
Dimension, Entropy Rates, and Compression

John M. Hitchcock∗

Department of Computer Science
University of Wyoming
jhitchco@cs.uwyo.edu

N. V. Vinodchandran†

Department of Computer Science and Engineering
University of Nebraska-Lincoln

vinod@cse.unl.edu

Abstract

This paper develops new relationships between resource-bounded dimension, entropy rates,
and compression. New tools for calculating dimensions are given and used to improve previous
results about circuit-size complexity classes.

Approximate counting of SpanP functions is used to prove that the NP-entropy rate is an
upper bound for dimension in ∆E

3 , the third level of the exponential-time hierarchy. This general
result is applied to simultaneously improve the results of Mayordomo (1994) on the measure on
P/poly in ∆E

3 and of Lutz (2000) on the dimension of exponential-size circuit complexity classes
in ESPACE.

Entropy rates of efficiently rankable sets, sets that are optimally compressible, are studied in
conjunction with time-bounded dimension. It is shown that rankable entropy rates give upper
bounds for time-bounded dimensions. We use this to improve results of Lutz (1992) about
polynomial-size circuit complexity classes from resource-bounded measure to dimension.

Exact characterizations of the effective dimensions in terms of Kolmogorov complexity rates
at the polynomial-space and higher levels have been established, but in the time-bounded set-
ting no such equivalence is known. We introduce the concept of polynomial-time superranking
as an extension of ranking. We show that superranking provides an equivalent definition of
polynomial-time dimension. From this superranking characterization we show that polynomial-
time Kolmogorov complexity rates give a lower bound on polynomial-time dimension.

1 Introduction

Effective fractal dimension [29, 30] is an extension of Hausdorff dimension that provides new mea-
sures of complexity for classes of decision problems. The fractal dimension of a class can now be
measured relative to a variety of levels of effectivization including finite-state, polynomial-time,
polynomial-space, computable, and constructive bounds. These effective dimensions have interest-
ing relationships with other measures of complexity including compressibility [30, 33, 7, 24], un-
predictability [9, 15], and entropy rates [18]. Applications to circuit complexity [29, 19] and many
other aspects of computational complexity have been given by several authors (see [1, 31, 20]).

For resource-bounds at polynomial-space and above, exact characterizations of the effective
dimensions in terms of Kolmogorov complexity [30, 33, 14] and entropy rates [18], two different
notions of compressibility, are known. For example, we have

dimpspace(X) = HPSPACE(X) = KSpoly(X)
∗Part of this research was done while this author was visiting the University of Nebraska-Lincoln. This research

was supported in part by NSF grant 0515313.
†Research supported in part by NSF grant CCF-0430991 and University of Nebraska Layman Award.

1

for any class X, where dimpspace is the polynomial-space dimension, HPSPACE is the PSPACE-
entropy rate, and KSpoly is a quantity defined using polynomial-space-bounded Kolmogorov com-
plexity. (Definitions are given in the body of the paper.) At the polynomial-time level the equiv-
alence proofs break down because it is not possible to perform an exponential search. This leaves
us with dimp, HP, and Kpoly – dimension, entropy, and compression – as three possibly different
measures of complexity at the polynomial-time level. We study these quantities and several related
notions. Our results yield improvements of prior results about the resource-bounded measure and
dimension of circuit-size complexity classes.

We find the NP-entropy rate HNP to be particularly useful for Boolean circuit-size complexity
classes. For any X, we have

dimpspace(X) ≤ HNP(X) ≤ HP(X) ≤ dimp(X).

Let SIZE(s(n)) be the class of all languages that can be decided by nonuniform families of Boolean
circuits of size at most s(n). Lutz [29] used a polynomial-space counting technique to show that

dim
(

SIZE
(

α
2n

n

)∣∣∣∣ ESPACE
)

= dimpspace

(
SIZE

(
α

2n

n

))
= α (1.1)

for every α ∈ [0, 1]. Mayordomo [32] used Stockmeyer’s approximate counting (in polynomial time
with a ΣP

2 -oracle) of #P functions to prove that P/poly has resource-bounded measure 0 in the
third level of the exponential-time hierarchy:

µ(P/poly | ∆E
3) = µ∆p

3
(P/poly) = 0. (1.2)

In section 5 we strengthen (1.1) to ∆p
3-dimension:

dim
(

SIZE
(

α
2n

n

)∣∣∣∣ ∆E
3

)
= dim∆p

3

(
SIZE

(
α

2n

n

))
= α. (1.3)

As a corollary, (1.3) implies that

dim(P/poly | ∆E
3) = dim∆p

3
(P/poly) = 0,

improving (1.2). Our proof of (1.3) comes in two steps. First we show that the NP-entropy rate is
also α:

HNP

(
SIZE

(
α

2n

n

))
= α.

We then use approximate counting of SpanP functions by Köbler, Schöning, and Toran [22] to
prove a general theorem that

dim∆p
3
(X) ≤ HNP(X)

for any class X. The use of SpanP functions rather than #P functions is crucial in our proof.
We are able to get a much stronger result than (1.2) because using a SpanP function yields much
greater precision. Before taking the approximation we are able to get an exact count and avoid a
large amount of overcounting that happens with the #P function in Mayordomo’s proof.

Köbler and Lindner [21] considered the measure of P/poly in the second level of the exponential
hierarchy. They used pseudorandom generators and results of [27, 5] to show that

µp(NP) 6= 0 ⇒ µ(P/poly | ∆EXP
2) = 0. (1.4)

2

In section 6, we use recent work of Shaltiel and Umans [36] on derandomization for approximate
counting to improve (1.4) to a dimension result:

µp(NP) 6= 0 ⇒
[
dim(P/poly | ∆E

2) = dim∆p
2
(P/poly) = 0

]
.

We also establish an analogous conditional improvement of (1.3).
Two other results in resource-bounded measure besides (1.2) and (1.4) regarding P/poly were

proved by Lutz [26]. He showed that

µ(SIZE(nk) | EXP) = µp2
(SIZE(nk)) = 0

for every k ∈ N and that µp3
(P/poly) = 0. In section 7, we improve these results from measure 0

to dimension 0. Our proof of this uses general tools that we develop involving rankable [10] and
printable [13, 4] sets. For example, we show that the p-rankable-entropy rate is an upper bound on
p-dimension: for any X,

dimp(X) ≤ Hp-rankable(X). (1.5)

Following a preliminary version of this paper, Gu [11] considered the dimensions of some
infinitely-often circuit-complexity classes. We use (1.5) to further examine infinitely-often classes
in section 8.

In section 9 we investigate p-dimension and polynomial-time Kolmogorov complexity. As men-
tioned above, at higher levels of complexity exact characterizations of the resource-bounded dimen-
sions in terms of Kolmogorov complexity have been established, but in the time-bounded setting
no such equivalence is known. We introduce the concept of polynomial-time superranking and
use it to give an equivalent definition of polynomial-time dimension. From this we show that
Kpoly(X) ≤ dimp(X) for any X.

After the preliminaries in section 2, we review resource-bounded measure and dimension in
section 3 and entropy rates in section 4. Sections 5-9 contain our results and section 10 concludes
with a brief summary.

2 Preliminaries

The set of all finite binary strings is {0, 1}∗. The empty string is denoted by λ. We use the standard
enumeration of binary strings s0 = λ, s1 = 0, s2 = 1, s3 = 00, For two strings x, y ∈ {0, 1}∗, we
say x ≤ y if x precedes y in the standard enumeration and x < y if x precedes y and is not equal
to y. We write x − 1 for the predecessor of x in the standard enumeration. We use the notation
x v y to say that x is a prefix of y. The length of a string x ∈ {0, 1}∗ is denoted by |x|.

All languages (decision problems) in this paper are encoded as subsets of {0, 1}∗. For a language
A ⊆ {0, 1}∗, we define A≤n = A ∩ {0, 1}≤n and A=n = A ∩ {0, 1}n.

The Cantor space of all infinite binary sequences is C. We routinely identify a language
A ⊆ {0, 1}∗ with the element of Cantor space that is A’s characteristic sequence according to
the standard enumeration of binary strings. In this way each complexity class is identified with a
subset of Cantor space. We write A�n for the n-bit prefix of the characteristic sequence of A, and
A[n] for the nth-bit of its characteristic sequence.

We use log for the base 2 logarithm.
Our definitions of most complexity classes are standard. We use DEC for the class of decidable

languages and CE for the class of computably enumerable languages. For any function s : N → N,

3

SIZE(s(n)) is the class of all languages A where for all sufficiently large n, A=n can be decided by
a circuit with no more than s(n) gates.

As in [26, 29], we use ∆ to represent a class of functions computable within a resource bound.
The ∆ used in this paper are

all = {f | f : {0, 1}∗ → {0, 1}∗}
comp = {f | f is computable}

pspace = {f | f is computable in nO(1) space}
p = p1 = {f | f is computable in nO(1) time}

p2 = {f | f is computable in 2(log n)O(1)
time}

p3 = {f | f is computable in 22(log log n)O(1)

time}

and for k ≥ 2 the relativized class ∆p
k = pΣP

k−1 . We also define the complexity classes P1 = P,

P2 = DTIME(2(log n)O(1)
), and P3 = DTIME(22(log log n)O(1)

).
A real-valued function f : {0, 1}∗ → [0,∞) is ∆-computable if there is a function f̂ : N ×

{0, 1}∗ → [0,∞) such that |f̂(n, w)− f(w)| ≤ 2−n for all n and w and f̂ ∈ ∆ (where n is encoded
in unary). We say that f is exactly ∆-computable if f : {0, 1}∗ → Q and f ∈ ∆.

Associated with each resource bound ∆ is a complexity class R(∆). We refer to [26, 29] for the
general definition that involves functions called constructors. For the ∆ we use in this paper, R(∆)
is as follows.

R(all) = C

R(comp) = DEC
R(pspace) = ESPACE = DSPACE(2linear)

R(p) = E = DTIME(2linear)
R(p2) = EXP = DTIME(2polynomial)
R(p3) = E3 = DTIME(2quasipolynomial)
R(∆p

k) = ∆E
k

Here for each k ≥ 1, ∆E
k = EΣP

k−1 is a class in the exponential-time hierarchy.

3 Resource-Bounded Measure and Dimension

In this section we review the basics of resource-bounded measure [26] and dimension [29]. More
background is available in the survey papers [28, 34, 31].

Definition. 1. A martingale is a function d : {0, 1}∗ → [0,∞) such that for all w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2
.

2. Let s ∈ [0,∞). An s-gale is a function d : {0, 1}∗ → [0,∞) such that for all w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2s
.

4

Note that a martingale is a 1-gale. The sequences on which martingales and gales attain
unbounded value is a central concept in resource-bounded measure and dimension.

Definition. Let d : {0, 1}∗ → [0,∞).

1. Let S ∈ C. We say that d succeeds on S if

lim sup
n→∞

d(S �n) = ∞.

2. The success set of d is S∞[d] = {S ∈ C | d succeeds on S}.

We can now define resource-bounded measure [26], resource-bounded dimension [29], and con-
structive dimension [30]. In the following definition ∆ can be any of the resource bounds defined
in section 2.

Definition. Let ∆ be a resource bound and let X ⊆ C.

1. X has ∆-measure 0, and we write µ∆(X) = 0, if there is a ∆-computable martingale d with
X ⊆ S∞[d].

2. X has measure 0 in R(∆), and we write µ(X | R(∆)) = 0, if µ∆(X ∩R(∆)) = 0.

3. The ∆-dimension of X is

dim∆(X) = inf
{

s

∣∣∣∣ there is a ∆-computable
s-gale d with X ⊆ S∞[d]

}
.

4. The dimension of X in R(∆) is dim(X | R(∆)) = dim∆(X ∩R(∆)).

5. The constructive dimension of X is

cdim(X) = inf
{

s

∣∣∣∣ there is a lower semicomputable
s-gale d with X ⊆ S∞[d]

}
.1

For the case ∆ = all, µall is equivalent to Lebesgue measure [40] and dimall is equivalent to
Hausdorff dimension [29]. The following theorem states some of the key properties of resource-
bounded measure and dimension.

Theorem 3.1. (Lutz [26, 29]) Let ∆,∆′ be resource bounds and let X ⊆ C.

1. µ∆(R(∆)) 6= 0.

2. dim∆(X) ∈ [0, 1].

3. If dim∆(X) < 1, then µ∆(X) = 0.

4. If ∆ ⊆ ∆′ and µ∆(X) = 0, then µ∆′(X) = 0.

5. If ∆ ⊆ ∆′, then dim∆′(X) ≤ dim∆(X).
1The definition of constructive dimension given here is not the original one but was shown equivalent by Fenner

[8] and Hitchcock [16].

5

Resource-bounded dimension admits an equivalent definition in terms of resource-bounded un-
predictability in the log-loss model [15]. In [17], this characterization was restated in a useful way
involving the log-loss of measures.

Definition. A submeasure is a function ρ : {0, 1}∗ → [0,∞) such that for all w ∈ {0, 1}∗,

ρ(w) ≥ ρ(w0) + ρ(w1). (3.1)

If equality holds in (3.1) for all w ∈ {0, 1}∗, then ρ is a measure.

1. Let S ∈ C. The log-loss rate of ρ on S is

Llog(ρ, S) = lim inf
n→∞

− log ρ(S �n)
n

.

2. Let X ⊆ C. The worst case log-loss rate of ρ on X is

Llog(ρ,X) = sup
S∈X

Llog(ρ, S).

Theorem 3.2. (Hitchcock [15, 17]) Let ∆ be a resource bound. For any X ⊆ C,

dim∆(X) = inf
{
Llog(ρ,X)

∣∣∣ ρ ∈ ∆ is a submeasure
}

.

Equality still holds when the infimum is taken over exactly ∆-computable measures ρ.

4 Entropy Rates

In this section we review entropy rates of languages and their relationship to dimension. The
following concept dates back to Chomsky and Miller [6] and Kuich [23].

Definition. Let A ⊆ {0, 1}∗. The entropy rate of A is

HA = lim sup
n→∞

log |A=n|
n

.

Intuitively, HA gives an asymptotic measurement of the amount by which every string in A=n is
compressed in an optimal code.

Definition. Let A ⊆ {0, 1}∗. The i.o.-class of A is

Ai.o. = {S ∈ C | (∃∞n)S �n ∈ A}.

That is, Ai.o. is the class of sequences that have infinitely many prefixes in A. The name δ-limit of
A and notation Aδ have also been used for Ai.o. [37, 38].

Definition. Let C be a class of languages and X ⊆ C. The C-entropy rate of X is

HC(X) = inf{HA | A ∈ C and X ⊆ Ai.o.}.

6

Informally, HC(X) is the lowest entropy rate with which every element of X can be covered infinitely
often by a language in C.

For all X ⊆ C, classical results (see [35, 37]) imply

dimH(X) = HALL(X),

where ALL is the class of all languages and dimH is Hausdorff dimension. Using other classes
of languages gives equivalent definitions of the constructive, computable, and polynomial-space
dimensions.

Theorem 4.1. (Hitchcock [18, 14]) For all X ⊆ C,

cdim(X) = HCE(X), dimcomp(X) = HDEC(X), and dimpspace(X) = HPSPACE(X).

For time-bounded dimension no analogous result is known. However, the following upper bound
is true.

Lemma 4.2. (Hitchcock [18, 14]) For all X ⊆ C,

HPi(X) ≤ dimpi(X).

Proof. Let s > dimpi(X) such that 2s is rational. It suffices to show HPi(X) ≤ s. By Theorem 3.2
there is an exactly pi-computable measure ρ with Llog(ρ, S) < s for all S ∈ X. Define A = {w |
ρ(w) ≥ 2−s|w|}. Then A ∈ Pi and X ⊆ Ai.o.. Since ρ is a measure, |A=n| ≤ 2snρ(λ) for all n, so
HA ≤ s. Therefore HPi(X) ≤ s.

We will consider HC for other complexity classes C including NP and the p-rankable sets. The
following proposition shows that if C satisfies mild restrictions, then HC gives a reasonable notion
of an effective dimension with many of the standard properties of the usual effective dimensions.

Proposition 4.3. Let C,D be classes of languages and X, Y ⊆ C.

1. If X ⊆ Y , then HC(X) ≤ HC(Y).

2. If C ⊆ D, then HD(X) ≤ HC(X).

3. If {0, 1}∗ ∈ C, then HC(C) = 1 and 0 ≤ HC(X) ≤ 1.

4. If C is closed under union, then HC(X ∪ Y) = max{HC(X),HC(Y)}.

5 Approximate Counting and Dimension in ∆E
3

Mayordomo [32] used Stockmeyer’s approximate counting of #P functions [39] to show that P/poly
has measure 0 in the third level of the exponential hierarchy.

Theorem 5.1. (Mayordomo [32])

µ(P/poly | ∆E
3) = µ∆p

3
(P/poly) = 0.

Lutz [29] calculated the dimension in ESPACE of some exponential circuit-size complexity classes.

7

Theorem 5.2. (Lutz [29]) For all α ∈ [0, 1],

dim
(

SIZE
(

α
2n

n

)∣∣∣∣ ESPACE
)

= dimpspace

(
SIZE

(
α

2n

n

))
= α.

In this section we will improve Theorems 5.1 and 5.2. We first show that the NP-entropy rate
is also α for the classes in Theorem 5.2.

Theorem 5.3. For all α ∈ [0, 1],

HNP

(
SIZE

(
α

2n

n

))
= α.

Proof. Let α ∈ [0, 1] and s(n) = α2n

n . Let

A = {B≤n | (∀m, blog nc ≤ m ≤ n)B=m has a circuit of size at most s(m)}.

Here we use B≤n to denote the characteristic string (of length 2n+1− 1) of a language B on strings
up to length n. We have A ∈ NP and SIZE(s(n)) ⊆ Ai.o..

Also, for all m, we know from [26] that there are at most (48es(m))s(m) novel m-input circuits
of size at most s(m). Here a circuit is novel if it does not compute the same function as any circuit
of size at most s(m) that precedes it in a lexicographic enumeration. This gives us an upper bound
on how many subsets of {0, 1}m have a circuit of size at most s(m). We then have

log |A≤2n+1−1| ≤
blog nc−1∑

m=0

2m +
n∑

m=blog nc

log(48es(m))s(m)

≤ 2log n +
n∑

m=0

log(48es(m))s(m)

= n +
n∑

m=0

α
2m

m
(m− log m + log 48eα)

≤ α(2n+1 − 1)

if n is sufficiently large, so HA ≤ α. Therefore HNP(SIZE(s(n))) ≤ α.
The other inequality follows from Proposition 4.3(2) and Theorems 4.1 and 5.2. We have

HNP(SIZE(s(n))) ≥ HPSPACE(SIZE(s(n)))
= dimpspace(SIZE(s(n)))
= α.

We will make use of SpanP functions to prove a general theorem relating the HNP entropy rate
to dimension in ∆E

3 . Köbler, Schöning, and Toran [22] introduced SpanP as an extension of #P.

Definition. Let M be a polynomial-time nondeterministic Turing machine that on each compu-
tation path either outputs a string or outputs nothing. The SpanP function computed by M is
defined as

f(x) = number of distinct strings output by M on input x

for all x ∈ {0, 1}∗.

8

Every #P function is also a SpanP function. Stockmeyer’s approximate counting of #P func-
tions in polynomial-time with a ΣP

2 oracle extends to SpanP.

Theorem 5.4. (Köbler, Schöning, and Toran [22]) Let f ∈ SpanP. Then there is a function g ∈ ∆p
3

such that for all n, for all x ∈ {0, 1}n,

(1− 1/n)g(x) ≤ f(x) ≤ (1 + 1/n)g(x).

We now show that the NP-entropy rate is an upper bound for ∆p
3-dimension.

Theorem 5.5. For all X ⊆ C,
dim∆p

3
(X) ≤ HNP(X).

Proof. Let α > HNP(X) and ε > 0 such that 2α, 2ε are rational. Let A ∈ NP such that X ⊆ Ai.o.

and HA < α. We can assume that |A=n| ≤ 2αn for all n. It suffices to show that dim∆p
3
(X) ≤ α+ε.

For each n and v ∈ {0, 1}≤n, let

extA(v, n) = |{v′ ∈ A=n | v v v′}|

be the number of extensions of v in A=n. Define a function f : 0∗ × {0, 1}∗ → N by

f(0n, v) = extA(v, n).

Then f ∈ SpanP by the following nondeterministic algorithm.

input 0n, v
guess v′ ∈ {0, 1}n with v v v′

guess a witness w
if w witnesses that v′ ∈ A

then output v′

else output nothing

Note that f has the following properties for all n ∈ N.

• f(0n, λ) = |A=n| ≤ 2αn.

• f(0n, v) = f(0n, v0) + f(0n, v1) for all v ∈ {0, 1}<n.

• f(0n, v) = 1 for all v ∈ A=n.

Let g ∈ ∆p
3 be the approximation of f from Theorem 5.4. For each n, let εn = 1

n and define a
function ρn by

ρn(v) =
g(0n, v)

2αn

(
1− εn

1 + εn

)|v|

for all v ∈ {0, 1}≤n and ρn(v) = 2−(|v|−n)ρn(v �n) for all v with |v| > n. Using the fact that

g(0n, v0) + g(0n, v1) ≤ f(0n, v0) + f(0n, v1)
1− εn

=
f(0n, v)
1− εn

≤ g(0n, v)
1 + εn

1− εn
,

9

we have

ρn(v0) + ρn(v1) =
g(0n, v0) + g(0n, v1)

2αn

(
1− εn

1 + εn

)|v|+1

≤ g(0n, v)
2αn

(
1− εn

1 + εn

)|v|

= ρn(v),

for all v ∈ {0, 1}<n, so ρn is a submeasure.
Let v ∈ A=n. Then

− log ρn(v) = αn− log g(0n, v) + n log
1 + εn

1− εn
,

g(0n, v) ≥ f(0n, v)
1 + εn

=
1

1 + εn
≥ 1

2
,

and
lim

n→∞
n log

1 + εn

1− εn
= 2 log e,

so
− log ρn(v) ≤ αn + 4

if n is sufficiently large.
Define ρ =

∑∞
n=0 2−εnρn. Standard techniques show that ρ is ∆p

3-computable. Let S ∈ X.
Then S ∈ Ai.o., so S �n ∈ A=n for infinitely many n. Therefore

lim inf
n→∞

− log ρn(S �n)
n

≤ α.

It follows that Llog(ρ, S) ≤ α + ε for all S ∈ X, so Llog(ρ,X) ≤ α + ε. By Theorem 3.2 we have
that the ∆p

3-dimension of X is at most α + ε.

We can now simultaneously improve Theorems 5.1 and 5.2.

Theorem 5.6. For all α ∈ [0, 1],

dim∆p
3

(
SIZE

(
α

2n

n

))
= α.

Proof. The upper bound is immediate from Theorems 5.3 and 5.5. The lower bound follows from
Theorems 5.2 and 4.1.

Corollary 5.7. dim(P/poly | ∆E
3) = dim∆p

3
(P/poly) = 0.

Next we show that the classes in Theorem 5.6 have dimension α in ∆E
3 . This proof is inspired

by a technique of Gu [12].

Theorem 5.8. For all α ∈ (0, 1),

dim
(

SIZE
(

α
2n

n

)∣∣∣∣ ∆E
3

)
= α.

10

Proof. Let s(n) = α2n

n . We need to show that dim∆p
3
(SIZE(s(n))∩∆E

3) ≥ α. For this, let s < t < α

be rational and let d be an arbitrary ∆p
3-computable s-gale. Assume without loss of generality that

d(λ) = 1 and d is exactly ∆p
3-computable [29]. It suffices to show that SIZE(s(n)) ∩∆E

3 6⊆ S∞[d].
We define a language A inductively as follows. Suppose that A<n has already been defined,

and let w be the characteristic string of A<n. As an inductive hypothesis assume that d(w) ≤ 1.
Define u of length dt2ne inductively by starting with u = λ and repeatedly updating u := u1 if
d(wu1) < d(wu0), u := u0 if d(wu1) ≥ d(wu0). Let v = 02n−|u|. Then for all u′ v u,

d(wu′) ≤ 2(s−1)|u′|d(w) ≤ 2(s−1)|u′| ≤ 1,

and for all v′ v v,
d(wuv′) ≤ 2s|v′|d(wu) ≤ 2s|uv′|−|u| ≤ 2s2n−|u| ≤ 1.

We let A=n have characteristic string uv.
Since d never gets above 1 on A, we have A 6∈ S∞[d], and by construction A ∈ ∆E

3 . We only
sketch the argument that A ∈ SIZE(s(n)). Let Bn be the first dt2ne strings of length n and let f
be a mapping of Bn to {0, 1}m, where m = dlog dt2nee. Let A′

n be the image of A=n ∩Bn under f .
For ε > 0 and sufficiently large n, Lupanov’s construction [25] yields a circuit Ln of size at most
2m

m (1 + ε) for A′
n. We now describe our circuit Cn for A=n. First the circuit checks if the input

x is in Bn. If x 6∈ Bn, Cn rejects. Otherwise, Cn computes f(x) and applies Ln to f(x). Since
checking membership in Bn and computing f can both be done by polynomial-size circuits, Cn can
be implemented in fewer than s(n) gates if n is sufficiently large.

6 Derandomization and Dimension in ∆E
2

Köbler and Lindner used pseudorandom generators to prove that P/poly has measure 0 in the
second level of the EXP-hierarchy if NP does not have p-measure 0.

Theorem 6.1. (Köbler and Lindner [21]) If µp(NP) 6= 0, then µ(P/poly | EXPNP) = 0.

We will improve this to dimension 0 in ∆E
2 = ENP (⊆ EXPNP) under the same hypothesis. For

this we will use better approximate counting arising from derandomization. Recall that Stockmeyer
[39] showed that #P functions can be approximated in randomized polynomial time with access to
an NP oracle. This was extended to SpanP by Köbler, Schöning, and Toran [22].

Shaltiel and Umans [36] showed that under a derandomization assumption, #P functions can
be approximated by a deterministic polynomial-time algorithm with nonadaptive access to an NP
oracle. Their proof shows how to approximate the acceptance probability of a Boolean circuit. We
observe that this proof also goes through for nondeterministic circuits, yielding the following. (For
definitions of undefined concepts we refer to [36].)

Theorem 6.2. (Shaltiel and Umans [36]) If ENP
‖ requires exponential-size SV-nondeterministic

circuits, then there is a deterministic algorithm that takes as inputs a nondeterministic circuit C
and a parameter ε > 0, runs in time polynomial in |C| and 1/ε making nonadaptive queries to an
NP oracle, and outputs a real number ρ such that

(1− ε)Prx[C(x) = 1] ≤ ρ ≤ Prx[C(x) = 1].

It follows that under the hypothesis of Theorem 6.2, SpanP functions can also be deterministi-
cally approximated with an NP oracle.

11

Corollary 6.3. If ENP
‖ requires exponential-size SV-nondeterministic circuits, then for any function

f ∈ SpanP there is a function g computable in polynomial time with nonadaptive access to an NP
oracle such that for all n, for all x ∈ {0, 1}n,

g(x) ≤ f(x) ≤ g(x)(1 + 1/n).

Proof. Let f ∈ SpanP and let M be the nondeterministic polynomial-time machine defining f . We
assume that on an input of length n, all outputs of M have length p(n), where p is some polynomial.
For any input x, define a nondeterministic circuit Cx that on an input y ∈ {0, 1}p(n) simulates M
and accepts if M outputs y. Applying Theorem 6.2 with ε = 1/(n + 1), we can compute a number
ρx that is a good approximation of the acceptance probability of Cx. Defining g(x) = 2p(n)ρx, we
have (1− 1

n+1)f(x) ≤ g(x) ≤ f(x), which implies the corollary.

We can use this result to give a conditional improvement to Theorem 5.5.

Theorem 6.4. If ENP
‖ requires exponential-size SV-nondeterministic circuits, then

dim∆p
2
(X) ≤ HNP(X)

for all X ⊆ C.

Proof. Use the approximation function from Corollary 6.3 in the proof of Theorem 5.5.

The hypothesis of Theorem 6.4 can also be replaced by an assumption on the complexity of
ENP (revisiting the proof of Theorem 6.2), but the above suffices for our purposes. In particular,
we have the following corollary.

Corollary 6.5. If µp(NP) 6= 0, then

dim∆p
2
(X) ≤ HNP(X)

for all X ⊆ C.

Proof. It follows from the proof of Lemma 3.2 in [27] that if µp(NP) 6= 0, then NE ⊆ ENP
‖ has

exponential-size NP-oracle circuit complexity.

We now have the following extension of Theorem 5.6.

Theorem 6.6. If µp(NP) 6= 0, then

dim∆p
2

(
SIZE

(
α

2n

n

))
= α

for all α ∈ [0, 1].

The improvement of Theorem 6.1 now follows.

Corollary 6.7. If µp(NP) 6= 0, then

dim∆p
2
(P/poly) = dim(P/poly | ∆E

2) = dim(P/poly | ∆EXP
2) = 0.

12

7 Ranking, Printing, and Time-Bounded Dimension

Lutz [26] proved the following regarding the resource-bounded measure of polynomial-size circuit
complexity classes.

Theorem 7.1. (Lutz [26]) For all c ≥ 1,

µ(SIZE(nc) | EXP) = µp2
(SIZE(nc)) = 0

and
µ(P/poly | E3) = µp3

(P/poly) = 0.

In this section we develop some tools involving rankable [10] and printable [13, 4] sets for
calculating dimensions. These tools will yield a strengthening of Theorem 7.1 from measure 0 to
dimension 0.

Definition. Let A ⊆ {0, 1}∗.

1. A is pi-rankable if the ranking function rankA(x) = |{y ∈ A | y ≤ x}| is in pi.

2. A is pi-printable if there is a function f ∈ pi such that for all n ∈ N, f(0n) lists all strings in
A=n.

While it is not known if dimpi(X) ≤ HPi(X) holds in general, we can show that the pi-rankable-
entropy rate is an upper bound on pi-dimension.

Theorem 7.2. For any X ⊆ C,

dimpi(X) ≤ Hpi-rankable(X).

Proof. We give the proof for i = 1; the other cases are entirely analogous. Let t > s > Hp-rankable(X)
with 2s ∈ Q. Choose A ∈ p-rankable with X ⊆ Ai.o. and HA < s. It suffices to show that
dimp(X) ≤ t.

For each n and w ∈ {0, 1}≤n, let

extA(w, n) = |{v ∈ A=n | w v v}|

be the number of extensions of w in A=n. Define

ρn(w) =
extA(w, n)

2sn
.

For w with |w| > n, we let ρn(w) = 2−(|w|−n)ρn(w �n). Note that for all w ∈ {0, 1}≤n,

extA(w, n) = rankA(w1n−|w|)− rankA(w0n−|w| − 1),

so extA(w, n) can be computed in time polynomial in n because A is p-rankable. Let ε ∈ (0, t− s)
with 2ε ∈ Q and define ρ =

∑∞
n=0 2−εnρn. Then ρ is a p-computable submeasure. Also, for any

w ∈ A, we have ρ|w|(w) = 2−s|w| and

− log ρ(w) ≤ − log 2−ε|w|ρ|w|(w)
= (s + ε)|w|
< t|w|.

It follows from Theorem 3.2 that dimp(X) ≤ dimp(Ai.o.) ≤ t.

13

The following corollary is enough to show that certain classes have dimension 0.

Corollary 7.3. For any pi-printable language A, dimpi(A
i.o.) = 0.

Proof. Since every pi-printable language A is also pi-rankable and has HA = 0, the corollary follows
from Theorem 7.2.

We now use the pi-printable corollary to show that appropriately bounded nonuniform com-
plexity classes have dimension 0.

Theorem 7.4. For all c ∈ N,

dimp(DTIME(2cn)/cn)
= dimp2

(DTIME(2nc
)/nc)

= dimp3
(DTIME(22(log n)c

)/2(log n)c
)

= 0.

Proof. Let U ∈ DTIME(2(c+1)n) be universal for DTIME(2cn) in the sense that DTIME(2cn) =
{Ui | i ∈ N} where Ui = {x | 〈i, x〉 ∈ U}. For each i ∈ N, define

Ai = {B≤n | (∀m ≤ n)(∃hm ∈ {0, 1}cm)x ∈ B=m ⇐⇒ 〈x, hm〉 ∈ Ui},

where B≤n represents a characteristic string as in the proof of Theorem 5.3. Let

A = {w | (∃i ≤ |w|)w ∈ Ai}.

Then DTIME(2cn)/cn ⊆ Ai.o.. Also, A is p-printable by cycling through all possible advice strings.
Therefore dimp(DTIME(2cn)/cn) = 0 follows from Corollary 7.3.

The p2- and p3-dimension statements are proved analogously.

We now improve Theorem 7.1, replacing measure 0 by dimension 0.

Theorem 7.5. For all c ≥ 1,

dim(SIZE(nc) | EXP) = dimp2
(SIZE(nc)) = 0

and
dim(P/poly | E3) = dimp3

(P/poly) = 0.

Proof. Since SIZE(s(n)) ⊆ P/O(s(n) log s(n)) for any polynomial s(n), this follows immediately
from Theorem 7.4.

8 Infinitely-Often Classes

For a class C, let
io-C = {A ⊆ {0, 1}∗ | (∃B ∈ C)(∃∞n)A=n = B=n}

be the io-class of C. Resource-bounded measure 0 results for nonuniform classes typically also
hold for the io-class versions [26]. However, Gu showed the following general lower bound for
infinitely-often classes.

14

Theorem 8.1. (Gu [11]) For every class C that contains the empty language ∅,

dimH(io-C) ≥ 1
2
.

Following a preliminary version of this paper, Gu [11] calculated the dimensions of the infinitely-
often versions of the classes in Theorem 7.5 to be exactly 1

2 ; that is, the lower bound in Theorem
8.1 is tight for these classes. We will give another proof of this using Theorem 7.2. We first present
an infinitely-often version of Theorem 7.4.

Theorem 8.2. For all c ∈ N,

dimp(io-[DTIME(2cn)/cn])
= dimp2

(io-[DTIME(2nc
)/nc])

= dimp3
(io-[DTIME(22(log n)c

)/2(log n)c

])
= 1

2 .

Proof. This is similar to the proof of Theorem 7.4, except here we need to use Theorem 7.2 about
rankable entropy rates rather than Corollary 7.3. We focus on the p-dimension case.

Let U ∈ DTIME(2(c+1)n) be universal for DTIME(2cn) as in the proof of Theorem 7.4. For
each i ∈ N, define

Ai = {B≤n | (∃hn ∈ {0, 1}cn)x ∈ B=n ⇐⇒ 〈x, hn〉 ∈ Ui}.

Let
A = {w | (∃i ≤ |w|)w ∈ Ai}.

Then io-[DTIME(2cn)/cn] ⊆ Ai.o.. Also,

log |A=2n+1−1| ≤ log
[∣∣{0, 1}2n−1

∣∣ · (2n+1 − 1)2cn
]

≤ log 22n+(c+1)n+1

= 2n + (c + 1)n + 1,

so HA = 1
2 because

lim sup
n→∞

2n + (c + 1)n + 1
2n+1 − 1

=
1
2
.

Finally, we claim that A is p-rankable. We need to be able to compute the rank in A=2n+1−1 of a
given characteristic string B≤n. As in Corollary 7.3, the set

Cn = {w ∈ {0, 1}2n | 02n−1w ∈ A}

of suffixes of strings in A=2n+1−1 is polynomial-time printable by cycling through all possible advice
strings. This makes computing the rank of B≤n easy: compute the rank of B=n in Cn and add it
to |Cn| times the number of lexicographic predecessors of B<n.

We now have another proof of the dimension upper bounds in Gu’s aforementioned theorem.
(Gu’s proof used relationships between Kolmogorov complexity and circuit-size complexity [2, 3].)

Theorem 8.3. (Gu [11]) For all c ≥ 1,

dim(io-SIZE(nc) | EXP) = dimp2
(io-SIZE(nc)) =

1
2

and
dim(io-[P/poly] | E3) = dimp3

(io-[P/poly]) =
1
2
.

15

Proof. Since io-SIZE(s(n)) ⊆ io-[P/O(s(n) log s(n))] for any polynomial s(n), the dimension upper
bounds follows immediately from Theorem 8.2. The lower bounds follow from Theorem 8.1.

Next we turn our attention to the infinitely-often versions of the exponential-size circuit-
complexity classes we studied earlier. We have the following in comparison to Theorem 5.6.

Theorem 8.4. For every α ∈ [0, 1],

dim∆p
3

(
io-SIZE

(
α

2n

n

))
=

1 + α

2
.

This theorem is immediate from Lemmas 8.5 and 8.6 below, using Theorem 5.5 to establish the
upper bound.

Lemma 8.5. For every α ∈ [0, 1],

HNP

(
io-SIZE

(
α

2n

n

))
≤ 1 + α

2
.

Proof. Define
A =

{
B≤n

∣∣B=n has a circuit of size ≤ α2n

n

}
.

Then A ∈ NP and io-SIZE(α2n

n) ⊆ Ai.o.. A calculation similar to the one in Theorem 5.3 shows
that HA = 1+α

2 .

Lemma 8.6. For every α ∈ [0, 1],

dimH

(
io-SIZE

(
α

2n

n

))
≥ 1 + α

2
.

Proof. This proof is similar to the proof of Theorem 5.8 and is also inspired by the same technique
of Gu [12].

Let s(n) = α2n

n and let s < t < α. Let r = 1+s
2 and let d be an arbitrary r-gale. It suffices to

show that io-SIZE(s(n)) 6⊆ S∞[d].
We define a language A inductively. Let A≤1 = ∅. Assume that A≤n has been defined. We

will extend this to define A≤2n. Let w be the characteristic string of A≤n. As in the proof of
Theorem 5.8, define u of length 22n − 2n+1 +

⌈
t22n

⌉
so that d(wu′) ≤ 2(r−1)|u′|d(w) for all u′ v u.

Let v = 022n−dt22ne and let A≤2n have characteristic string wuv. For all v′ v v,

d(wuv′) ≤ 2s|uv′|−|u|d(w) ≤ 2r(22n+1−2n+1)−|u|d(w)

= 2(1+s)22n−r2n+1−22n+2n+1−dt22ned(w)

≤ 2s22n+2n+1−dt22ned(w).

When n is sufficiently large, this last multiplier is less than 1. It follows that d is bounded on A,
so A 6∈ S∞[d]. Also, arguing as in the proof Theorem 5.8, A=n has a circuit of size at most s(n)
whenever n is a sufficiently large power of 2, so A ∈ io-SIZE(s(n)).

9 Superranking and Kolmogorov Complexity

For many sets for which the p-dimension has been calculated it can be shown that an equality
actually holds in Theorem 7.2. In this section we show that we always get an equality when a
generalization of ranking is used.

16

9.1 Superranking

Definition. Let A ⊆ {0, 1}∗.

1. A superranking function for A is a function f : {0, 1}∗ → N that is nondecreasing (i.e.,
f(x) ≤ f(x + 1) for all x) and satisfies f(x) > f(x− 1) for all x ∈ A.

2. The rate of a superranking function f is

Hf = lim sup
n→∞

log[f(1n)− f(1n−1)]
n

.

3. The polynomial-time superranking rate of A is

H∗
A = inf{Hf | f ∈ p is a superranking function for A }.

Intuitively, a superranking function f for A is an overestimate of the ranking function of A.
It always increases when rankA increases, but may increase by an amount larger than 1 and may
increase on strings that are not in A.

The quantity f(1n) − f(1n−1) is an upper bound on |A=n|. For this reason, we have HA ≤
H∗

A ≤ 1 for any language A. If A is p-rankable, then HA = H∗
A because rankA is a polynomial-time

superranking function for A and HrankA
= HA.

We now use superranking rates to define a variation of the P-entropy rate.

Definition. For any X ⊆ C, define

H∗
P(X) = inf{H∗

A | A ∈ P and X ⊆ Ai.o.}.

From our observations above, it is clear that

HP(X) ≤ H∗
P(X) ≤ Hp-rankable(X)

for all X ⊆ C. We now show that H∗
P is exactly the same as dimp. Note that this improves

Theorem 7.2.

Theorem 9.1. For any X ⊆ C,
dimp(X) = H∗

P(X).

Proof. The proof that dimp(X) ≤ H∗
P(X) is a modification of the proof of Theorem 7.2. Let

t > s > H∗
P(X) with 2s ∈ Q and take an A ∈ P such that X ⊆ Ai.o. and H∗

A < s. Then let f be
a superranking function for A that satisfies Hf < s. Now for any w and n, we can upper bound
extA(w, n) by f(w1n−|w|) − f(w0n−|w| − 1). Define the measure ρn(w) using this upper bound
instead of extA(w, n). Then for any w ∈ A we have ρ|w|(w) = [f(w) − f(w − 1)]2−s|w| ≥ 2−s|w|.
The rest of the proof goes through to show that dimp(X) ≤ t.

For the other inequality, let s > dimp(X) such that 2s is rational. It suffices to show that
H∗

P(X) ≤ s. Let µ be an exactly polynomial-time computable measure such that for all S ∈ X,

lim inf
n→∞

− log µ(S �n)
n

< s.

We can assume without loss of generality that µ(λ) = 1. Letting

A = {w | µ(w) ≥ 2−sn},

17

we have X ⊆ Ai.o.. Define f : {0, 1}∗ → N by

f(w) =

2s|w|
∑

|x|=|w|
x≤w

µ(x)

 + f(1|w|−1).

Then f is a superranking function for A. For all n, f(1n) − f(1n−1) = d2sne, so Hf ≤ s. Now we
will show that f is polynomial-time computable. Let Iw = {(w � i)0 | w[i] = 1}. Then x < w if and
only if x has a prefix in Iw. Using the additivity property of µ, we have∑

|x|=|w|
x<w

µ(x) =
∑
y∈Iw

∑
|x|=|w|

yvx

µ(x) =
∑
y∈Iw

µ(y).

Given f(1|w|−1), we can therefore compute f(w) using at most |w|+ 1 evaluations of µ on strings
no longer than w. This shows that f is polynomial-time computable. Therefore H∗

P(X) ≤ H∗
A ≤

Hf ≤ s.

We can now give a hypothesis that implies HP is equal to dimp. The plausibility of the hypoth-
esis is not clear.

Corollary 9.2. If HA = H∗
A for every A ∈ P, then dimp(X) = HP(X) for all X ⊆ C.

9.2 Kolmogorov Complexity

For a function r : N → N and a string x, let K(x) be the Kolmogorov complexity of x, let
Kr(x) be the r-time-bounded Kolmogorov complexity of x, and let KSr(x) be the r-space-bounded
Kolmogorov complexity of x. (Here Kr(x) is the minimum length of a program that causes a
universal Turing machine to output x in at most r(|x|) time, and KSr(x) is defined analogously.
Because we will be dividing by |x| in what follows, it is makes no difference if we use plain complexity
or prefix-free complexity.) For a sequence S ∈ C, define

K(S) = lim inf
n→∞

K(S �n)
n

, KSr(S) = lim inf
n→∞

KSr(S �n)
n

, and Kr(S) = lim inf
n→∞

Kr(S �n)
n

.

For any X ⊆ C, define

K(X) = sup
S∈X

K(S), KSr(X) = sup
S∈X

KSr(S), and Kr(X) = sup
S∈X

Kr(S).

Let poly and comp be the classes of all functions mapping N to N that are polynomially-bounded
and computable, respectively. For any X ⊆ C, define

Kpoly(X) = inf
p∈poly

Kp(X), KSpoly(X) = inf
p∈poly

KSp(X), and KScomp(X) = inf
r∈comp

KSr(X).

Mayordomo [33], building on [30], showed that constructive dimension can be equivalently
defined using Kolmogorov complexity.

Theorem 9.3. (Mayordomo [33]) For any X ⊆ C, cdim(X) = K(X).

This can be extended to the computable and polynomial-space dimensions by imposing com-
putable and polynomial-space constraints on the Kolmogorov complexity.

18

Theorem 9.4. (Hitchcock [14]) For any X ⊆ C, dimcomp(X) = KScomp(X) and dimpspace(X) =
KSpoly(X).

It is unknown if dimp(X) = Kpoly(X) holds for all X. We can use our superranking character-
ization of p-dimension to show that one inequality always holds. The following proposition shows
that strings in a language A have polynomial-time Kolmogorov complexity that is not much more
than the polynomial-time superranking rate of A.

Proposition 9.5. Let A ⊆ {0, 1}∗ and let s > H∗
A. Then there is a polynomial p such that for all

but finitely many x ∈ A, Kp(x) ≤ s|x|.

Proof. Let s > r > H∗
A and let f be a polynomial-time computable superranking function for A

that satisfies f(1n) ≤ 2rn for all sufficiently large n. Then for any x ∈ A with |x| large enough,
f(x) can be represented as a binary string of length at most r|x|. Given f(x), we can use binary
search to find x. Therefore Kp(x) ≤ r|x|+ c ≤ s|x| holds for all but finitely many x ∈ A, where p
is some polynomial and c is some constant.

We can now sandwich Kpoly between the NP-entropy rate and p-dimension.

Theorem 9.6. For any X ⊆ C,

HNP(X) ≤ Kpoly(X) ≤ dimp(X).

Proof. Let s > dimp(X). By Theorem 9.1, let A ∈ P such that X ⊆ Ai.o. and H∗
A < s. It follows

from Proposition 9.5 that Kpoly(X) ≤ Kpoly(Ai.o.) ≤ s. Therefore Kpoly(X) ≤ dimp(X).
Now let s > Kpoly(X) be rational and let p be a polynomial such that Kp(S) < s for all S ∈ X.

Then the language
A = {x | Kp(x) ≤ s|x|}

is in NP and satisfies X ⊆ Ai.o.. Since |A=n| ≤ 2sn+1 for all n, we have HA ≤ s, so HNP(X) ≤ s.
Therefore HNP(X) ≤ Kpoly(X).

10 Conclusion

We have given several new relationships between resource-bounded dimension, entropy rates, and
compression. Now we know that for any X ⊆ C,

dimpspace(X)
=

HPSPACE(X)
=

KSpoly(X)

 ≤ dim∆p
3
(X) ≤ HNP(X) ≤

{
HP(X),
Kpoly(X)

}
≤


dimp(X)

=
H∗

P(X)

 ≤ Hp-rankable(X).

(We do not know of any relationship between HP and Kpoly.) These results were useful for improv-
ing previous results about the resource-bounded measure and dimension of circuit-size complexity
classes, and we anticipate that these general tools we have developed will be useful in future work.

Acknowledgments. We thank Fengming Wang and the anonymous referees for helpful comments
and suggestion. We thank Xiaoyang Gu for pointing out mistakes in a draft and for very helpful
discussions about Theorems 5.8 and 8.4.

19

References

[1] Effective fractal dimension bibliography. www.cs.uwyo.edu/~jhitchco/bib/dim.shtml.

[2] E. Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov com-
plexity. In Proceedings of the 21st Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 1–15. Springer-Verlag, 2001.

[3] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger. Power from
random strings. In Proceedings of the 43rd IEEE Symposium on Foundations of Computer
Science, pages 669–678. IEEE Computer Society, 2002.

[4] E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing, 17:1193–1202,
1988.

[5] V. Arvind and J. Köbler. On pseudorandomness and resource-bounded measure. Theoretical
Computer Science, 255(1–2):205–221, 2001.

[6] N. Chomsky and G. A. Miller. Finite state languages. Information and Control, 1:91–112,
1958.

[7] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theoretical
Computer Science, 310(1–3):1–33, 2004.

[8] S. A. Fenner. Gales and supergales are equivalent for defining constructive Hausdorff dimen-
sion. Technical Report cs.CC/0208044, Computing Research Repository, 2002.

[9] L. Fortnow and J. H. Lutz. Prediction and dimension. Journal of Computer and System
Sciences, 70(4):570–589, 2005.

[10] A. V. Goldberg and M. Sipser. Compression and ranking. SIAM Journal on Computing,
20(3):524–536, 1991.

[11] X. Gu. A note on dimensions of polynomial size circuits. Technical Report TR04-047, Elec-
tronic Colloquium on Computational Complexity, 2004.

[12] X. Gu. Personal communication, 2005.

[13] J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities. Theoretical
Computer Science, 34:17–32, 1984.

[14] J. M. Hitchcock. Effective Fractal Dimension: Foundations and Applications. PhD thesis,
Iowa State University, 2003.

[15] J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer
Science, 304(1–3):431–441, 2003.

[16] J. M. Hitchcock. Gales suffice for constructive dimension. Information Processing Letters,
86(1):9–12, 2003.

[17] J. M. Hitchcock. Small spans in scaled dimension. SIAM Journal on Computing, 34(1):170–
194, 2004.

20

[18] J. M. Hitchcock. Correspondence principles for effective dimensions. Theory of Computing
Systems, 38(5):559–571, 2005.

[19] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform complexity.
Journal of Computer and System Sciences, 69(2):97–122, 2004.

[20] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity classes.
SIGACT News, 36(3):24–38, September 2005.

[21] J. Köbler and W. Lindner. On the resource bounded measure of P/poly. In Proceedings of the
13th IEEE Conference on Computational Complexity, pages 182–185. IEEE Computer Society,
1998.

[22] J. Köbler, U. Schöning, and J. Toran. On counting and approximation. Acta Informatica,
26:363–379, 1989.

[23] W. Kuich. On the entropy of context-free languages. Information and Control, 16:173–200,
1970.

[24] M. López-Valdés and E. Mayordomo. Dimension is compression. In Proceedings of the 30th
International Symposium on Mathematical Foundations of Computer Science, pages 676–685.
Springer-Verlag, 2005.

[25] O. B. Lupanov. On the synthesis of contact networks. Dokl. Akad. Nauk SSSR, 119:23–26,
1958.

[26] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System
Sciences, 44(2):220–258, 1992.

[27] J. H. Lutz. Observations on measure and lowness for ∆P
2 . Theory of Computing Systems,

30(4):429–442, 1997.

[28] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L.
Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-Verlag, 1997.

[29] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236–1259,
2003.

[30] J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation,
187(1):49–79, 2003.

[31] J. H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly, 51:62–72, 2005.

[32] E. Mayordomo. Contributions to the study of resource-bounded measure. PhD thesis, Univer-
sitat Politècnica de Catalunya, 1994.

[33] E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimen-
sion. Information Processing Letters, 84(1):1–3, 2002.

[34] E. Mayordomo. Effective Hausdorff dimension. In Classical and New Paradigms of Compu-
tation and their Complexity Hierarchies (papers of the conference Foundations of the Formal
Sciences III), volume 23 of Trends in Logic, pages 171–186. Kluwer Academic Press, 2004.

21

[35] C. A. Rogers. Hausdorff Measures. Cambridge University Press, 1998. Originally published
in 1970.

[36] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. In
Proceedings of the 20th IEEE Conference on Computational Complexity, pages 212–226. IEEE
Computer Society, 2005.

[37] L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Computation,
103:159–94, 1993.

[38] L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction.
Theory of Computing Systems, 31:215–29, 1998.

[39] L. J. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing, 14:849–
861, 1985.

[40] J. Ville. Étude Critique de la Notion de Collectif. Gauthier–Villars, Paris, 1939.

22

