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Abstract

Under the assumption that NP does not have p-measure 0, we investigate reductions to
NP-complete sets and prove the following:

1. Adaptive reductions are more powerful than nonadaptive reductions: there is a problem
that is Turing-complete for NP but not truth-table-complete.

2. Strong nondeterministic reductions are more powerful than deterministic reductions: there
is a problem that is SNP-complete for NP but not Turing-complete.

3. Every problem that is many-one complete for NP is complete under length-increasing
reductions that are computed by polynomial-size circuits.

The first item solves one of Lutz and Mayordomo’s “Twelve Problems in Resource-Bounded
Measure” (1999). We also show that every many-one complete problem for NE is complete
under one-to-one, length-increasing reductions that are computed by polynomial-size circuits.

1 Introduction

A language L ∈ NP is NP-complete if every language in NP is reducible to L. There are several
possible interpretations of the word “reducible.” Polynomial-time many-one reducible is the most
typical meaning, but there are many other reducibilities, each providing a potentially different
NP-completeness notion. Are there languages that are NP-complete using one type of reduction
but not complete under another type of reduction? Are there two apparently different notions of
reductions for which the corresponding completeness notions coincide? We study these questions
for several types of reductions.

1.1 Adaptive versus Nonadaptive Reductions

A many-one reduction (≤p
m) from A to B converts a question about membership in A to an equiv-

alent question about membership in B. Formally, there is a function f such that x ∈ A if and only
if f(x) ∈ B. A variation on this theme is to allow the use of B as an oracle to solve A. Here there is
an algorithm M that takes as input an instance x and may ask multiple queries about membership
in B before outputting its decision for membership of x in A. There are two basic forms of this type
of reduction: adaptive and nonadaptive. In an adaptive reduction (also called a Turing reduction,
≤p

T) M receives the answer for each query before asking its next query – subsequent queries may
depend on the answers to previous queries. In a nonadaptive reduction (also called a truth-table
reduction, ≤p

tt) M asks all of its queries before receiving any answers.
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Lutz and Mayordomo [24] showed that if NP does not have p-measure zero (written µp(NP) 6= 0),
then adaptive completeness for NP is different from many-one completeness. In fact, they showed
this hypothesis yields a problem that is complete for NP under adaptive reductions that make only
two queries, but is not complete under many-one reductions. In the conclusion of their paper,
Lutz and Mayordomo conjectured that the measure hypothesis would yield separations of other
completeness notions between ≤p

m and ≤p
T for NP, similar to what is known unconditionally for E

and NE [30, 9].
Since then there have been several results in this direction. Ambos-Spies and Bentzien [5] used

a genericity hypothesis on NP, an assumption which is implied by the measure hypothesis, to
separate essentially all bounded-query completeness notions for NP. It is also known that some of
these separations can be obtained under bi-immunity hypotheses [28, 19], which are even weaker
assumptions. For a survey of these results see [26].

However, so far a separation of adaptive completeness from nonadaptive completeness for NP
has been elusive. This question has been asked in several survey papers [11, 23, 12, 25], most
prominently as one of Lutz and Mayordomo’s “Twelve Problems in Resource-Bounded Measure,”
Problem 9:

Does µp(NP) 6= 0 imply the existence of a problem that is ≤p
T-complete, but not ≤p

tt-
complete, for NP?

The only partial result on this problem was by Pavan and Selman [27] who used a strong hypothesis
about UP to separate these two completeness notions. We affirmatively answer the above question.
Our proof combines the connection between the measure of NP and the NP-machine hypothesis
[17] with results about nonadaptive reductions to P-selective sets [10, 29].

1.2 Nondetermistic versus Deterministic Reductions

Adleman and Manders [1] observed that while most problems can be shown to be NP-complete
using polynomial-time reductions, some problems resist this approach. To classify such problems,
they proposed what are now called strong nondeterministic many-one reductions. (Adleman and
Manders called these reductions γ-reductions.) If a language that is NP-complete under strong
nondeterministic reductions admits an efficient algorithm, then NP = coNP. Therefore, if we
believe NP 6= coNP, strong nondeterministic completeness can also be taken as evidence that the
problem in hand is intractable.

Adleman and Manders showed that some number-theoretic problems are NP-complete under
strong nondeterministic many-one reductions. Chung and Ravikumar [13] showed that certain
questions regarding comparator networks are also NP-complete under these reductions. It is not
known whether these problems remain complete if we use polynomial-time reductions.

This situation raises the following question: are there languages that are complete under strong
nondeterministic reductions, but not complete under polynomial-time reductions? We show that if
µp(NP) 6= 0, then the answer to this question is yes, even if we consider polynomial-time adaptive
reductions.

1.3 Length-Increasing Reductions

It has been observed that many NP-completeness results hold under very restrictive reductions.
For example, SAT is complete under polynomial-time reductions that are one-to-one and length-
increasing. In fact, all known many-one complete problems for NP are complete under this type
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of reduction [8]. This raises the following question: are there languages that are complete under
polynomial-time many-one reductions but not complete under polynomial-time, one-to-one, length-
increasing reductions?

Berman [7] showed that every many-one complete set for E is complete under one-to-one,
length-increasing reductions. Thus for E, these two completeness notions coincide. A weaker result
is known for NE. Ganesan and Homer [15] showed that all NE-complete sets are complete via
one-to-one reductions that are exponentially honest.

For NP, until very recently there had not been any progress on this question. Agrawal [3]
showed that if one-way permutations exist, then all NP-complete sets are complete via one-to-one,
length-increasing, p/poly-reductions. Agrawal’s result also holds for the NE-complete sets under
the same hypothesis.

In this paper, we show that if µp(NP) 6= 0, then all NP-complete sets are complete via length-
increasing, p/poly-reductions. We note that the measure hypothesis on NP is apparently incom-
parable with Agrawal’s hypothesis that one-way permutations exist. Regarding NE-completeness,
we show that Agrawal’s result can be made unconditional. That is, we unconditionally show that
all NE-complete sets are complete via one-to-one, length-increasing, p/poly-reductions.

2 Preliminaries

We assume that the reader is familiar with polynomial-time many-one reductions. A many-one
reduction f is polynomially-honest (or just honest) if there is a polynomial p such that |x| ≤ p(|f(x)|)
for all x. A language A is polynomial-time Turing reducible to B (A ≤p

T B) if there is a polynomial-
time oracle Turing M such that A = L(MB). A language A is polynomial-time truth-table reducible
to a language B (A ≤p

tt B) if there exist polynomial-time computable functions g and h such that
for every x, g(x) is a set of queries {q1, · · · , qm} and x ∈ A if and only if h(x,B(q1), · · · , B(qm)) = 1.
Given a reducibility ≤α

r , a set S in NP is ≤α
r -complete for NP if every set in NP is ≤α

r -reducible to
S.

2.1 Resource-Bounded Measure

Lutz [22] introduced resource-bounded measure to study the quantitative structure of complexity
classes.

A martingale is a function d : Σ∗ → Q with the property that for every w ∈ Σ∗, 2d(w) =
d(w0) + d(w1). A martingale d succeeds on a language A if

lim sup
n→∞

d(A|n) = ∞,

where A|n is the length n prefix of A’s characteristic sequence.
Intuitively, the martingale d can be viewed as a strategy that bets on the successive bits of

the characteristic sequence of A. While betting on the nth bit of the characteristic sequnece, the
martingale knows the first n − 1 bits of the characteristic sequence of A. Initially, the martingale
starts with capital d(λ). When d is ready to bet on the nth bit, it has capital d(A|n − 1). The
martingale bets an amount a, 0 ≤ a ≤ d(A|n− 1), that the next bit of the characteristic sequence
is 0. If the next bit is indeed 0, then the capital of the martingale increases by a, else the capital
decreases by a. More precisely, if the next bit of the characteristic sequence is 0, then d((A|n −
1) · 0) = d(A|n − 1) + a, and d((A|n − 1) · 1) = d(A|n − 1) − a. If the next bit is 1, then
d((A|n− 1) · 0) = d(A|n− 1)− a and d((A|n− 1) · 1) = d(A|n− 1) + a. Here (A|n− 1) · b denotes
the string obtained by concatanating A|n− 1 with bit b.

3



Given a time bound t(n), a language L is t(n)-random [6] if no O(t(n))-time computable mar-
tingale succeeds on L. A class of languages X has p-measure zero, written µp(X) = 0, if there
exists a polynomial t such that every language in X is not t(n)-random.

Lutz suggested studying the structure of the class NP under the hypothesis “NP does not have
p-measure 0,” which is written µp(NP) 6= 0. Since then several believable consequences of this
hypothesis have been obtained. For a survey of these results see [23, 25].

2.2 NP-Machine Hypothesis

Our proofs crucially make use of the following hypothesis. Several variants of this hypothesis have
been studied earlier [14, 16].

NP-Machine Hypothesis. There exists an NP-machine M and ε > 0 such that M accepts 0∗

and no 2nε
-time-bounded Turing machine computes infinitely many accepting computations of M .

In other words, the hypothesis says that there is no function f computable in time 2nε
such that

for infinitely many n, f(0n) is an accepting computation of M(0n). It is known that the measure
hypothesis implies the NP-machine hypothesis.

Theorem 2.1. (Hitchcock and Pavan [17]) If µp(NP) 6= 0, then the NP-machine hypothesis holds.

A simple padding argument yields the following.

Observation 2.2. Assume that the NP-machine hypothesis is true and let p be any polynomial.
Then there exists an NP-machine N that accepts 0∗, and no 2p(n)-time-bounded machine computes
infinitely many accepting computations of N .

2.3 Reductions to P-selective Sets

A set S is p-selective if there exists a polynomial-time computable function f : Σ∗ ×Σ∗ → Σ∗ such
that for all strings x and y, f(x, y) ∈ {x, y}, and if at least one of x and y belongs to S, then f(x, y)
belongs to S.

Let P-sel denote the class of p-selective sets. For a reduction ≤α
τ and a class C, let

Rα
τ (C) = {A | (∃B ∈ C)A ≤α

τ B}.

Theorem 2.3. (Buhrman and Longpré [10], Wang [29]) Rp
tt(P-sel) has p-measure 0.

Let ≤t(n)�p
tt denote a truth-table reduction that is computable in t(n) time, but where the number

and length of the queries is bounded by a polynomial. It is straightforward to extend the arguments
in [10] or [29] to show that Theorem 2.3 extends to these reductions when t(n) is linear-exponential.

Theorem 2.4. For every c ∈ N, the class R2cn�p
tt (P-sel) has p-measure 0.

3 Adaptive versus Nonadaptive Reductions

We now present our solution to Problem 9 of Lutz and Mayordomo [25].

Theorem 3.1. If µp(NP) 6= 0, then there is a problem that is ≤p
T-complete for NP but not ≤p

tt-
complete.
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Proof. Assume that µp(NP) 6= 0. From Theorem 2.1 and Observation 2.2 we obtain an NP-machine
M that accepts 0∗ such that no 2n2

-time machine can compute infinitely many of its accepting
computations.

For each n, let an be the lexicographically maximum accepting computation of M(0n). Let a
be the infinite sequence a = a0a1a2 . . .. Let

A = {〈x,w〉 | x ∈ SAT and w is an accepting computation of M(0|x|)},

B = L(a) = {x ∈ Σ∗ | x < a},

where < is the standard dictionary order. Let

C = 0A ∪ 1B.

Then C is ≤p
T-complete for NP: to decide whether x ∈ SAT, we can adaptively query B to find

a|x| and then ask if 〈x, a|x|〉 ∈ A.
Suppose that C is ≤p

tt-complete for NP. Then for every L ∈ NP, L ≤p
tt C via some reduction

(g, h). Fix such an L an (g, h).
Claim 3.2. For all but finitely many x, all queries of g(x) to strings of the form 0〈y, w〉 must satisfy

• |y| ≤ |x|, or

• w is not an accepting computation of M(0|y|).

Proof of Claim 3.2. Consider the following algorithm.

input 0n;
for all x ∈ {0, 1}<n:

compute g(x);
for all queries in g(x) that are of the form 0〈y, w〉, where |y| = n:

if w is an accepting computation of M(0n)
output w and halt;

This algorithm runs in O(2n · poly(n)) time, and would compute infinitely many accepting compu-
tations of M if the claim is false. � Claim 3.2

Claim 3.3. L ≤2n�p
tt B.

Proof of Claim 3.3. By Claim 3.2 and making a finite patch to the reduction, we can assume that
for all x, all queries of g(x) to strings of the form 0〈y, w〉 must satisfy |y| ≤ |x| or w is not an
accepting computation of M(0|y|).

• If |y| ≤ |x|, then we can decide whether 〈y, w〉 ∈ A in 2n time by checking if y ∈ SAT in
exponential time and whether w is an accepting computation of M(0|y|) in polynomial time.

• If |y| > |x|, then w is not an accepting of M(0|y|), so we know 〈y, w〉 6∈ A.

We obtain a reduction to B by answering these queries to A directly. � Claim 3.3

Since B is a left-cut, it is p-selective, so it follows from Claim 3.3 that NP ⊆ R2n�p
tt (P-sel). By

Theorem 2.4, this implies µp(NP) = 0, a contradiction.
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4 Nondeterministic versus Deterministic Reductions

Definition. [1, 21] A language A is strong nondeterministic many-one reducible to a language
B, written A ≤SNP

m B, if there is a nondeterministic polynomial-time machine M such that the
following conditions hold.

• On an input x, every path of M either outputs a string y or outputs the special symbol “?”.
At least one path outputs a string.

• If x belongs to A, then every output y belongs to B, and if x does not belong to A, then
every output y does not belong to B.

Adleman and Manders [1] also called this γ-reducibility and denoted it ≤γ .
Long [21] showed that the following are equivalent:

• for all A,B, A ≤SNP
m B implies A ≤p

T B

• every NPMV total function has a polynomial-time refinement.

The latter has been called Proposition Q in [14]. To separate ≤SNP
m -completeness from ≤p

T-
completeness for NP, we clearly need a hypothesis that at least implies Q is false. The NP-machine
hypothesis fits the bill:

Theorem 4.1. If the NP-machine hypothesis holds, then there is a problem that is ≤SNP
m -complete

for NP but not ≤p
T-complete.

Proof. Assume the NP-machine hypothesis. By Observation 2.2, there exists an NP machine M
that accepts 0∗ for which no 23n-time bounded machine can compute infinitely many accepting
computations. Consider the following language.

A = {〈x, a〉 | x ∈ SAT and a is an accepting computation of M(0|x|)}

Then A ∈ NP, and we claim that A is strong nondeterministic many-one complete. Consider a
nondeterministic machine N that on input x guesses a string a, and if a is an accepting computation
of M(0|x|), then it outputs 〈x, a〉. If a is not an accepting computation of M(0|x|), then N outputs
“?”. Then N is a strong nondeterministic many-one reduction from SAT to A. It follows that A is
strong nondeterministic many-one complete for NP.

We will show that A is not Turing complete for NP. Suppose to the contrary that it is Turing
complete. Consider the following language S.

S = {〈0n, w〉 | w is a prefix of an accepting computation of M(0n)}

Since S is in NP, there is a polynomial-time oracle Turing machine R such that S = L(RL).
Consider the following procedure A that tries to compute accepting computations of M .

1. Input 0n.

2. Set y = ε.

3. Run R(〈0n, y0〉). When R generates a query q = 〈x, z〉, let t = |x| and do the following:

(a) If z is not an accepting computation of M(0t), then continue simulation of R with answer
“No”.
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(b) Else, z is an accepting computation of M(0t).

(c) If t ≥ n, then output “Unsuccessful”, print z, and halt.

(d) Otherwise, decide whether 〈x, z〉 ∈ L by checking whether x ∈ SAT. Since t < n this
takes at most 2n time. Use this answer to continue the simulation.

4. If R accepts 〈0n, y0〉, then set y = y0. Else set y = y1.

5. If y is an accepting computation of M(0n), then output y and halt. Else, GoTo Step 3.

Observe that the most expensive step in the above computation is Step 3d. This takes 2n time.
Since this step is repeated at most polynomial number of steps, the above algorithm halts in 22n

steps.
Next we make two claims about the behavior of the algorithm A.

Claim 4.2. If A(0n) outputs “Unsuccessful” for infinitely many n, then there is a 23n-time algorithm
that outputs infinitely many accepting computations of M(0n).
Proof of Claim 4.2. Observe that if A(0n) outputs “Unsuccessful”, then there exists a t ≥ n such
that A(0n) outputs an accepting computation of M(0t). Thus if there exist infinitely many n for
which A(0n) outputs “Unsuccessful”, then there exists infinitely many t for which there exists n ≤ t,
and A(0n) outputs an accepting computation of M(0t). Now consider the following algorithm: On
input 0t, run A(0j), 1 ≤ j ≤ t. If any of the runs of A outputs an accepting computation of M(0t),
then output that accepting computation.

This algorithm outputs an accepting computation of A(0t) for infinitely many t. The running
time of the algorithm is bounded by

∑t
j=1 22j ≤ 23t. This establishes the claim. � Claim 4.2

Claim 4.3. If A(0n) does not output “Unsuccessful”, then it outputs an accepting computation of
M(0n) in time 22n.
Proof of Claim 4.3. Observe that A(0n) is trying to compute an accepting computation of M(0n)
by doing a prefix search. This is accomplished by running the Turing reduction R, and whenever
the reduction generates a query it is attempting to find the answer to the query without actually
making the query. Thus if all the queries are answered correctly, it will compute an accepting
computation of M(0n). We argue that A(0n) computes all query answers correctly. Let q = 〈x, y〉
be a query that is generated.

If y is not an accepting computation of M , then q does not belong to A. Thus A answers the
query correctly in 3a. So assume y is an accepting computation of M(0t). Since A(0n) does not
output “Unsuccessful”, t < n. Thus the algorithm reaches Step 3d. In this step, it decides whether
x ∈ SAT by a running a deterministic algorithm for SAT. Thus the query answer is computed
correctly in this step.

Thus A(0n) computes all query answers correctly. Thus A(0n) outputs an accepting computa-
tion of M(0n). Recall that the running time of A is bounded by 22n. � Claim 4.3

Now, if A(0n) outputs “Unsuccessful” for infinitely many n, then, by Claim 4.2, there is a 23n-
time algorithm that computes infinitely many accepting computations of M(0n). This contradicts
the NP-machine hypothesis. Thus for all but finitely many n, A(0n) does not output “Unsuccessful”.
Thus, by Claim 4.3, for all but finitely many n, A(0n) outputs an accepting computation of M(0n)
in time 22n. This again contradicts the NP-machine hypothesis.

Thus there is no Turing reduction from S to A. Thus A is not Turing complete for NP.

By Theorem 2.1, we immediately have the following.
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Corollary 4.4. If µp(NP) 6= 0, there is a problem that is ≤SNP
m -complete for NP but not ≤p

T-
complete.

5 Length-Increasing Reductions and Polynomial-Size Circuits

In this section we study one-to-one, length-increasing reductions. (All reductions in this section
are many-one reductions. We say that a many-one reduction f is length-increasing if |f(x)| > |x|
for all strings x and that f is one-to-one if for all strings x 6= y, f(x) 6= f(y).)

Berman proved [7] that every ≤p
m-complete set for E is also is complete under one-to-one,

length-increasing reductions. This proof makes essential use of the fact that E is closed under
complementation, so it does not go through for nondeterministic classes. As a partial result,
Ganesan and Homer [15] showed that every ≤p

m-complete set for NE is complete under one-to-one,
exponentially-honest reductions. See also the survey paper [20] by Homer.

Agrawal [3] showed that if one-way permutations exist, then many-one complete sets for NP
and NE are complete via one-to-one, length-increasing, p/poly reductions. (A p/poly reduction
is computed by a nonuniform family of polynomial-size circuits, one for each input length.) We
now show that Agrawal’s result for NE can be made unconditional. Our original proof [18] of this
used the fact coNE ⊆ NE/poly to apply Berman’s technique. The following simpler proof was
described to us by Fortnow (personal communication, 2006) and instead uses the result of Ganesan
and Homer.

Theorem 5.1. Every ≤p
m-complete set for NE is complete under one-to-one, length-increasing,

p/poly reductions.

Proof. Let A be an arbitrary ≤p
m-complete set for NE and let K be the standard complete set. By

[15], there is a one-to-one ≤p
m-reduction f from K to A. Let pad : Σ∗ × Σ∗ → Σ∗ be a one-to-one,

polynomial-time computable padding function such that for all strings x and r, x ∈ K if and only
if pad(x, r) ∈ K. Because f and pad are one-to-one, for each n there is some rn ∈ Σn+1 such
that |f(pad(x, rn))| > |x| for all x ∈ Σn. We use this rn as our advice to define the one-to-one,
length-increasing, p/poly reduction g(x) = f(pad(x, rn)) from K to A.

Next we will show that if NP does not have p-measure zero, then all NP-complete sets are
complete via length-increasing, p/poly reductions. In the proof we will consider whether a language
R has the following property.

Property 5.2. There is a 2cn-time computable function f such that for every n, f(0n) either outputs
⊥ or outputs a tuple 〈a, b, u, v〉. For infinitely many n, f(0n) 6= ⊥. Whenever f(0n) = 〈a, b, u, v〉,
the following hold:

• |a| = |b| = n.

• R(a)R(b) 6= uv, and uv is either 00 or 11.

Informally, f either finds two strings such that at least one of them is in R, or finds two strings
such that at least one of them does not belong to R.

Lemma 5.3. If R has Property 5.2, then R is not nc-random.

Proof. We describe a martingale d that can win an infinite amount of money while betting on R.
Let d(n) denote the amount of money that the martingale has before it starts betting on strings of
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length n. Before starting betting on strings of length n, the martingale runs f(0n). If f(0n) = ⊥,
then d does not bet on any string of length n. Suppose f(0n) = 〈a, b, u, v〉. Without loss of
generality we can assume a < b. Consider the case uv = 00. In this case at least one of a and b
must be in R. The martingale bets 1/3rd of its amount on a ∈ R. If a really belongs to R, then
d does not bet on any other string of length n. So if a ∈ R, then d(n+ 1) = 4d(n)/3. However, if
a /∈ R, then d is left with capital 2d(n)/3. However, since at least one of a and b must be in R, b
must belong to R. Now d bets all its money on b ∈ R. Thus in this case also d(n+ 1) = 4d(n)/3.
The case uv = 11 is handled via a symmetric argument.

Since f(0n) 6= ⊥ for infinitely many n, for infinitely many n, d(n + 1) ≥ 4d(n)/3. Thus d(n)
approaches infinity as n tends to ∞. Since f runs in 2cn-time, d runs in time O(nc). Thus R is not
nc-random.

Now we are ready to prove the theorem regarding complete sets for NP.

Theorem 5.4. If µp(NP) 6= 0, then every NP-complete language is complete under length-increasing,
p/poly reductions.

Proof. Let L be any NP-complete language. We show that there is a p/poly, length-increasing
reduction from SAT to L. We first define an intermediate language S such that SAT is p/poly,
length-increasing reducible to S, and S is honest polynomial-time reducible to L. Combining these
two reductions and using the paddability of SAT we obtain the desired reduction from SAT to L.
Let L ∈ DTIME(2nk

).
If NP does not have p-measure 0, then there is an n4-random language R in NP. The randomness

of R implies that both R and R have at least one string at each length. Let

S = {〈x, y, z〉 | |x| = |y| = |z| and MAJ{x ∈ R, y ∈ SAT, z ∈ R} = 1}.

Here MAJ{φ, ψ, τ} = 1 if a majority of φ, ψ, and τ are true.
It is clear that S is NP. For every n, fix two strings an and bn of length n such that an ∈ R

and bn /∈ R. Consider the following reduction from SAT to S: Given an input y of length n the
reduction outputs 〈an, y, bn〉. Now y ∈ SAT ⇔ 〈an, y, bn〉 ∈ S. The reduction takes an and bn as
advice. It is clear that this reduction is length-increasing. Therefore we have established that SAT
is p/poly, length-increasing reducible to S.

Since S is in NP and L is NP-complete, there is a many-one reduction f from S to L. We now
argue that f must be a honest reduction on strings of form 〈x, y, z〉 where |x| = |y| = |z|.
Claim 5.5. Let T = {〈x, y, z〉 | |x| = |y| = |z|}. For all but finitely many strings w = 〈x, y, z〉 from
T , |f(w)| ≥ |x|1/k.
Proof of Claim 5.5. Consider the following set

U =
{
w = 〈x, y, z〉 ∈ T

∣∣∣|f(w)| < |x|1/k
}
.

We show that if U is infinite, then R has Property 5.2.
Recall that L can be decided in time 2nk

. Thus if a string w = 〈x, y, z〉 belongs to U , then the
membership of f(w) in L can be decided in time 2|f(w)|k < 2|x|. Since f is a many-one reduction
from S to L, for every string w = 〈x, y, z〉 in U , its membership in S can be computed in time 2|x|.

Define a function g as follows. In input 0n, cycle through all tuples w = 〈x, y, z〉, |x| = |y| =
|z| = n, and check if w ∈ U by computing f(w). If none of the w’s are in U , then output ⊥. Else,
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let w = 〈x, y, z〉 be the first string that belongs to U . Compute the membership of w in S. We first
consider the case w ∈ S. In this case,

MAJ{x ∈ R, y ∈ SAT, z ∈ R} = 1.

Thus it can not be the case that both x and z are out of R. Then g outputs 〈x, z, 0, 0〉. Similarly,
if w /∈ S, then it cannot be the case that both x and z are in R. Then g outputs 〈x, z, 1, 1〉.

Observe that the running time of g is bounded by O(23n). If U is infinite, then for infinitely
many n, g(0n) 6= ⊥. So, if U is infinite, then R has Property 5.2, and by Lemma 5.3, R is not
n3-random. Since R is n4-random, U is finite.

Thus for all but finitely many strings from T , |f(w)| ≥ |x|1/k. � Claim 5.5

Now consider the following reduction h from SAT to L: On input y of length n, output
f(〈an, y, bn〉). By Claim 5.5, |f(〈an, y, bn〉)| ≥ n1/k. Thus h is an honest, p/poly-reduction from
SAT to L. Since SAT is paddable, there exists a reduction from SAT to itself that maps strings of
length n to strings of length at least nk. Combining this reduction with h, we obtain a a length-
increasing, p/poly-reduction from SAT to L. Thus L is complete via length-increasing, p/poly
reductions.

6 Conclusion

We now know that the measure hypothesis separates nearly all polynomial-time completeness no-
tions for NP. It would be interesting to separate completeness notions for NP under weaker hy-
potheses such as “NP is hard on average”. Can we separate Turing completeness from many-one
completeness under a hypothesis that is weaker than the measure hypothesis? More specifically,
can we achieve the separation under the NP-machine hypothesis?

Theorem 4.1 gives evidence that when we give more resources to the reductions, we obtain a
richer class of complete sets. What happens when we decrease the resource bound of the reductions?
Agrawal et al. [4, 2] showed that NC0-completeness and AC0-completeness for NP coincide whereas
AC0-completeness and AC0[mod 2]-completeness for NP differ. It would be interesting to extend
these results to other resource bounds.

The results of Agrawal [3] and our results in Section 5 indicate that complete sets for NP and
NE are complete under one-to-one, length-increasing reductions. However these reductions need
polynomial-size advice. Can we eliminate the advice?
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