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ABSTRACT
The ACL2 theorem prover provides the user a wide range
of mechanisms for customization and extension while pre-
serving soundness. ACL2 researchers and power users, how-
ever, sometimes work outside this realm in order to add new
core functionality, to attach new user interfaces, or to con-
nect ACL2 with other reasoning engines. We first describe
new features of ACL2 that enable users to add to the set of
“trusted code” in a trackable way. The advantage is that
users can dynamically install system extensions they choose
to trust in reaching their verification results, and ACL2 will
track what was trusted in the process. We then describe fea-
tures, idioms, and abstractions that leverage the freedoms
given to trusted code and the dynamic, reflective nature of
Common Lisp to modify ACL2 in deep ways at runtime.
Our abstractions are designed to make it easier for system
hackers to preserve sound reasoning when writing metathe-
oretic code.

1. INTRODUCTION
“ACL2” stands for “A Computational Logic for Applica-
tive Common Lisp.” ACL2 consists of a first-order func-
tional programming language, a logic for that language, and
an “industrial-strength” automatic theorem prover [6, 4, 3].
ACL2 has been used to prove some of the most complex
theorems ever proved about commercial systems.

As ACL2 has become more widely used, the need and/or de-
sire to extend ACL2 in unsupported ways has risen. Within
the bounds of a command-line automatic theorem prover
based largely on term rewriting, ACL2 is quite extensible,
not only with user-defined theorems and theories, but also
with computed hints, meta rules, powerful metaprogram-
ming, and more. Furthermore, when the user base was
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smaller, ACL2 authors were more able to adapt and ex-
tend the system itself to suit user needs. A new reality has
set in, in which a growing number of sophisticated users are
seeking to adapt ACL2 to new environments [1], modify or
extend core functionality [5], or combine it with other rea-
soning engines [8, 7]. The ACL2 authors cannot possibly
satisfy all these requests for new functionality from ACL2,
nor, arguably, should they/we. The needs and desires of
such “power users” can extend far beyond what the current
ACL2 can be practically made to accommodate soundly by
the ACL2 authors. It may seem ironic that as ACL2 has
grown more powerful, the demand for more functionality
has grown; but it is certainly being applied to a larger vari-
ety of problems.

To address this problem, ACL2 Version 3.1 introduced a fea-
ture, trust tags (“ttags” for short), which has “opened the
flood gates” to potentially unsound extensions of ACL2 by
end-users. The basic idea behind trust tags is not particu-
larly novel (see for example [2]), though ACL2’s approach
may be unique in that it allows for rather arbitrary system
extensions written in the system itself. But trust tags pre-
sented unique challenges for implementation in ACL2. The
basic idea is that constructs that can render ACL2 unsound
are now legal in the command loop and in books, provided
they are used in a context with an active trust tag. Defining
(activating) a trust tag is subject to authorization and after
doing so, an ACL2 session is thence forth “tainted,” at least
in the sense that sound reasoning depends on code that is
not a part of ACL2 proper. Trust tags enable authors to
make such code small and concise and enable other users to
track down easily which code must be trusted.

This paper introduces, documents, and demonstrates some
applications of trust tags. Section 2 gives some background
information and terminology on ACL2’s inner workings. Sec-
tion 3 introduces trust tags in some detail, giving some rules
and conventions on their use. Section 4 enumerates the po-
tentially unsafe constructs ttags make available. We also
discuss some of our own low-level tools that can be added
to provide more powerful and robust extensions of ACL2.
Section 5 describes some higher-level idioms for modifying
and extending ACL2 behavior, which have proved quite use-
ful. Section 6 concludes.

Keep in mind that this paper does not offer any insight into
proving theorems with ACL2, but a basic knowledge of the
ideas in Section 3 is important for users who might use non-



standard extensions. Later sections are intended for ACL2
system hackers, who seek to alter or extend ACL2 in funda-
mental ways. Beware that such nonstandard extensions are
error-prone and can run into compatibility issues with the
various implementations of Common Lisp. To the contrary,
standard use of ACL2 is designed to be quite robust and
implementation-agnostic.

Throughout this paper, we will “offer,” “introduce,” or “de-
fine” some functionality that is not in ACL2—at least at
the time of writing. This code is available in the supporting
materials for this paper.

The examples we present will be drawn from the develop-
ment of ACL2s, the “ACL2 Sedan.” ACL2s is an Eclipse-
based development environment for ACL2 that is designed
to make formal reasoning in ACL2 easier to learn [1]. Key
features of ACL2s are based on extending ACL2 to enhance
invisible communication with the development environment,
and on limiting or extending the theorem prover in non-
standard but visible ways. While previously ACL2s required
a specially-built ACL2 image to implement these extensions,
trust tags enable them to be installed into a standard ACL2
image at runtime, in an “approved,” trackable manner.

2. BACKGROUND INFORMATION
2.1 Terminology and Basics
The standard, safe ways of extending ACL2 involve extend-
ing the world. The ACL2 world is a property list consisting
of everything about the current interpretation of the ACL2
logic, all the theorem prover rules and settings, and def-
initions that are not part of the logic. When, for exam-
ple, a new function is defined, an extension of the current
world is computed and then installed to make it the cur-
rent world. Undoing that definition reinstalls a retraction
of the current world, one that was previously the current
world. Even though the world is an applicative object, “be-
hind the scenes” optimizations make extension, retraction,
and look-ups fast for the current world.

Roughly speaking, events are inputs to ACL2 that extend
the world, and books are files of events. Certifying a book
means verifying all of its events in some certification world
and writing out a certificate that enables fast inclusion of
the book.

The ACL2 state is a single-threaded object, which means it is
modifiable by virtue of there being only one “live” instance,
enforced through static checks at definition time. The state
includes the current world, assignments to global variables,
and many other things that do not show up in this paper.

“The loop” is the ACL2 read-eval-print loop. Unlike books,
the loop accepts types of input other than events. Some of
these inputs can modify the ACL2 state, including the world,
and some even interact with the external environment, such
as reading from or writing to files.

We will refer to a critical subset of the full ACL2 state as
the “logical state”. We can formally define the logical state
as that which is protected by MAKE-EVENT (discussed be-
low), but it basically consists of the world and many global
variables that ACL2 uses internally. ACL2 must maintain

certain invariants on the logical state to maintain sound rea-
soning.

The ACL2-DEFAULTS-TABLE is a special part of the world that
keeps track of settings that govern how the theorem prover
behaves and how some events are interpreted. The ACL2-

DEFAULTS-TABLE is the only ACL2 table that is reset at the
beginning of every book.

2.2 Intricacies (for Section 4+)
ACL2 function definitions are stored as elements (proper-
ties) of a list (the world). Installing a world makes the func-
tions executable by defining them in the underlying Com-
mon Lisp. In fact, to support ACL2 functions being fully
defined (unlike Common Lisp functions) all functions actu-
ally have two raw definitions: a Common Lisp definition and
an executable counterpart. ACL2 uses one or both of the
raw definitions whenever it executes the function on a par-
ticular input; the executable counterpart often defers to the
Common Lisp definition. In this paper, we will only con-
sider cases that use the Common Lisp definition, so we will
not need to investigate manipulation of executable counter-
parts. Outside of this paragraph, the “raw” definition is the
Common Lisp definition.

Macros have raw definitions also, but only one per macro, a
“Common Lisp” definition. When we use a macro in ACL2,
including those as simple and common as DEFUN, it is ex-
panded by looking up its definition in the world, binding
its lambda variables, and evaluating the body in that envi-
ronment. Thus, the raw macro definition is not involved in
macro expansion of input to the ACL2 loop. To the contrary,
executing a function (on a particular input) from the ACL2
loop always uses one or both of the raw function definitions.

The raw definitions of macros are only relevant for code in-
terpreted by Common Lisp. Most importantly, this includes
raw function bodies, because these are interpreted (and/or
compiled) by Common Lisp. But this also includes the bod-
ies of books. Books bundle together definitions of functions,
macros, and theorems to be used by ACL2, but they can
also be compiled by raw Lisp. In fact, this is the default
case. For example, a DEFUN in a book when processed by
the ACL2 loop is macro-expanded to a function that installs
a world updated with the new definition. When processed
by raw Lisp, either during compilation or inclusion of the
compiled file, the Common Lisp meaning of DEFUN is used,
which installs the compiled version of the raw functions and
macros. As another example, DEFTHM proves theorems and
potentially adds them as rules in the world, but when in-
terpreted by raw Lisp, DEFTHM is a no-op. This different
behavior is due to the difference between the Common Lisp
and ACL2 definitions of the DEFTHM macro.

3. TRUST TAGS IN ACL2
Here we introduce the ACL2 notion of trust tags. For more
details, start with ACL2 documentation topic DEFTTAG.

3.1 History
MAKE-EVENT, introduced in ACL2 Version 3.0, made it pos-
sible to embed arbitrary ACL2 code to be executed on the
certification or inclusion of a book. By contrast, books were



previously restricted primarily to contain definitions, theo-
rems, and evaluation of stateless functions. Since all that is
needed from the code in a MAKE-EVENT is the return value,
MAKE-EVENT is able to protect the logical state from corrup-
tion by saving it, executing the code, and then restoring the
logical state.

However, some ACL2 functions interact with the external
environment or can have other dangerous effects that aren’t
tracked as part of the logical state. Bob Boyer demonstrated
the incompleteness of the protection offered by MAKE-EVENT,
by creating a book that derives a contradiction in ACL2
by embedding in a MAKE-EVENT a SYS-CALL that invokes an
external debugger to overwrite memory in the ACL2 process.
(See the ACL2 documentation for SYS-CALL for details.)

An approach to patching this problem that was rejected af-
ter some consideration was to add a parameter to CERTIFY-

BOOK and INCLUDE-BOOK to allow or disallow use of SYS-CALL
inside the corresponding book. This was analogous to ex-
isting :DEFAXIOMS-OKP and :SKIP-PROOFS-OKP parameters,
but there was an important difference. DEFAXIOM and, in a
sense, SKIP-PROOFS do not affect the soundness of ACL2’s
reasoning. If the formulae introduce inconsistencies, we can
prove NIL (derive an apparent contradiction), but if we inter-
pret the constructs as simply adding new formulas to the set
of axioms/postulates, the reasoning is still sound 1. Also,
any DEFAXIOM events, and any events under SKIP-PROOFS,
can be readily undone with no lingering impact.

Constructs such as SYS-CALL and SET-RAW-MODE, on the other
hand, can irreversibly render an ACL2 session unsound.
That is, these constructs can break ACL2’s implementation
of its underlying logic. Since each of these constructs has
the potential to affect ACL2 in the worst possible way, it
makes little sense to distinguish between them for the pur-
poses of allowing or disallowing use. More important than
which construct is used is where, by whom, and for what
purpose. This is what we intend to capture with trust tags,
in a concise, understandable, and usable way.

3.2 Defining Trust Tags
A trust tag (or ttag) instance has a name and a location.
The name is any (non-NIL) ACL2 symbol, and the location
is either the top-level command loop (indicated by NIL) or
a book location (indicated by a path string). A trust tag
is activated by passing the name to DEFTTAG. The location
associated with the trust tag is always the current location.
The name of the current active trust tag is stored in the
:TTAG entry of the ACL2-DEFAULTS-TABLE, alongside settings
such as :DEFUN-MODE and :WELL-FOUNDED-RELATION. There
can be only one active ttag at a time, or a NIL setting indi-
cates there is no active ttag, as produced by (defttag nil).
Like other ACL2-DEFAULTS-TABLE settings, the current ttag
setting is local to the book in which it occurs.

The :TTAG setting becomes relevant when command loop
code or book code attempts to use a dangerous function, a
function such as SYS-CALL that is known to enable unsound
reasoning. Use of such functions is permitted if and only if

1If the postulates are inconsistent, no models satisfy the pos-
tulates; thus any formula is trivially satisfied by all models
satisfying the postulates.

there is an active trust tag. Intuitively, defining a trust tag
for a block of code declares that the author (or at least that
block of code) must be trusted to preserve soundness. The
trust tag indicates who or what is to blame if unsoundness
results.

Each time a trust tag is declared, the ACL2 session should
be considered “tainted” by another extension. There is no
tracking of which subsequent lemmas depend on the poten-
tially unsound extension, not only because ACL2 has trou-
ble determining which theorems were required for a proof,
but also because the extensions are often metatheoretic, in-
capable of being described succinctly by a set of rules or
postulates. In a sense, ACL2 takes a conservative approach,
in which every subsequent lemma is considered to depend
on all ttags seen. Along these lines, a book is tagged with
any ttags seen in the logical world that certified the book, in
addition to any ttags seen in the resulting logical world af-
ter certification. This tracking includes ttags used in a local
context, but does not include ttags used in worlds that have
been undone or ttags that try to hide their existence. This
is a limitation to the conservativity: “taintedness” tracking
is subject to cooperation of the ttagged code. Thus, printed
ttag notes and manual inspection must be considered the
authority.

3.3 Authorizing Trust Tags
An important aspect of trust tags is that an included book
can generally only define trust tags that have been autho-
rized by the user (but see the discussion of “ttag notes” in
Section 3.4). The ACL2 authors intend for this to provide
a degree of protection for the user’s session and entire sys-
tem; that is, ACL2 is designed so that an included book
cannot “taint” the user’s session (or system!) without spe-
cific authorization to use ttags. Thus, it should be safe to
certify and include books that do not require ttags without
inspecting them first. Attempting to define a ttag without
authorization, of course, fails.

In the current implementation, defining a trust tag inside
the command loop is always authorized. Recall that just
because a ttag is active in the command loop doesn’t mean
an included book can use dangerous functions without defin-
ing its own ttag; the :TTAG setting does not propagate to
included books in that way.

Defining a ttag in book certification or inclusion requires au-
thorization, and the user specifies what is authorized by the
:TTAGS keyword parameter to CERTIFY-BOOK or INCLUDE-

BOOK. This parameter defaults to NIL, indicating no ttags are
authorized. Specifying :ALL allows all ttags. One can also
be more precise by specifying names and/or locations, and
we refer the reader to the ACL2 documentation on DEFTTAG

for that syntax. The reason we would want to be able to
specify locations other than the one we are including is that
the specification for authorized ttags also restricts what that
book can authorize to books it includes, and so on recur-
sively. Thus, books can only reduce the set of authorized
ttags when including books themselves (unless they use an
active ttag to get around the restriction, as in Section 3.6).

3.4 The Certifier



We now explore what is involved in the job of the certifier,
a person who takes the role of being skeptical that ACL2
has reached its conclusions through sound reasoning. If the
certifier trusts an “untainted” ACL2, then he must at least
confirm that the result was reached without tainting ACL2.

The main caveat is that although we can ask ACL2 which
ttags have tainted it (see the ACL2 documentation for TTAGS-
SEEN), that answer is only trustworthy if the session has not
been tainted. Thus, as a skeptic, the certifier learns nothing
from that query. This observation demonstrates the need for
ttag notes. Whenever DEFTTAG is called with a non-nil value,
ACL2 prints out the following (but for the appropriate name
and location), on a single line:

TTAG NOTE: Adding ttag T from the top level loop.

The first DEFTTAG is guaranteed to print out such a note, and
the certifier should determine the effects of that ttagged code
first because it could modify ACL2 behavior in arbitrary
ways, including modifications to the printing of later ttag
notes. Once convinced the code “behaves nicely”, including
preserving the printing of later ttag notes, the certifier can
move on to the next ttag note and repeat until all potentially
dangerous code has been approved.

Unfortunately, we can’t really define “behaves nicely” much
more precisely than “extends ACL2 only as intended, and
the intended extensions, as used, preserve soundness.” The
job of certifying an extension against possible uses is much
harder than against actual uses, but in either case, the certi-
fier’s job will require some knowledge of ttags, the extension
mechanisms enabled by them, and ACL2 internals.

3.5 Etiquette
To ease certification and interoperability, a developer who
uses trust tags should try to follow some rules that we pro-
pose here.

Naming Conventions. The canonical ttag name for “I
just want to use some dangerous functions, and this is not
going to affect anyone else” is T, as in (defttag t). Oth-
erwise, the name should be something short that describes
the capability that is added to ACL2 under that trust tag.
It could, for example, correspond to the name of an external
tool, as in :MINISAT or :UCLID. We use the ttag :ACL2S to
add the capability for a session to talk to the ACL2s develop-
ment environment. An informative name helps to document
which potentially unsound extensions were used in reaching
some result.

Uniqueness of names is not critically important, since use of
a ttag always traces back to its location, but use of a docu-
mentation string with DEFTTAG makes unique naming more
important. We encourage use of a documentation string
with a ttag so that a user can find out the capability pro-
vided by and authorship of a ttag with the :DOC command.
So to improve our likelihood of unique naming without being
too verbose, one might use the ttag :UCLID-GT rather than
:UCLID for code written by Georgia Tech students to inter-
face with an external tool called UCLID. A name like |Bob

Smith’s ACL2 interface to UCLID Version 0.73a|, though
informative, is hard to type.

Regarding version numbers in ttag names, on the one hand,
updating version numbers in what one authorizes can be
a hassle, but on the other hand, that hassle reminds users
that changes have been made and they should proceed with
caution. When or whether such reminders are needed is a
judgement call.

Since ttag names are symbols, they have a package. With
the exception of T, we have assumed use of keyword symbols
(package "KEYWORD") for ttag names so far. This is great for
avoiding package import issues, and, as mentioned, name
clashes are not a big problem. It’s hard to foresee a case
that strongly motivates using symbols other than keywords.

Extent. Let us now consider the issue of how much func-
tionality should be encompassed by one ttag, or by the same
ttag name in different locations, etc. First, observe that it
is possible to use DEFTTAG more than once within a single
book. One case of this is using (defttag nil) to mark the
end of a block of code that uses dangerous constructs; this
is highly encouraged, except when it would make sense to
relegate that block of code to a separate book. (It’s not
necessary to put (defttag nil) at the end of a book, but
can serve as documentation.) In fact, the certifier’s job is
easiest when ttagged code is restricted to small, stand-alone
books.

It is also possible to activate and deactivate the same ttag
multiple times in the same book. Using the same name in
the same file refers to the same ttag. This is preferable
to leaving a ttag active where not needed, but when it’s
convenient, we suggest grouping together related dangerous
code.

Finally, although it is possible to declare ttags of different
names in the same book, we recommend instead the splitting
of more than one capability into separate books.

3.6 Subsumption
There is no built-in notion of inheritance or subsumption
with trust tags, so under that scheme, if a capability ttagged
as A depends on or includes a stand-alone capability B, both
A and B would have to be authorized and both would show
up as having “tainted” the session.

One can easily imagine, however, wanting a mechanism for
one ttag to subsume others. A common idiom here is want-
ing to encapsulate a piece of functionality into a book that
requires authorization of one ttag, even if that book uses
other reusable books that have their own ttags associated
with them. A trusting user of that book is concerned with
the function interface to that book, not which other books
or ttags the book uses.

Recall that ttags enable us to do virtually anything, includ-
ing the modification of some settings and recorded history
that allow ttag subsumption. We first save the state global
variable TTAGS-ALLOWED, governing which ttags are autho-
rized, and add to it which ttags we want to subsume. We
next save the world global value TTAGS-SEEN, which records



which ttags have affected the current world. Then we exe-
cute the events that use the ttags we want to subsume, and
after we restore TTAGS-ALLOWED and TTAGS-SEEN to the old
values, ACL2 will not complain that we have used trust tags
we were not authorized to use.

This could be considered subversive behavior, but we con-
sider it okay as long as it is done in a way that would be clear
to a certifier. We provide a macro PROGN+SUBSUME-TTAGS

that handles the mechanics of such subsumption. See its
documentation for examples.

4. BASIC EXTENSION MECHANISMS
Here we describe the ACL2 constructs that can only be used
when a trust tag is in effect. When appropriate, we also de-
scribe more elegant abstractions that we have implemented
and make available in the supporting materials.

4.1 Arbitrary Code
PROGN! is a basic building block for potentially dangerous
ACL2 extensions because it allows unprotected embedding
of arbitrary code into certifiable books. Just as PROGN col-
lects many inputs into a single event, PROGN! does so with-
out the restriction that the inputs be embedded event forms.
And PROGN! does not protect logical state as MAKE-EVENT

does.

SET-RAW-MODE also requires an active ttag and can be used
in PROGN! to embed raw Lisp code in a book. For example,
we could embed some code that turns off garbage collection
messages in GNU Common Lisp (GCL):

(progn! (set-raw-mode t)

(when (member-eq :gcl *features*)

(set (intern "*NOTIFY-GBC*" "SI")

nil)))

Note that changing the raw mode setting inside a PROGN!

does not propagate beyond its body, so a matching (set-

raw-mode nil) is not necessary. For some raw inputs, ACL2
will complain about not knowing how many values are re-
turned; this can be avoided by wrapping forms in (progn

... nil). Considering these things, we define a convenient
abstraction (in-raw-mode ...) to be (progn! (set-raw-

mode t) (progn ... nil)).

As a small limitation, we were not allowed to write (setq

si::*notify-gbc* nil) because the code must be an ACL2
object, and ACL2 does not recognize GCL’s “SI” package.
As shown, we can usually work around this problem by gen-
erating symbols from their constituent strings with INTERN.

But PROGN! in general has bigger caveats. First, the code
can be executed several times, because of the dual passes of
certify-book and/or encapsulate, because the code is part of
what is compiled and executed in raw Lisp if the containing
book is compiled, and because the containing book could
be “undone” and reloaded. Thus, code in PROGN! should be
idempotent, though ACL2 provides no check for that.

Second, we are limited in how we can safely modify the world
inside a PROGN!. The reason is that code inside a PROGN!

is interpreted by both the ACL2 loop and the Common
Lisp compiler. Problems arise if compiled code attempts
to change the world. Embedded event forms like DEFUN and
DEFTHM (see the ACL2 documentation for EMBEDDED-EVENT-
FORM) are fine inside PROGN! because they have raw Lisp
definitions that do not affect the world, but directly calling
INSTALL-EVENT, for example, is discouraged (if not illegal)
in a PROGN!, because it always modifies the world. Observe
that DEFUN calls INSTALL-EVENT, but only when executed in
the ACL2 loop. Outside the loop, DEFUN corresponds to the
underlying Lisp’s DEFUN, which knows nothing of the ACL2
world, and, thus, DEFUN is fine inside PROGN!.

Third, PROGN! allows us to specify changes to ACL2 that
are not captured by the logical world, but does not support
“undoing” those changes in any way. For example, if we
include a book that uses PROGN! to change the raw Lisp
definition of a function, that change is not reverted if we
undo the inclusion of the book! And if that raw Lisp code
calls user-defined ACL2 functions, the system breaks if those
ACL2 functions are undone. The only built-in, robust work-
around to this problem is to ensure the book is never undone
by executing (reset-prehistory t) within it or following
its inclusion. As its documentation describes, this use of
RESET-PREHISTORY sets a new starting point for the world,
before which nothing can be undone.

In response to these issues with PROGN!, we have developed
a complementary construct that we call DEFCODE. DEFCODE
is able to “embed” code at some point in a book in four
different ways; thus, a call to DEFCODE is optionally given,
for each of those different ways, a code block to embed in
that way:

:LOOP code is executed each time the DEFCODE form is exe-
cuted by the ACL2 loop, such as in an INCLUDE-BOOK

or each ACL2 pass of CERTIFY-BOOK or ENCAPSULATE.
Any code that modifies the world or checks that the
current world is compatible with what we want to do
should go under :LOOP. Like PROGN!, a soft error re-
turned by :LOOP code aborts further processing.

:LOOP code is typically used for checking that the cur-
rent world is compatible with how we intend to extend
it. It can also be used for embedded event forms and
any other world-modifying code.

:COMPILE code is compiled and loaded by the underlying
Lisp on CERTIFY-BOOK and INCLUDE-BOOK (if book com-
pilation is chosen). This is the only code in a DEFCODE

seen by the Lisp compiler, so authors need not worry
about how other code (in particular, code specified by
:LOOP) would be compiled. Further, this code is only
seen by the Lisp compiler, so authors need not worry
about how the ACL2 loop would execute it (though
the code itself must be constructed of ACL2 objects).

:COMPILE code will typically only contain DEFUN and
DEFMACRO forms to be compiled in the underlying Lisp.

:EXTEND code is executed each time the DEFCODE event is
installed into the current ACL2 world. Except in error
cases, this happens after the ACL2 loop successfully
processes the :LOOP code. The :EXTEND code is also



executed when a world is “resurrected”, as with the
:OOPS command or a REDO in ACL2s.

:EXTEND code will typically use IN-RAW-MODE to make
some modifications in raw Lisp or modify ACL2 state
global variables. It is an error for :EXTEND code to
modify the world; ACL2 seems to catch the error and
recover, but more importantly, it doesn’t make sense
to extend the world in the middle of extending the
world.

:RETRACT code is executed each time the DEFCODE event is
retracted from the current ACL2 world, such as with
:UBT or the multiple passes of CERTIFY-BOOK or EN-

CAPSULATE. :RETRACT code should undo the effect of
the corresponding :EXTEND code, and it is an error for
:RETRACT code to modify the world.

To clarify the relationship between DEFCODE, PROGN!, and or-
dinary book events, consider these inputs, which are equiv-
alent if a trust tag is in effect:

1: (defun x (y) (z y))

2: (progn! (defun x (y) (z y)))

3: (defcode

:loop ((defun x (y) (z y)))

:compile ((defun x (y) (z y))))

As illustrated, DEFCODE separates the two interpretations ap-
plied to PROGN! code and ordinary book code, allowing more
customization. We do not need :EXTEND and :RETRACT in
this case because the DEFUN in the :LOOP code extends the
world in a way that already causes ACL2 to update the
raw definition of X on world extension/retraction. :EXTEND

and :RETRACT cause the DEFCODE itself to update the world
with custom code that is executed on world extension and
retraction.

Here is an example that defines a function only in raw Lisp,
using :EXTEND and :RETRACT code to associate the definition
with the world created by the DEFCODE:

(defcode

:loop ((in-raw-mode

(when (or (fboundp ’x)

(macro-function ’x))

(hard-error ’defcode

"X already defined."))))

:compile ((defun x (y) (z y)))

:extend ((in-raw-mode (defun x (y) (z y))))

:retract ((in-raw-mode (fmakunbound ’x))))

In that example, the :EXTEND block defines a function X

in raw Lisp and the :RETRACT block removes that defini-
tion. We use the :LOOP block to check that X does not yet
have a raw function or macro definition. We choose this
place for such checks rather than :EXTEND because (1) if
all raw definitions are managed properly with DEFCODE, we
can safely assume the check is satisfied in the case of world
“resurrection”, and (2) throwing an error within :EXTEND

or :RETRACT is typically difficult for ACL2 to recover from;

though it seems to recover, it is probably best to assume
such an error corrupts the session.

Note that using (in-raw-mode ...) in the :COMPILE block
is unnecessary, since that part is only used by the raw Lisp
compiler. Eliminating the :COMPILE block would prevent the
definition from being compiled during book compilation, but
it would still be possible to compile the function later with
(in-raw-mode (compile ’x)) or similar.

MAKE-EVENT is not supported inside DEFCODE, which is, per-
haps, the only reason DEFCODE does not make PROGN! ob-
solete. In fact, PROGN! has recently been endowed with a
capability that makes it well-suited for setting up modified
environments in which to process embedded event forms,
including MAKE-EVENT. Specifically, PROGN! can optionally
take a list of state global variable bindings to pass to a
STATE-GLOBAL-LET* surrounding the body of the PROGN!

when it is processed in the ACL2 loop. The key differ-
ence between using that option, (progn! :state-global-

bindings <bindings> <forms>), and writing the STATE-GLO-

BAL-LET* in the body oneself, (progn! (state-global-
let* <bindings> (progn! <forms>))), is that MAKE-EVENT

can be used in <forms> in the former but not in the lat-
ter. See documentation for PROGN! and our implementation
of PROGN+TOUCHABLE and PROGN+REDEF (described below) for
more information and examples.

It is very easy to make an ACL2 session inconsistent or
unsound by using DEFCODE, PROGN!, or SET-RAW-MODE. But
in later sections, we describe abstractions that make it easier
to avoid soundness pitfalls.

4.2 Untouchables
ACL2 untouchables, which include untouchable functions/
macros2 and untouchable state-global variables3, enable much
of ACL2 to be written in its own language while maintaining
metatheoretic invariants on the logical state in the presence
of user code. As part of the ACL2 build process, the ACL2
world is populated with a preset list of functions/macros
and variables that should be inaccessible to direct call or
assignment by the user. If the user attempts to call an un-
touchable function or macro or assign an untouchable state-
global variable, either in code for immediate evaluation, in
the body of a function definition, or in the macro expansion
of either of those, an error results.

For example, INSTALL-EVENT is an untouchable function be-
cause the user could use that function to install an arbitrary
extension of the current world, including those that are logi-
cally inconsistent. ACL2-RAW-MODE-P is an untouchable vari-
able because assigning T to that variable would enter raw
mode without authorization.

But untouchable functions and variables are used on behalf
of the user all the time. DEFTHM and DEFUN, for example,
use INSTALL-EVENT to extend the world with the new for-
mulas, but only if they are found to be admissible. Thus,
the key for “touchable” functions that use untouchables is
that they guarantee the untouchables are only used in ways

2(global-val ’untouchable-fns (w state))
3(global-val ’untouchable-vars (w state))



that maintain the required invariants.

PUSH-UNTOUCHABLE allows the user to add to the list of un-
touchable functions or variables. Though no trust tag is
required for this operation, it will typically only be needed
by hackers who create functions or use variables that need
to be protected. For example, ACL2s defines a function
PUT-GLOBALS that is able to assign values to any state-global
variables, regardless of whether they are untouchable. Obvi-
ously, this function needs to be untouchable to the untrusted
user.

Also important is the ability for a trusted user to use un-
touchables in building potentially unsound extensions to
ACL2. REMOVE-UNTOUCHABLE, which is the inverse of PUSH-

UNTOUCHABLE and requires an active ttag, was the first way
of getting access to untouchables from user ACL2 code, but
we decided to discourage its use in favor of a new construct
that better captured the notion of making some functions
or variables touchable with the intention of making them
untouchable again later.

Thus, we introduced a notion of temporary touchability,
captured in two (untouchable) state-global variables: TEMP-
TOUCHABLE-FNS and TEMP-TOUCHABLE-VARS. These have touch-
able “updater” functions SET-TEMP-TOUCHABLE-FNS and SET-

TEMP-TOUCHABLE-VARS respectively, which require an active
trust tag to access. Each of these variables is bound to either
a (potentially empty) list of symbols that are temporarily
touchable or T, indicating all fns or vars are touchable.

One might ask why we did not choose a simpler solution of
disabling untouchable checking when a ttag is active. The
answer is to make the job of the certifier easier. Rather than
needing to check through all ttagged code for use of untouch-
ables, the certifier can check just those places in which there
are temporary touchables. We make it easy for the author to
identify to the certifier those places where untouchables are
made temporarily touchable, by way of abstractions based
on the ACL2 event aggregator PROGN. Our PROGN+TOUCHABLE
and PROGN=TOUCHABLE add to and override (respectively) the
set of temporarily touchable fns and vars for a sequence of
events.

An example application of using an untouchable function
in developing a system-level extension is in the “super his-
tory” code for ACL2s, whose script management interface
calls for a more powerful notion of undoing and redoing
commands than standard ACL2 has. Among other things,
our code saves “the world” after each command is executed,
and to revert to a previous logical state, we must reinstall
an old world with SET-W!, which is untouchable. So we
wrap the definition of the appropriate function with (progn+

touchable :fns set-w! ...). To maintain soundness, the
ACL2s code (if correct) only installs legitimate old worlds.
This is part of the trust involved in using the ACL2s script
management interface.

4.3 Redefinition
The ACL2 user can turn on a setting that allows redefini-
tion of user functions from the command loop without us-
ing a ttag, but the user cannot certify a book in a world in
which functions have been redefined, because one can easily

use redefinition to reach a contradiction. With a trust tag,
however, it is possible to redefine any function, even in a cer-
tifiable book. Our PROGN+REDEF implements this capability,
enabling redefinition for the scope of its constituent events.

Because most of the ACL2 system is written in the ACL2
language, we can override its behavior with redefinition in
the ACL2 loop. For example, the ACL2s “Recursion & In-
duction” mode, designed by J Moore, disables automatic,
heuristically-chosen induction by the theorem prover, and
this is implemented by redefining a few system functions.

The main caveat of redefining these functions is that we
should avoid changes that could lead to a logical contradic-
tion. This first means we should not redefine a function in
the logic (:LOGIC mode) unless the new version computes the
same function (presumably in a different way). Fortunately,
most of the functions that we would want to behave differ-
ently are not defined in the logic but are in :PROGRAM mode.
But even :PROGRAM mode functions can affect the logic in two
ways: macro expansion and promotion to :LOGIC mode.

:PROGRAM mode functions, including those that take single-
threaded objects (stobjs) such as STATE4 can be used to
define macros, and logical consistency of ACL2 depends on
macros expanding in the same way in any extension of a
world. :PROGRAM mode functions can also be promoted to
:LOGIC mode with VERIFY-TERMINATION if they meet defini-
tional requirements for the logic.

As of Version 3.2, ACL2 has a way of disabling these loop-
holes on a function-by-function basis. Specifically, if a :PROGRAM

mode function is (re)defined after its name has been added
to the state global variable BUILT-IN-PROGRAM-MODE-FNS, it
can no longer be used in macro expansion or promoted to
:LOGIC mode. These are insignificant concessions that take
care of the loopholes. Note that BUILT-IN-PROGRAM-MODE-FNS
is untouchable, so a ttag is required to manipulate it.

We offer an event ENSURE-PROGRAM-ONLY that first asserts
that a function is defined only in :PROGRAM mode, and then
adds it to BUILT-IN-PROGRAM-MODE-FNS if not already there.
Note that this change is not tied to the world and so is
not undoable in the traditional sense, but one could fix this
minor issue with DEFCODE.

Another subtle caveat of redefinition is that if a function has
a raw Lisp definition that does not match its ACL2 defini-
tion, redefining it based on modifying its ACL2 definition
can cause problems. In fact, ACL2 utilizes many such func-
tions, because they bridge the gap between the functionality
available in the ACL2 programming world and that available
in raw Lisp. Unfortunately, ACL2 does not currently keep
track of which built-in functions are in this category, so we
introduce a state global variable HAS-SPECIAL-RAW-DEFINITION,
which should contain a list of all function names with a raw
definition that is not observationally equivalent to its ACL2
definition.

GOOD-BYE-FN, for example, has a function body of NIL in
ACL2, but it has a raw Lisp definition that exits the un-

4Stobjs are not available in the macro language, but logical
counterparts can be used in their place.



derlying Lisp process. Redefining this function in the ACL2
loop would cause the function to lose its special behavior,
so it should be in HAS-SPECIAL-RAW-DEFINITION and should
only have its behavior changed by modifying its raw defini-
tion.

We define ENSURE-SPECIAL-RAW-DEFINITION-FLAG to add to
the list HAS-SPECIAL-RAW-DEFINITION, for example when
changing the raw definition of an ACL2 function, and ASSERT-

NO-SPECIAL-RAW-DEFINITION to assert something is not on
the list, for example when redefining a function in the ACL2
loop. In the future, the list might automatically be initial-
ized with all the appropriate entries, but presently, we only
include some such built-in functions that have been manu-
ally listed.

4.4 External Interaction
Trust tags also enable connecting the proof engine with arbi-
trary ACL2 code, via clause processors [7], and allow ACL2
code to write to arbitrary files, via OPEN-OUTPUT-CHANNEL!,
and run arbitrary programs, via SYS-CALL. Each of these
can alone render ACL2 unsound, as described in their re-
spective documentation, which is why they require a trust
tag. These are important to the overall picture of hacking
and extending ACL2, but are not the focus of this paper.
See [7] for more information.

4.5 Summary
Here are the abstractions we recommend for basic extension.
Some are built-in and the rest are defined in the accompa-
nying supporting materials:

• (defcode [:loop <loop-code>] [:compile

<raw-compile-code>] [:extend <extend-code>]
[:retract <retract-code>])

• (progn! [:state-global-bindings <bindings>]
<form>*)

• (in-raw-mode <raw_form>*)

• (progn+touchable [:fns <fns-or-:all>] [:vars

<vars-or-:all>] <event-form>*)

• (progn=touchable [:fns <fns-or-:all>] [:vars

<vars-or-:all>] <event-form>*)

• (progn+redef <event-form>*)

• (ensure-program-only <fn>*)

• (ensure-special-raw-definition-flag <fn>*)

• (assert-no-special-raw-definition <fn>*)

5. HIGH-LEVEL EXTENSION IDIOMS
Whereas the previous section focused on low-level constructs
and how they support hacking, we now focus on coherent,
high-level idioms for hacking ACL2, abstractions we provide
that take care of low-level details, and how these idioms can
be used and combined to customize ACL2 in deep ways.

5.1 Raw-only Definitions
We define functions that safely add raw Lisp definitions from
within the ACL2 loop. They are safe because definitions are
made only if the names to be defined are not in use by ACL2
or raw Lisp. These use DEFCODE to associate the definitions
with the ACL2 world, enabling them to be undone and even
resurrected.

The names are DEFUN-RAW, DEFMACRO-RAW, DEFSTRUCT-RAW,
DEFPARAMETER-RAW, DEFVAR-RAW, and DEFCONSTANT-RAW, which
of course correspond to their Common Lisp counterparts
without “-RAW” in the name. (See the summary below for
basic syntax of each.)

DEFSTRUCT-RAW is the most complex because it figures out
what functions would be defined by the underlying raw Lisp
DEFSTRUCT. This one is special also because there is no portable
way to undo a DEFSTRUCT in Common Lisp. We can, how-
ever, unbind all the functions defined by the event.

These functions also “stub out” the ACL2 names (with DEF-

LABEL) for which they give a definition in raw Lisp. This
ensures that later ACL2 definitions will not interfere with
the raw definitions made.

Also, these functions respect a non-nil LD-REDEFINITION-

ACTION by removing the requirement that the names not
be in use. If in use in ACL2, though, they must only be
ACL2 labels to proceed, as would be the case if the names
were introduced using one of our “-RAW” functions. This
should not be viewed as a shortcoming, though, since the
next section describes a meaningful way of changing the raw
definition of ACL2 functions.

5.2 Bridging Raw Lisp and ACL2
The ACL2 loop rightly prohibits the definition of functions
that depend on functions or constants defined only in raw
Lisp. The way to bridge this gap is to let an ACL2 function
have a special raw definition, as we described with HAS-

SPECIAL-RAW-DEFINITION. Our DEFUN-BRIDGE creates new
ACL2 functions that are implemented as special raw defi-
nitions, and our MODIFY-RAW-DEFUN adds to or replaces the
functionality of an existing raw function definition.

DEFUN-BRIDGE appears much like DEFUN except that it takes
declarations and a body for ACL2 and declarations and a
body for raw Lisp. It first asserts no previous raw or ACL2
definitions (unless LD-REDEFINITION-ACTION is set) and then
calls ENSURE-PROGRAM-ONLY and ENSURE-SPECIAL-RAW-DEF-

INITION-FLAG to avoid caveats described above. Then the
:PROGRAM-mode ACL2 definition is made, and the custom
raw Lisp definition is installed. We do not support :LOGIC

mode for DEFUN-BRIDGE because it is intended for new metathe-
oretic (“system”) functions.

MODIFY-RAW-DEFUN, on the other hand, can be applied to any
raw function definition, whether it has a :LOGIC-mode ACL2
definition, a :PROGRAM-mode ACL2 definition, or no function
definition at all in ACL2. MODIFY-RAW-DEFUN allows building
a new raw definition of a function using the old definition
as a “black box” function in the new definition. This code
from ACL2s, for example, disables GOOD-BYE for the user:



(modify-raw-defun

good-bye-fn ()

:name-for-old-raw original-good-bye-fn

:raw (progn

(when (acl2s-protected-modep state)

(hard-error

’good-bye

"Please use the user interface ~

to exit.~%"

()))

(original-good-bye-fn)))

The definition that was attached to GOOD-BYE-FN is now
globally attached to ORIGINAL-GOOD-BYE-FN, and GOOD-BYE-

FN now throws an error in some cases rather than invoking
the old functionality (exiting).

5.3 Redefining System Functions
If a :PROGRAM-mode system function does not have a special
raw definition, however, we can change its behavior with
more control by using the ACL2 loop to redefine the func-
tion. In this case, we can look up the old body in the world,
modify it according to our changes, and then use redefinition
to store the new version.

Our REDEFUN looks just like a DEFUN but it takes care of all
the details that promote soundness-preservation: checking
that the existing definition is one we can overwrite, check-
ing that the new definition has the same input and output
signature, and calling ENSURE-PROGRAM-ONLY to keep it out
of the logic. No LD-REDEFINITION-ACTION setting is required
to use REDEFUN, but it does, of course, require an active trust
tag.

A more flexible version of REDEFUN is our REDEFUN+REWRITE,
which computes the new function body based on applying
specified transformations to the old body. Here we take full
advantage of the fact that, like Lisp, ACL2 code is composed
of simple ACL2 objects.

REDEFUN+REWRITE’s first parameter is the name of the func-
tion to modify, and any subsequent parameters comprise a
code rewrite specification for transforming the body. Note
that these “rewrite specs” have no connection with ACL2
rewrite rules, which solve a significantly different problem.
Specifically, ACL2 rewrite rules are for simplifying new ex-
pressions we might encounter; our code rewrite specs are
for changing the meaning of known code, modulo any non-
interfering changes. Each uses “rules” for specifying pieces
of translation, but ACL2 rewrite rules are “semantic” in the
sense that they refer to properties of functions applied to
values, while our code rewrite rules are “syntactic” in that
they refer to code independent of its meaning or interpre-
tation and can universally quantify over raw syntax. Our
code rewrite rules can be recursive, but in a way that is
well-founded, so that we never get stuck looping in transla-
tion. Finally, the order of rule application is easily defined,
giving our translations only one interpretation.

Let us consider an example from ACL2s, in which we mod-
ify some functionality of the top-level ACL2 read-eval-print
loop. Specifically, in LD-READ-EVAL-PRINT, we replace the

one call of REVERT-WORLD-ON-ERROR with ACL2s’s REVERT-

SUPERHIST-ON-ERROR if we are in the top-most command
loop. (The purpose of this change is to revert other impor-
tant ACL2 settings on error, in addition to the world. For
example, in pure ACL2 (er-progn (set-guard-checking

nil) (defun foo (x) (foo y))) would have a side effect
of disabling guard checking even though the (defun foo ...)
failed, but ACL2s’s “super history” reverts the setting.)

(redefun+rewrite

ld-read-eval-print

(:pat (revert-world-on-error %form%)

:recvars %form%

:mult 1

:repl (if (= 1 (@ ld-level))

(revert-superhist-on-error %form%)

(revert-world-on-error %form%))))

The :PAT specifies a pattern to match in the body of the
function; everything matches only itself, except for sym-
bols among the :VARS and :RECVARS (both optional), each of
which match any one thing. By convention, we put percent
signs around our variables to make them stand out. :MULT

asserts that the rule is applied a certain number of times, or
within some range; an error is returned if there are too many
or too few matches. :REPL is what the pattern is replaced
by after substituting the values of the variables.

In the above example, the pattern and replacement are rather
simple, matching any call to REVERT-WORLD-ON-ERROR, since
variables such as %FORM% can match anything. More in-
teresting is that we used :RECVARS instead of :VARS and
added :MULT 1. Specifying :MULT 1 causes the translation
to fail if we rewrite more than one instance of REVERT-

WORLD-ON-ERROR. Using :RECVARS instead of :VARS in this
case means that we also search for uses of REVERT-WORLD-

ON-ERROR nested within other uses, because if a variable is
in :RECVARS, then the current “simultaneous” set of rules is
applied to the binding of that variable before using it in the
:REPL 5.

We have used our code rewrite specification language to
specify how to change the call to REVERT-WORLD-ON-ERROR in
LD-READ-EVAL-PRINT, and to force reexamination of the sit-
uation if and only if there is not exactly one REVERT-WORLD-

ON-ERROR in that function. There are more features to the
code rewriting, and the above description is far from a speci-
fication. See the supporting materials for more information.

5.4 Copying Definitions
On many occasions we have wanted to create a new function
based on the definition of an existing function. For exam-
ple, before redefining a function whose behavior we want to
change, we might define another function in the same way to
preserve the old functionality under a different name. We
provide some constructs to accommodate this and similar
situations.

From the ACL2 loop, our COPY-RAW-DEFUN is a safe way
of defining a raw Lisp function to be exactly the same as
5To make the recursion well-founded, we prohibit the case
in which the pattern is a stand-alone RECVAR.



another. The copy is direct, in the sense that if the func-
tion associated with the source symbol changes, the function
associated with the destination is unchanged, except as it
refers back to the source function. Using COPY-RAW-DEFUN on
recursive functions, therefore, can give undesirable results.
MODIFY-RAW-DEFUN actually uses COPY-RAW-DEFUN in its im-
plementation. COPY-RAW-DEFMACRO is analogous for raw Lisp
macros.

COPY-DEFUN uses a MAKE-EVENT to generate a DEFUN event
that defines a destination function from a source ACL2 func-
tion definition. Later redefinition of the source does not
modify the destination, but COPY-DEFUN, like REDEFUN+RE-

WRITE, asserts that the source definition at inclusion time
be the same as it was at certification time. COPY-DEFUN+RE-
WRITE is like COPY-DEFUN except it uses a REDEFUN+REWRITE-
like specification to transform the copied function body.

5.5 Summary
• (defun-raw <name> <ll> <decl>* <body>)

• (defmacro-raw <name> <ll> <decl>* <body>)

• (defstruct-raw <name-and-opts> <slot desc>+)

• (defvar-raw <name> [<initial-value>])

• (defparameter-raw <name> <initial-value>)

• (defconstant-raw <name> <initial-value>)

• (defun-bridge <name> <ll> [:doc <doc-string>]
[:loop-declare <decl-lst>] :loop <acl2-body>
[:raw-declare <decl-lst>] :raw <raw-body>)

• (modify-raw-defun <name> <name-for-old> <ll>
<decl>* <body>)

• (redefun <name> <ll> <decl>* <body>)

• (redefun+rewrite <name> <rewrite-spec>*)

• (copy-defun <src-name> <dst-name>)

• (copy-defun+rewrite <src-name> <dst-name>
<rewrite-spec>*)

6. CONCLUSION
The first contribution of this paper is a discussion of trust
tags in ACL2. We describe their motivation, when a trust
tag is appropriate, and how to use them when appropriate.
Trust tags open up ACL2 constructs that are dangerous in
the sense that they can render ACL2 unsound or even ef-
fect malice on a user’s computer, but they also facilitate
unprecedented runtime customization of ACL2.

The other contribution of this paper is a set of ACL2 ex-
tensions for modifying and extending ACL2. In the pro-
cess of hacking ACL2 in various ways, we have produced a
nice set of dynamic extension idioms that promote sound-
ness preservation, safe mixing of extensions, and checking
of incompatibilities. These idioms bear some resemblance
to aspect-oriented programming; we can specify where and
how to insert or change code. We also attach changes to
the ACL2 world, so that, if we so choose, the normal undo
mechanisms can revert our code changes.

We have used these dynamic extension mechanisms quite
successfully for the ACL2s development environment. Whereas
we used to require building a custom ACL2 image with our
communication hooks, we can now load them into a stan-
dard ACL2 image as we would a book of theorems. In ad-
dition, it is easier to adapt our changes to new versions of
ACL2, because our method of specifying changes is based
on structured syntax, and can be made as sensitive to other
changes as is appropriate for each of our changes. Dynamic
extension has also enabled us to package an automatic termi-
nation analysis based on calling context graphs (CCGs) [5]
as a book that can be used orthogonally from the rest of
ACL2s.

We hope these features encourage the development of new,
innovative extensions of ACL2. That said, we recommend
the use of ACL2’s built-in mechanisms for customization
and extension (from rewrite rules to MAKE-EVENT) before re-
sorting to the types of extension we have described.
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