar x) :: t0) None) ->
(forall (c : list constr) (h : constr) (t0 : list constr),
c = h :: t0 ->
forall (ty3 ty4 : type) (x : nat),
h = EqCons (Arrow ty3 ty4) (TyVar x) ->
member x (FTV ty3) || member x (FTV ty4) = false ->
P

(apply_subst_to_constr_list
(M.add x (Arrow ty3 ty4) (M.empty type)) t0)

(unify
(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)) ->
forall p : M.t type,
unify

(apply_subst_to_constr_list
(M.add x (Arrow ty3 ty4) (M.empty type)) t0) = Some p ->

P (EqCons (Arrow ty3 ty4) (TyVar x) :: t0)
(Some (compose_subst (M.add x (Arrow ty3 ty4) (M.empty type)) p))) ->

(forall (c : list constr) (h : constr) (t0 : list constr),
c = h :: t0 ->
forall (ty3 ty4 : type) (x : nat),
h = EqCons (Arrow ty3 ty4) (TyVar x) ->
member x (FTV ty3) || member x (FTV ty4) = false ->
P

(apply_subst_to_constr_list
(M.add x (Arrow ty3 ty4) (M.empty type)) t0)

(unify
(apply_subst_to_constr_list

(M.add x (Arrow ty3 ty4) (M.empty type)) t0)) ->
unify

(apply_subst_to_constr_list
(M.add x (Arrow ty3 ty4) (M.empty type)) t0) = None ->

P (EqCons (Arrow ty3 ty4) (TyVar x) :: t0) None) ->

(forall (c : list constr) (h : constr) (t : list constr),
c = h :: t ->
forall ty3 ty4 ty5 ty6 : type,
h = EqCons (Arrow ty3 ty4) (Arrow ty5 ty6) ->
P (EqCons ty3 ty5 :: EqCons ty4 ty6 :: t)

(unify (EqCons ty3 ty5 :: EqCons ty4 ty6 :: t)) ->
P (EqCons (Arrow ty3 ty4) (Arrow ty5 ty6) :: t)

(unify (EqCons ty3 ty5 :: EqCons ty4 ty6 :: t))) ->
forall c : list constr, P c (unify c)

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 31 / 31

Conclusions and Future Work

Catherine Dubois and Valerie M. Morain.
Certification of a type inference tool for ml: Damas–milner within
coq.
J. Autom. Reason., 23(3):319–346, 1999.

Bastiaan Heeren.
Top Quality Type Error Messages.
PhD thesis, Universitiet Utrecht, 2005.

Mark P. Jones.
Qualified Types: Theory and Practice.
Distinguished Dissertations in Computer Science. Cambridge
University Press, 1995.

Dieter Nazareth and Tobias Nipkow.
Theorem Proving in Higher Order Logics, volume 1125, chapter
Formal Verification of Alg. W: The Monomorphic Case, pages
331–345.
Springer Berlin / Heidelberg, 1996.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 31 / 31

Conclusions and Future Work

Wolfgang Naraschewski and Tobias Nipkow.
Type inference verified: Algorithm w in isabelle/hol.
J. Autom. Reason., 23(3):299–318, 1999.

Wolfgang Naraschewski and Tobias Nipkow.
Type Inference Verified: Algorithm W in Isabelle/HOL.
Journal of Automated Reasoning, 23(3-4):299–318, 1999.

F. Pottier and D. Rémy.
The essence of ML type inference.
In Benjamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

Martin Sulzmann, Martin Odersky, and Martin Wehr.
Type inference with constrained types.
In Fourth International Workshop on Foundations of
Object-Oriented Programming (FOOL 4), 1997.

Christian Urban and Tobias Nipkow.
Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 31 / 31

Conclusions and Future Work

From Semantics to Computer Science, chapter Nominal
verification of algorithm W.
Cambridge University Press, 2009.

Mitchell Wand.
A simple algorithm and proof for type inference.
Fundamenta Informaticae, 10:115–122, 1987.

Kothari Caldwell (U. of Wyoming) A Machine-Checked Model of MGU Axioms UNIF’09 31 / 31

	Overview
	Type Reconstruction Algorithms

	Introduction
	Substitution
	Coq

	First-order unification algorithm
	Specification in Coq
	Termination

	A model for MGU axioms
	Axiom iii
	Axiom iv

	Conclusions and Future Work

