K-means Clustering

Clustering is the task of grouping instances so that instances assigned to the same group are similar (and those assigned to different groups are dissimilar). The similarity between instances in the same group is intra-cluster similarity, and that between instances in different groups is inter-cluster similarity. There are many ways to measure similarity (e.g., L2 or L1 distance).

The K-means clustering method finds a grouping assignment of high intra-cluster similarity. It measures similarity using L2 distance. The number of desired clusters K is a hyper-parameter. Let C_k be the set of instances assigned to cluster k. Let μ_k be the centroid of C_k. K-means finds assignments $\{(C_k, \mu_k)\}_k$ that minimizes the following objective function

$$J(C_k, \mu_k) = \sum_{k=1}^{K} \sum_{x \in C_k} ||x - \mu_k||^2.$$ \hfill (1)

Solving (1) directly is computationally intractable. One often applies the Lloyd’s Algorithm to alternately optimize C_k and μ_k until convergence.

Algorithm 1 The Lloyd’s Algorithm for K-means Clustering

- **Input:** a sample S, the number of clusters K
- **Initialization:** (randomly) initialize K centroids μ_1, \ldots, μ_K
- **while** C_k is still changing **do**
 1: for each x, assign it to cluster k if its nearest centroid is μ_k, i.e.,
 $$k = \arg \min_{j=1,...,K} ||x - \mu_j||.$$ \hfill (2)
 2: for each μ_k, update it based on the new assignment C_k from (2), i.e.,
 $$\mu_k = \frac{1}{|C_k|} \sum_{x \in C_k} x.$$ \hfill (3)
- **end while**
- **Output:** converged cluster assignments C_1, \ldots, C_K

[Discussion] Give a demo of the Lloyd’s algorithm.

K-means is guaranteed to converge, because J decreases as (2) and (3) alternates. In fact, one can verify that (i) fixing μ_k’s, (2) minimizes J and (ii) fixing C_k’s, (3) minimizes J. But K-means may converge to local minimum and is sensitive to centroid initialization. In practice, one can run K-means multiple times and pick up the assignment with the smallest J.

[Exercise] Verify facts (i) and (ii).