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Abstract

This paper presents the following results on sets that are complete for NP.

(i) If there is a problem in NP that requires 27" time at almost all lengths, then every many-
one NP-complete set is complete under length-increasing reductions that are computed by
polynomial-size circuits.

(ii) If there is a problem in co-NP that cannot be solved by polynomial-size nondeterministic
circuits, then every many-one NP-complete set is complete under length-increasing reductions
that are computed by polynomial-size circuits.

(iii) If there exist a one-way permutation that is secure against subexponential-size circuits and
there is a hard tally language in NP N co-NP, then there is a Turing complete language for
NP that is not many-one complete.

Our first two results use worst-case hardness hypotheses whereas earlier work that showed similar
results relied on average-case or almost-everywhere hardness assumptions. The use of average-
case and worst-case hypotheses in the last result is unique as previous results obtaining the same
consequence relied on almost-everywhere hardness results.

1 Introduction

It is widely believed that many important problems in NP such as satisfiability, clique, and
discrete logarithm are exponentially hard to solve. Existence of such intractable problems
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has a bright side: research has shown that we can use this kind of intractability to our
advantage to gain a better understanding of computational complexity, for derandomizing
probabilistic computations, and for designing computationally-secure cryptographic primi-
tives. For example, if there is a problem in EXP (such as any of the aforementioned prob-
lems) that has 27" size worst-case circuit complexity (i.e., that for all sufficiently large n,
no subexponential size circuit solves the problem correctly on all instances of size n), then
it can be used to construct pseudorandom generators [NW94, BFNWO93|. Using these pseu-
dorandom generators, BPP problems can be solved in deterministic quasipolynomial time.
Similar average-case hardness assumptions on the discrete logarithm and factoring prob-
lems have important ramifications in cryptography. While these hardness assumptions have
been widely used in cryptography and derandomization, more recently Agrawal [Agr02] and
Agrawal and Watanabe [AW09] showed that they are also useful for improving our under-
standing of NP-completeness. In this paper, we provide further applications of such hardness
assumptions.

1.1 Length-Increasing Reductions

A language in NP is NP-complete if every language in NP is reducible to it. While there are
several ways to define the notion of reduction, the most common definition uses polynomial-
time computable many-one functions. Many natural problems that arise in practice have
been shown to be NP-complete using polynomial-time computable many-one reductions.
However, it has been observed that all known NP-completeness results hold when we restrict
the notion of reduction. For example, SAT is complete under polynomial-time reductions
that are one-to-one and length-increasing. In fact, all known many-one complete prob-
lems for NP are complete under this type of reduction [BH77]. This raises the following
question: are there languages that are complete under polynomial-time many-one reduc-
tions but not complete under polynomial-time, one-to-one, length-increasing reductions?
Berman [Ber77] showed that every many-one complete set for E is complete under one-to-
one, length-increasing reductions. Thus for E, these two completeness notions coincide. A
weaker result is known for NE. Ganesan and Homer [GH92| showed that all NE-complete
sets are complete via one-to-one reductions that are exponentially honest.

For NP, until recently there had not been any progress on this question. Agrawal [Agr02]
showed that if one-way permutations exist, then all NP-complete sets are complete via one-
to-one, length-increasing reductions that are computable by polynomial-size circuits. Hitch-
cock and Pavan [HP07] showed that NP-complete sets are complete under length-increasing
P /poly reductions under the measure hypothesis on NP [LM94]. Recently Buhrman et al. im-
proved the latter result to show that if the measure hypothesis holds, then all NP-complete
sets are complete via length-increasing, polynomial-time computable functions that require
O(loglogn) bits of advice  BHHT10]. More recently, Agrawal and Watanabe [AW09] showed
that if regular one-way functions exist, then all NP-complete sets are complete via one-one,
length-increasing, P /poly-computable reductions. All the hypotheses used in these works re-
quire the existence of an almost-everywhere hard language or an average-case hard language
in NP.



In the first part of this paper, we consider hypotheses that only concern the worst-case
hardness of languages in NP. Our first hypothesis concerns the deterministic time complexity
of languages in NP. We show that if there is a language in NP for which every correct
algorithm spends more than 2" time at almost all lengths, then NP-complete languages
are complete via length-increasing P /poly-computable reductions. The second hypothesis
concerns nondeterministic circuit complexity of languages in co-NP. We show that if there
is a language in co-NP that cannot be solved by nondeterministic polynomial-size circuits,
then all NP-complete sets are complete via length-increasing P /poly-computable reductions.
For more formal statements of the hypotheses, we refer the reader to Section 3. We stress
that these hypotheses require only worst-case hardness. The worst-case hardness is of course
required at every length, a technical condition that is necessary in order to build a reduction
that works at every length rather than just infinitely often.

1.2 Turing Reductions versus Many-One Reductions

In the second part of the paper we study the completeness notion obtained by allowing a
more general type of reduction—Turing reduction. Informally, with Turing reductions an
instance of a problem can be solved by asking polynomially many (adaptive) queries about
the instances of the other problem. A language in NP is Turing complete if there is a
polynomial-time Turing reduction to it from every other language in NP. Though many-
one completeness is the most commonly used completeness notion, Turing completeness also
plays an important role in complexity theory. Several properties of Turing complete sets are
closely tied to the separation of complexity classes. For example, Turing complete sets for
EXP are sparse if and only if EXP has polynomial-size circuits. Moreover, to capture our
intuition that a complete problem is easy, then the entire class is easy, Turing reductions
seem to be the “correct” reductions to define completeness. In fact, the seminal paper of
Cook [CooT71] used Turing reductions to define completeness, though Levin [Lev73] used
many-one reductions.

This raises the question of whether there is a Turing complete language for NP that is
not many-one complete. Ladner, Lynch and Selman [LLS75] posed this question in 1975,
thus making it one of the oldest problems in complexity theory. This question is completely
resolved for exponential time classes such as EXP and NEXP [Wat87, BHT91]. We know that
for both these classes many-one completeness differs from Turing-completeness. However
progress on the NP side has been very slow. Lutz and Mayordomo [LM96] were the first
to provide evidence that Turing completeness differs from many-one completeness. They
showed that if the measure hypothesis holds, then the completeness notions differ. Since
then a few other weaker hypotheses have been used to achieve the separation of Turing
completeness from many-one completeness [ASB00, PS02, PS04, HPV08, Pav03].

All the hypotheses used in the above works are considered “strong” hypotheses as they
require the existence of an almost everywhere hard language in NP. That is, there is a
language L in NP and every algorithm that decides L takes exponential-time on all but
finitely many strings. A drawback of these hypotheses is that we do not have any candidate
languages in NP that are believed to be almost everywhere hard.



It has been open whether we can achieve the separation using more believable hypotheses
that involve average-case hardness or worst-case hardness. None of the proof techniques used
earlier seem to achieve this, as they crucially depend on the almost everywhere hardness.

In this paper, for the first time, we achieve the separation between Turing completeness
and many-one completeness using average-case and worst-case hardness hypotheses. We
consider two hypotheses. The first hypothesis states that there exist 2" -secure one-way
permutations and the second hypothesis states that there is a language in NEEE N coNEEE
that can not be solved in triple exponential time with logarithmic advice, i.e, NEEE N
coNEEE ¢ EEE/log. We show that if both of these hypothesis are true, then there is a
Turing complete language in NP that is not many-one complete.

The first hypothesis is an average-case hardness hypothesis and has been studied exten-
sively in past. The second hypothesis is a worst-case hardness hypothesis. At first glance, this
hypothesis may look a little esoteric, however, it is only used to obtain hard tally languages
in NP N co-NP that are sufficiently sparse. Similar hypotheses involving double and triple
exponential-time classes have been used earlier in the literature [BF92, FFLS94, HNOS96,
FFLNOSgJ.

We use length-increasing reductions as a tool to achieve the separation of Turing com-
pleteness from many-one completeness. We first show that if one-way permutations exist then
NP-complete sets are complete via length-increasing, polynomially-bounded, quasipolynomial-
time computable reductions. We then show that if the second hypothesis holds, then there
is a Turing complete language for NP that is not many-one complete via length-increasing,
polynomially-bounded, quasipolynomial-time computable reductions. Combining these two
results we obtain our separation result.

2 Preliminaries

In the paper, we use the binary alphabet ¥ = {0,1}. Given a language A, A, denotes the
characteristic sequence of A at length n. We also view A,, as a boolean function from 3" to
Y. We use AS" to denote the set of strings in A whose length is atmost n, and use A= to
denote the set of strings in A whose length is n.

For languages A and B, we say that A = ioB, if A, = B,, for infinitely many n. For a
complexity class C, we say that A € ioC if there is a language B € C such that A = ioB.

For a boolean function f : ¥" — X, CC(f) is the smallest number s such that there is
circuit of size s that computes f. A function f is quasipolynomial time computable (QP-
computable) if can be computed deterministically in time O(2°5”" 7). We will use the triple
exponential time class EEE = DTIME(QZQO(R)), and its nondeterministic counterpart NEEE.

A language A is in NP /poly if there is a polynomial-size circuit family C' = (C4, Cs, .. .)
and a polynomial p such that for every x, x is in A if and only if there is a y of length p(|z|)
such that Cjg(x,y) = 1. Let f: N — N be a function such that f(n) < n.

Definition. A language L is in EEE/f(n) if there is a function ¢ : 0* — X* such that
|g(0™)] < f(n) and a triple exponential time algorithm A such that z is in L if and only if
M accepts (x, g(01])).



We define EEE/O(logn) to be UesoEEE /clogn.

Definition. Given a language A, let fold(A) be a language such that for every n, fold(A), =
A()Al s An_lO.

Our proofs make use a variety of results from approximable sets, instance compression,
derandomization and hardness amplification. We mention the results that we need.

Definition. A language A is t(n)-time 2-approximable [Bei87] if there is a function f com-
putable in time ¢(n) such that for all strings = and y, f(z,y) # A(x)A(y).

A language A is io-lengthwise t(n)-time 2-approximable if there is a function f computable
in time ¢(n) such that for infinitely many n, for every pair of n-bit strings = and y, f(z,y) #
A(x)A(y). We say that f is the approzimator of A.

Let A be a io-lengthwise ¢(n)-time 2-approximable and let f be its approximator. Given

a natural number m > 0, we say that A is 2-approximable at length m, if for every pair of
m-bit strings = and y f(x,y) # A(z)A(y).

Amir, Beigel, Gasarch [ABGO03] proved that every polynomial-time 2-approximable set is in
P /poly. Their proof also implies the following extension.

Theorem 2.1 ([ABGO03|). If A is io-lengthwise t(n)-time 2-approzimable, then for infinitely
many n, CC(A,) < t*(n).

If a language is disjunctively self-reducible and is 2-approximable, then it is in P. See the
survey paper by Buhrman, Fortnow and Thierauf [BFT97| for a proof. Though this proof
carries overs to other time-bounds, it does not carry over to the infinitely-often setting. This
is because the proof makes use of the fact that the approximator has the ability to compare
strings at different lengths. However, if we use folded language A, then the proof carries
through.

Theorem 2.2. Let A be a disjunctive self-reducible language. If fold(A) is io-lengthwise
t(n)-time 2-approximable, then there is an algorithm M that decides A and M runs in time
t2(n) for infinitely many n. In addition, if fold(A) is 2-approximable at length n, then M
runs in t*(n) time on all strings of length n — 1.

Given a language H' in co-NP, let H be {{x1, -+ ,z,) | |z1| =+ = |zn| =n,2, € H';1 <
i < n}. Observe that a n-tuple consisting of strings of length n can be encoded by a string
of length n?. From now we view a string of length n? as an n-tuple of strings of length n.

Theorem 2.3 ([FS08, BHO8|). Let H and H' be defined as above. Suppose there is a language
L, a polynomial-size circuit family {C,,}, and a polynomial p such that for infinitely many
n, for every x € S s in H if and only if there is a string y of length p(n) such that
C(z,y) is in L=". Then H' is in ioNP /poly.

The proof of Theorem 2.3 is similar to the proofs in [FS08, BHO8]. The difference is
rather than having a polynomial-time many-one reduction, here we have a NP /poly many-
one reduction which works infinitely often. The nondeterminism and advice in the reduction
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can be absorbed into the final NP /poly decision algorithm. The NP /poly decision algorithm
correctly works at infinitely many lengths, corresponding to the lengths at which the NP /poly
reduction works.

Definition. A function f : {0,1}" — {0,1}"™ is s-secure if for every § < 1, every ¢t < ds,
and every circuit C' : {0,1}" — {0,1}™ of size t, Pr[C(z) = f(z)] < 27™ + 0. A function
f:{0,1}* — {0,1}* is s(n)-secure if it is s(n)-secure at all but finitely many lengths n.

Definition. An s(n)-secure one-way permutation is a polynomial-time computable bijection
7:{0,1}* — {0,1}* such that |7(x)| = |z| for all x and 7! is s(n)-secure.

Under widely believed average-case hardness assumptions about the hardness of the RSA
cryptosystem or the discrete logarithm problem, there is a secure one-way permutation [GLN95].

Definition. A pseudorandom generator (PRG) family is a collection of functions G' = {G,, :
{0,1}™™ — {0,1}"} such that G, is uniformly computable in time 2°0™() and for every
circuit of C' of size n,

Pr [C)=1~ Pr [C(Guly) =1|<

z€{0,1}" ye{0,1}m(n)

S|

There are many results that show that the existence of hard functions in exponential
time implies PRGs exist. We will use the following.

Theorem 2.4 ([NW94, IW97]). If there is a language A in E such that CC(A,) > 2™ for all
sufficiently large n, then there exist a constant k and a PRG family G = {G,, : {0, 1}1°gk” —

{0,1}"}.

3 Length-Increasing Reductions

In this section we provide evidence that many-one complete sets for NP are complete via
length-increasing reductions. We use the following hypotheses.

Hypothesis 1. There is a language L in NP and a constant ¢ > 0 such that L is not in
ioDTIME(2"™).

Informally, this means that every algorithm that decides L takes more than 2™ -time on
at least one string at every length.

Hypothesis 2. There is a language L in co-NP such that L is not in ioNP /poly.

This means that every nondeterministic polynomial size circuit family that attempts to
solve L is wrong on on at least one string at each length.

We will first consider the following variant of Hypothesis 1.

Hypothesis 3. There is a language L in NP and a constant ¢ > 0 such that for all but
finitely many n, CC(L,) > 2™.



We will first show that if Hypothesis 3 holds, then NP-complete sets are complete via
length-increasing, P /poly reductions. Then we describe how to modify the proof to derive
the same consequence under Hypothesis 1. We do this because the proof is much cleaner with
Hypothesis 3 and contains all essential ideas. To use Hypothesis 1 we have to fix encodings
of boolean formulas and work with folded languages.

3.1 If NP has Subexponentially Hard Languages

Theorem 3.1. If there is a language L in NP and an € > 0 such that for all but finitely
many n, CC(L,) > 2", then all NP-complete sets are complete via length-increasing, P /poly
reductions.

Proof. Let A be a NP-complete set that is decidable in time 27" Let L be a language in NP
that requires 2" -size circuits at every length. Since SAT is complete via polynomial-time,
length-increasing reductions, it suffices to exhibit a length-increasing, P /poly-reduction from

SAT to A.
Let = 5. Consider the following intermediate language

S={{z,y.2) | 2| = |2 = [ly|"°1. MAI[L(), SAT(y), L(2)] = 1 } ,

where MAJ is the majority function.

Clearly S is in NP. Since A is NP-complete, there is a many-one reduction f from S to
A. We will first show that at every length n there exist strings on which the reduction f
must be length-increasing. Let

T, = {(z,2) | o] = [z| = [n'/*], L(z) # L(2), ¥y € {0, 1}" |f((z,,2))| > n}

Lemma 3.2. For all but finitely many n, T, # 9.

Assuming that the above lemma holds, we complete the proof of the theorem. Given a
length n, fix an (arbitrary) ordering of tuple from T,. Let (x,,z,) be the first tuple from
T,. Consider the following reduction from SAT to A: Given a string y of length n, the
reduction outputs f({(x,,y, z,)). Given z,, and y,, as advice, this reduction can be computed
in polynomial time. Since |z,| and |z,| are polynomial in n, this is a P/poly reduction.

By the definition of T,,, L(x,) # L(z,). Thus y € SAT if and only if (z,,y, z,) € S, and
so y is in SAT if and only if f((z,,y, z,)) is in A. Again, by the definition of T},, for every y
of length n, the length of f({x,,y, z,)) is bigger than n. Thus there is a P /poly-computable,
length-increasing reduction from SAT to A. This, together with the proof of Lemma 3.2 we
provide next, completes the proof of Theorem 3.1. O

Proof of Lemma 3.2. Suppose T,, = @ for infinitely many n. We will show that this yields
a length-wise 2-approximable algorithm for L at infinitely many lengths. This enables us to
contradict the hardness of L. Consider the following algorithm:



1. Input z, z with |z| = |z| = m.

2. Find n such that [n'/°] = m. If no such n exists, then output 10.
3. Find a y of length n such that |f({z,y,2))| < n.

4. If no such y is found, Output 10.

5. If y is found, then solve the membership of f({x,y,2)) in A. If f({(z,y,2)) € A, then
output 00, else output 11.

We first bound the running time of the algorithm. Step 3 takes O(2™) time. In Step
5, we decide the membership of f({z,y,z)) in A. This step is reached only if the length of
F({(z,y, ) is at most n. Thus the time taken for this step is (2")* < 2™* time. Thus the
total time taken by the algorithm is bounded by 27/2.

Consider a length n at which 7}, = @. Let 2 and z be any two strings of length m = [n!'/?].
Suppose for every y of length n, the length of f({x,y,z)) is at least n. Then it must be the
case that L(x) = L(z), otherwise the tuple (x, z) belongs to T;,. Thus if the above algorithm
fails to find y in Step 3, then L(z)L(z) # 10.

Suppose the algorithm succeeds in finding a y in Step 3. If f((z,y,z)) € A, then at least
one of x or z must belong to L. Thus L(x)L(z) # 00. Similarly, if f({z,y,z)) ¢ A, then at
least one of = or z does not belong to L, and so L(z)L(z) # 11.

Thus L is 2-approximable at length m = [n!/%]. If there exist infinitely many lengths n,
at which 7T), is empty, then L is infinitely-often, length-wise, 2™°/2-time approximable. By
Theorem 2.1, L has circuits of size 2™ at infinitely many lengths. O]

We will now describe how to modify the proof if we assume that Hypothesis 1 holds. Let
L be the hard language guaranteed by the hypothesis. This means that there exists an € > 0
such that L is not in ioDTIME(2"). Fix an encoding of 3CNF formulas such that formulas
with same numbers of variables can be encoded as strings of same length. We will work with
fold(3-SAT).

Trivially, fold(3-SAT) is also NP-complete and there is a reduction f and a constant
r > 1 from L to fold(3-SAT) such that all strings of length n are mapped to strings of
length n”. Let

H = fold(3-SAT) N U, X"
The following observation is easy to prove.

Observation 3.3. If there is an algorithm A that decides H such that for infinitely many
n the algorithm A runs in 2" time on all strings of length n”, then L is in ioDTIME(2™).

Now H plays the role of L from previous theorem and the proof proceeds same as before
except that we use H instead of L. Our intermediate language will be

S={{x.y.2) ||zl =z = ([ly|*1)", and MAI[H (2), SAT(y), H(2)] = 1.}
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Clearly S is in NP and since A is NP-complete there is a reduction g from S to A. Consider
the set T,, as before.

T = {(z,2) | H(x) # H(2),|z| = |2| = ([n"°])", vy € £"g((z,y,2))| > n} .
We can show the following.
Lemma 3.4. For all but finitely many n, T, # 0.

As before, we can show that if T, is empty for infinitely many n, then H is infinitely-
often, length-wise, 27?_time approximable. More precisely, we can show that for every
length n at which T, is empty, H is 2-approximable in time n? at length n”. Since 3-
SAT is disjunctive self-reducible and H coincides with fold(3-SAT) at lengths of form n", it
follows from Theorem 2.2 that H can be decided in time 2" -time at infinitely many lengths
of the form n". By Observation 3.3 this implies that L is in ioDTIME(2"™).

If T, is not empty at all but finitely many lengths, then there is a P/poly, length-
increasing reduction from SAT to A. Thus we have the following theorem.

Theorem 3.5. If there is a language in NP that is not in ioDTIME(2"), then all NP-
complete sets are complete via length-increasing P /poly reductions.

3.2 If co-NP is Hard for Nondeterministic Circuits

In this subsection we show that Hypothesis 2 also implies that all NP-complete sets are
complete via length-increasing reductions.

Theorem 3.6. If there is a language in co-NP that is not in ioNP /poly, then NP-complete
sets are complete via P /poly-computable, length-increasing reductions.

Proof. We find it convenient to work with co-NP rather than NP. We will show that all
co-NP-complete languages are complete via P/poly, length-increasing reductions.
Let H' be a language in co-NP that is not in ioNP /poly. Let H be

{x1, - ya,) | Vi1 <i<n,[z; € H and |z;| = n]}.

Note that every n-tuple that may potentially belong to H can be encoded by a string of
length n?. From now we view a string of length n? as an n-tuple of n bit strings.

Let S = 0H'U1SAT. Observe that S is in co-NP and S is not in ioNP /poly. Since 1SAT
is many-one complete for co-NP via length-increasing reductions, S is also co-NP-complete
via length-increasing reductions. Let A be any co-NP-complete language. It suffices to
exhibit a length-increasing reduction from S to A.

Consider the following intermediate language:

L={(z.y,2) | |z] =|z| = |y|*,MAJ[z € H,y € S,z € H] = 1}.

Clearly the above language is in co-NP. Let f be a many-one reduction from L to A.
As before we will first show at every length n that there exits strings x and z such that for
every y in S the length of f({x,y, 2)) is at least n.
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Lemma 3.7. For all but finitely many n, there exist two strings x,, and z, of length n* with
H(zn) # H(zn) and for every y € 57", | f((zn, y, 20))| > n.

Proof. Suppose not. Then there exist infinitely many lengths n at which for every pair of
strings (of length n?) z and z with H(z) # H(z), there exist a y of length n such that y € S
and |f(x,y,2)| <n.

From this we obtain a NP /poly-reduction from H to A such that for infinitely many n,
for every x of length n?, |f(x)| < n. By Theorem 2.3, this implies that H’ is in ioNP /poly.
We now describe the reduction. Given n let 2, be a string (of length n?) that is not in H.

1. Input z, |z| = n?. Advice: z,.
2. Guess a string y of length n.

3. If | f({z,y, zn))| > n, the output L.
4. Output f((z,y, 2,))-

Suppose € H. Since z, ¢ H, there exists a string y of length n such that y € S and
|f((z,y,2,))] < n. Consider a path that correctly guesses such a y. Since z, ¢ H, and
y €S, (z,y,2,) € A. Thus f({z,y,2,)) € AS". Thus there exists at least one path on
which the reduction outputs a string from AS". Now consider the case z ¢ H. On any path,
the reduction either outputs L or outputs f({z,y, 2,)). Since both z, and z are not in H,
(x,y,2,) ¢ A. Thus f((x,y,2,)) ¢ A for any y.

Thus there is a NP /poly many-one reduction from H to A such that for infinitely many
n, the output of the reduction, on strings of length n? on any path is at most n. By
Theorem 2.3, this places H' in ioNP /poly.

Thus for all but finitely many lengths n, there exist strings z,, and z, of length n? with
H(z,) # H(z,) and for every y € S™, the length of f({z,,y, z,)) is at least n. O

This suggests the following reduction A from S to A. The reduction will have x,, and z,
as advice. Given a string y of length n, the reductions outputs f((z,,¥, z,)). This reduction
is clearly length-increasing and is length-increasing on every string from S. Thus we have
the following lemma.

Lemma 3.8. Consider the above reduction h from S to A, for ally € S, |h(y)| > |y|.

Now we show how to obtain a length-increasing reduction on all strings. We make the
following crucial observation.

Observation 3.9. For all but finitely many n, there is a string vy, of length n such that
Yo & S and [f((zn, Yn, 20))| > 1.

Proof. Suppose not. This means that for infinitely many n, for every y from S N X", the
length of f({x,,y,2,)) is less than n. Now consider the following algorithm that solves S.
Given a string y of length n, compute f((z,,y, z,)). If the length of f((z,,y, z,)) > n, then
accept y else reject y.
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The above algorithm can be implemented in P /poly given z,, and z, as advice. If y € S,
then we know that that the length of f({(z,,y,z2,)) is bigger than n, and so the above
algorithm accepts. If y ¢ S, then by our assumption, the length of f({x,,y,z,)) is at most
n. In this case the algorithm rejects y. This shows that S is in ioP/poly which in turn
implies that H' is in ioP /poly. This is a contradiction. O

Now we are ready to describe our length increasing reduction from S to A. At length n,
this reduction will have z,,, y, and z, as advice. Given a string y of length n, the reduction
outputs f((zn,y, z,)) if the length of f({(z,,y,2,)) is more than n. Else, the reduction
outputs f({(xn, Yn, 2n)).

Since H(x,) # H(z,), y € S if and only if f({(x,,y,2,)) € A. Thus the reduction is
correct when it outputs f({x,,y, z,)). The reduction outputs f({(z,,¥yn, 2,)) only when the
length of f((zn,y,2,)) is at most n. We know that in this case y ¢ S. Since y, ¢ S,
F (s g 70) & A.

Thus we have a P/poly-computable, length-increasing reduction from S to A. Thus
all co-NP-complete languages are complete via P/poly, length-increasing reductions. This
immediately implies that all NP-complete languages are complete via P/poly-computable,
length-increasing reductions. O

4 Separation of Completeness Notions

In this section we consider the question of whether the Turing completeness differs from
many-one completeness for NP under two plausible complexity-theoretic hypotheses:

(1) There exists a 2" -secure one-way permutation.
(2) NEEE N coNEEE ¢ EEE/ log.

It turns out that the first hypothesis implies that every many-one complete language for NP is
complete under a particular kind of length-increasing reduction, while the second hypothesis
provides us with a specific Turing complete language that is not complete under the same
kind of length-increasing reductions. Therefore, the two hypotheses together separate the
notions of many-one and Turing completeness for NP.

Theorem 4.1. If both of the above hypotheses are true, there is is a language that is
polynomial-time Turing complete for NP but not polynomial-time many-one complete for
NP.

Theorem 4.1 is immediate from Lemma 4.2 and Lemma 4.3 below.

Lemma 4.2. Suppose 2" -secure one-way permutations exist. Then for every NP-complete
language A and every B € NP, there is a quasipolynomial-time computable, polynomially-
bounded, length-increasing reduction reduction from B to A.

A function f is polynomially-bounded if there is a polynomial p such that the length of
f(z) is at most p(|z|) for every z.
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Lemma 4.3. If NEEE N coNEEE ¢ EEE/log, then there is a polynomial-time Turing
complete set for NP that is not many-one complete via quasipolynomial-time computable,
polynomially-bounded, length-increasing reductions.

To show Lemma 4.2 we use results and ideas from Agrawal [Agr(2].
Let v > 0 and let S C {0,1}". A function g is y-sparsely many-one on S if for every
x €S,

n

_ " 2
97" (9()) N0, 1} < 55
Lemma 4.4 (Agrawal [Agr02]). Suppose 2™ -secure one-way permutations exists. For every
NP-complete language L for every set S in NP, there is a reduction from f from S to L that
is 5-sparsely many-one on {0,1}" for all n € N.

Proof of Lemma 4.2. Let § = €/3. Consider the following set
S ={(z,y) | v € B and |y| :nl/‘;}.

For |z| = n, let m = |(x,y)|. By Lemma 4.4, there is a reduction f from S to A
that is §-sparsely many-one on ¥™ for every m. For any z of length n, let S, = {y €

o f ({2, )] < n}. Tt follows that the size of S, is at most 2" Thus for at least

gme/Z
1 — 272 fraction of strings y from {0,1}""", |f((z,y))| > n. If we randomly pick a
y € {0,1}™" then with very high probability | f((z,y))| > n.

We can derandomize the above process. If 2" -secure one-way permutations exist, then
EXP does not have 2" -size circuits. Thus by Theorem 2.4, there exists a pseudorandom
generator family {G,} that map strings of length log® n to strings of length n. These pseu-
dorandom generators are computable in O(QIOgd”) time for some constant d.

Now the length-increasing reduction from B works as follows. Given x as input of length
n, let t = n'/%. Cycle through all seeds s of length log"¢ till the length of f((x,Gy(s))) is
bigger than n. Output f((z,G(s))). Since G; is a pseudorandom generator, it follows that
there exists at least one s for which the length f({z, G¢(s))) is bigger than n.

Clearly, the above reduction can be computed in time quasipolynomial in n. The output
of the reduction is bounded by the length of f({z,y)), where |y| = n'/?. Since f is polynomial-
time computable, the reduction is polynomial-bounded. O

The remainder of this section is devoted to proving Lemma 4.3. For this we first prove two
auxiliary results. The first result establishes a connection between worst-case and average-
case complexities for languages in NEEENcoNEEE. The second result extends a well known
equivalence between languages and their tally-encodings to the average-case world.

We know several results that establish worst-case to average-case connections for classes
such as EXP and PSPACE [Yao82, BFNWO93, Imp95, IW97, STV01]. The following lemma
establishes a similar connection for triple exponential time classes. This lemma can be proved
using classical hardness amplification results [GL89, Yao82, BENW93, Imp95] or using list
decoding techniques of error correcting codes. (See [AB09] for a good review.) The technique
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is now fairly standard in the area of hardness amplification and the situation is only made
easier since we are concerned with deterministic and nondeterministic computation in time

O(n)
0(222 ). For the sake of completeness, we include a proof in the appendix.

Lemma 4.5. [f NEEENcoNEEE ¢ EEE/ log, then there is language L in NEEENcoNEEE
such that no EEE/log algorithm can decide L, at infinitely many lengths n, on more than
2+ 2 fraction of strings from {0,1}".

It is well known that any set A over ¥* can be encoded as a tally set T4 such that A
is worst-case hard for exponential-time if and only if T4 is worst-case hard for polynomial-
time. For our purposes, we need an average-case version of the this equivalence. Below we
describe particular encoding of languages using tally sets that is helpful for us and prove the
average-case equivalence. _

Let tg = 2, t;41 = t? for all i € N. Observe that ¢; = 2*. Let T = {0% | i € N}. For
each | € N, let 7, = {0% |2/ —1 <4< 2" —2}. Observe that T = J;2, 7. Given a

set A C{0,1}*, let Ty = {OQW ‘ x € A} , where r, is the rank index of x in the standard

enumeration of {0,1}*. It is easy to verify that for all [ € N and every z,

re An{0,1}} <« 0"~ ecTynT. (4.1)

Lemma 4.6. Let A and Ty be as above. Suppose there is a quasipolynomial time algorithm
A such that for every [, on an € fraction of strings from T;, this algorithm correctly decides

the membership in T, and on the rest of the strings the algorithm outputs “I do not know”.
k(1+1)
There is a 22° -time algorithm A’ for some constant k that takes one bit of advice and

correctly decides the membership in A on % + 5 fraction of the strings at every length [.

Proof. Consider the following algorithm A” for A: For each z, run the algorithm A on ('«
and output the same answer.

I+1_

If the length of  is [, then |0'=| < 22° ~°. Thus the time algorithm A" takes is at most
k(1+1)
’ for some constant k. Algorithm A decides T4 correctly on € fraction of strings from

T;. Thus by (4.1), the algorithm A” correctly decides A on € fraction strings from {0, 1},
and say “I do not know” on the rest.

For algorithm A’, Let S; be the set of strings of length [ on which the algorithm A” says
“I do not know”, if |S; N A| > $|S], then set the advice be 1, otherwise let the advice be 0.
The algorithm A’ simulates the algorithm A” and gives the advice bit as the answer when
it says “I do not know”. The fraction of strings of length [ on which A’ is correct is at least
% +e= % + 5. 0J

22

Now we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. By Lemma 4.5, there is a language L € (NEEENcoNEEE) — EEE/ log
such that no EEE/log algorithm can decide L correctly on more than a & + % fraction of

2
the inputs for infinitely many lengths n.
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Without loss of generality, we can assume that L € NTIME(22"") N coNTIME(22"") Let

T, = {022”

xEL}.

Clearly, T7, € NP N coNP. ’

Recall that ty = 2 and t; = 2%. Define 7 : N — N such that 7(n) = max{i |t; <n}.
Observe that 7(n) is atmost loglogn. Thus for every n, t.(,) < n. Now we will define our
Turing complete language. Let

SAT, = {Ox } 0'd=h ¢ Ty and x € SAT} ,

SAT; = {1z | 0"(*) € Ty and z € SAT} .

Let A = SAT, U SAT;. Since L is in NP N co-NP and ¢,y is at most |z|, A is in NP.
The following is a Turing reduction from SAT to A: Given a formula x, ask queries 0z and
1z, and accept if and only if exactly one of them is in A. Thus A is polynomial-time 2-tt
complete for NP.

Suppose A is complete via length-increasing, polynomially-bounded, quasipolynomial-
time reductions. Then there is such a reduction f from {0}* to A. Since f is polynomially—
bounded, there is a constant d such that for every z, the length of f(z) is less that |z|<.

The following observation is easy to prove.

Observation 4.7. Let y € {0,1}* and b € {0,1} be such that f(0%) = by. Then 0'(v) € T},
if and only if b=1.

Fix a length [. We will describe a quasipolynomial-time algorithm that will decide the
membership in 77, on at least @ fraction of strings from 7;, and says “I do not know” on
other strings. By the Lemma 4.6, this implies that there is EEE/1 algorithm that decides L
on more than § + 21;g - fraction of strings from {0,1}!. This contradicts the hardness of L
and completes the proof.

Let s = 2! — 1 and r = 2" — 2. Recall that 7; = {0%

10,15, - - - T, where

s <1 <r}. Partition 7; in sets

T, = {0"

s+klogd <i<s+(k+1)logdand i <r}.
This gives at least % sets. We make the following observation.
Observation 4.8. Fix k. If f(0ts+klesd) = by, then 0'7(vh € Ty.

Proof. Recall that the length of f(0%++esd) is less than t¢ ,, .. Since t; = 2%, te progd <
Lot (k+1)logd- Oince f is length-increasing, we have the following bound on the length of y.

terklogd < ’Z/‘ < ts+(k+1) logd-
By definition of 7, we have
s+ klogd < 7(ly]) < s+ (k+1)logd.

By the definition of T}, we have 0'=(v) € Tj,. O
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This suggests the following algorithm for Ty: Let 0% be its input. Say it lies in Ty.
Compute f(0f+kiesd) = by. If ¢, # t;, then output “I do not know”. Otherwise, accept
0% if and only if b = 1. By Observation 4.7 this algorithm never errs. Since f is computable
in quasipolynomial time, this algorithm runs in quasipolynomial time.

By Observation 4.8, 0'(s) belongs to T} and on this input the algorithm does not output
“I do not Know”. Thus there is at least one string in 7} on which this algorithm does not
output “I do not Know”.

Thus for every k, 0 < k < m, there is at least one string from 7T}, on which the above
algorithm correctly decides 7. Thus the above algorithm correctly decides 77, on at least

1

Tord fraction of strings from 7;, and never errs. m
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Appendix

Here we provide a proof of Lemma 4.5

Definition. Let z,y € {0,1}". A(x,y) = =|{i | z[i] # y[i]}|. We say that E : {0,1}" —
{0, 1}™is an error correcting code with distance § if for every x # y € {0,1}", A(E(z), E(y)) >
J.

Theorem 5.1 (Johnson Bound [Joh62]). If E: {0,1}" — {0,1}™ is an ECC with distance
at least % —¢, then for every x € {0,1}™, and n > \/€, there exist at most | < 1/(2n?) strings
Y1,y € E({0,1}") such that Az, y;) < 1 —n for every i € [I].

Consider an ECC F : {0,1}**¢" — {0,1}"" with distance 1/2 — /2n. An explicit
example of such ECC is the code obtained by concatenating the Walsh-Hadamard code
with the Reed-Solomon code. We will view strings of length 2nlogn and n* truth tables of
languages at certain lengths. For this, both 2nlogn and n* must be powers of 2. If n is of
the form 22", then both 2n log n and n* are powers of two.

For any language L”, let L’ be fold(L"). It is clear that L” € NEEE N coNEEE if and
only if L’ € NEEE N coNEEE. The following fact is easy to verify.

Lemma 5.2. If L” ¢ EEE/O(logn), then L' ¢ EEE/O(logn) and for every EEE/O(logn)
algorithm A, there are infinitely many lengths n of the form 281 + k such that A fails to
decide L' correctly at length n.

Lemma 4.5. If there is a language in L” € NEEE N coNEEE — EEE/O(logn), then there
is a language L € NEEE N coNEEE such that for every EEE/O(logn) algorithm A, there
exist infinitely many n and A correctly decides L on at most %—l—% fraction of strings from ™.

Proof. Let L" € NEEE N coNEEE — EEE/O(log). Let L' = fold(L"). Let L be the
language such that for every k € N, Lokt = E(L)_,,,) where E is the WH-RS code. On
other lengths, we set L to be empty. It is clear that L. € NEEE N coNEEE since we can
actually compute the truth table of L’ in NEEE N coNEEE.

Now, for the sake of contradiction, assume that there is an EEE/O(logn) algorithm A
that correctly decides L on more than 1 5+ L fraction of inputs at every length n. We will
first show that this yields a EEE/O(logn) algorlthm for L. Since L is empty at lengths that
are not of the form 2**! we can decide L easily at those lengths. Thus we will concentrate
on lengths of the form 2k+1.

Consider n of the form 2¢*'. By the definition of L, we know that L, = E(Lj._, ).
Let N = 2". Recall that the distance of the code F is is 3 — ¢, where € = —i—. Let

2 2
n_n_logN>\/_

S
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By running A on all strings of length n compute a candidate sequence, z € {0, 1}", for L.
By our assumption, A is correct on at least % +% of strings from ¥". Thus A(zx, L,,) < % — %
By the Johnson bound 5.1, there exist at most [ < %2 strings v, -,y in E(X2F) such
that A(x,y;) < % — % By running E on all strings from X2 '™ we can compute these y;s.
Since WH-RS code is computable in polynomial time, this computation can be done in triple
exponential time. Since L, = E(L’Qk,1+k), there exists a j, 1 < j < such that L, = y;.
Thus log! = O(logn) bits of information is enough to identify j for which L, = y;. Thus
L € EEE/(O(logn).

Recall that L, = E(L! ) when n = 2*. Since L € EEE/O(logn), by inverting the

2k—14k
WH-RS code E, we can decide L' correctly on all lengths of the form 2¥+' + k. using an
EEE/O(logn) algorithm. This contradicts Lemma 5.2. O
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