
Dimension, Halfspaces, and the Density of Hard Sets∗

Ryan C. Harkins† John M. Hitchcock‡

Abstract

We use the connection between resource-bounded dimension and the online mistake-bound
model of learning to show that the following classes have polynomial-time dimension zero.

1. The class of problems which reduce to nondense sets via a majority reduction.

2. The class of problems which reduce to nondense sets via an iterated reduction that com-
poses a bounded-query truth-table reduction with a conjunctive reduction.

Intuitively, polynomial-time dimension is a means of quantifying the size and complexity of
classes within the exponential time complexity class E. The class P has dimension 0, E itself
has dimension 1, and any class with dimension less than 1 cannot contain E. As a corollary,
it follows that all sets which are hard for E under these types of reductions are exponentially
dense. The first item subsumes two previous results and the second item answers a question
of Lutz and Mayordomo. Our proofs use Littlestone’s Winnow2 algorithm for learning r-of-k
threshold functions and Maass and Turán’s algorithm for learning halfspaces.

1 Introduction

Recent work has found applications of computational learning theory to the resource-bounded
measure [10] and dimension [12] of complexity classes. Lindner, Schuler, and Watanabe [8] studied
connections between computational learning theory and resource-bounded measure [10], primarily
focusing on the PAC (probably approximately correct) model. They also observed that any ad-
missible subclass of P/poly that is learnable in Littlestone’s online mistake-bound model [9] has
p-measure 0. Later Hitchcock [6] developed a general tool for applying online learning algorithms
in resource-bounded dimension. Intuitively, polynomial-time dimension is a means of quantifying
the size and complexity of classes within the exponential time complexity class E. The class P has
p-dimension 0, E itself has p-dimension 1, and any class with p-dimension less than 1 cannot con-
tain E. To show that a class has p-dimension 0, it suffices to show that it is reducible to a learnable
concept class family. This idea was used to show that the following classes have p-dimension 0.

(1) Pctt(DENSEc).

(2) Pdtt(DENSEc).

(3) Pnα−T(DENSEc), for all α < 1.
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Here Pr(DENSEc) is the class of all problems which reduce to nondense sets under ≤p
r reductions,

where a problem is nondense if its census function is subexponential. The result for (3) improved
previous work [4, 13, 15] and solved one of Lutz and Mayordomo’s twelve problems in resource-
bounded measure [14]. Results (1) and (2) improved previous separations due to Watanabe [18].
The classes in (2) and (3) were reduced to disjunctions, which can be learned by Littlestone’s
Winnow algorithm [9]. We obtain further results in this direction using more sophisticated learning
algorithms and concept classes that generalize disjunctions.

In our first result we show that the class

(4) Pmaj(DENSEc)

of problems which reduce to nondense sets via majority reductions has p-dimension 0. Our proof
gives a reduction to r-of-k threshold functions and applies Littlestone’s Winnow2 algorithm. This
subsumes the results about (1) and (2) above and answers a question of Fu [5].

Our second result concerns iterated reductions and answers the following question of Lutz and
Mayordomo [13]:

(Q) Does the class Pbtt(Pctt(DENSEc)) have measure 0 in E?

Agrawal and Arvind [1] showed that Pbtt(Pctt(SPARSE)) ⊆ Pm(LT1), where LT1 is the class of
problems that have a nonuniform family of depth-1 weighted linear threshold circuits. Equivalently,
LT1 is the class of problems where each input length is a halfspace. We use their technique to reduce

(5) Pα logn−tt(Pctt(DENSEc)), for all α < 1

to a subexponential-size family of halfspaces. We then apply the online learning algorithm of Maass
and Turán [16] to learn these halfspaces and conclude that the classes in (5) have p-dimension 0.
This strongly answers (Q) in the affirmative.

This paper is organized as follows. Section 2 contains preliminaries about halfspaces, learning,
and dimension. The majority reductions result is in section 3 and the iterated reductions result is
in section 4. Section 5 concludes with some observations for NP and directions for further work.

2 Preliminaries

A language L is a subset of {0, 1}∗. For the length of a string x, we write |x|. By L=n we denote
the set all strings in L of length n, and by L≤n we denote the set of all strings in L with length at
most n. We also use the notation |X| to denote the number of strings in a set X when X is finite.
Let L be a language.

• L is sparse if for all n ∈ N, |L≤n| ≤ p(n), where p(n) is a polynomial.

• L is dense if for some ε > 0, for all but finitely many n, |L≤n| > 2n
ε
.

• L is io-dense if for some ε > 0, for infinitely many n, |L≤n| > 2n
ε
.

We write SPARSE, DENSE, and DENSEi.o. for the classes of sparse, dense, and io-dense languages,
respectively. Note that L ∈ DENSEc if for all ε > 0, for infinitely many n, |L≤n| < 2n

ε
, and

L ∈ DENSEci.o. if for all ε > 0, for all sufficiently large n, |L≤n| < 2n
ε
.

We assume the reader is familiar with the various notions of polynomial-time reductions. If a
reduction g(x) produces a single query, then |g(x)| refers to the size of that query. If it produces
multiple queries, then |g(x)| is the number of queries produced.
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2.1 Threshold Circuits

A weighted linear threshold gate with n inputs is determined by a weight vector ŵ ∈ Qn and
a threshold T ∈ Q such that on inputs x ∈ {0, 1}n, where x is considered an n-valued vector
(x1, x2, . . . , xn), the gate will output 1 if and only if

∑
1≤i≤nwixi > T . An exact weighted linear

threshold gate is defined similarly, except that the gate will output 1 if and only if
∑

1≤i≤nwixi = 0.
As this is an inner product on vectors, we use the notation ŵ · x̂ for

∑
1≤i≤nwixi.

A linear threshold circuit has a linear threshold gate at its root. A language L is in the class
LT1 if there exists a family of nonuniform, depth-1 weighted linear threshold circuits defined by a
family of weight vectors {ŵn}n≥0 such that for all x ∈ {0, 1}∗, x ∈ L if and only if ŵ|x| · x̂ > 0.
Similarly, L is in the class ELT1 if there exists a family of nonuniform, depth-1 exact weighted
linear threshold circuits defined by a family of weight vectors {ŵn}n≥0 such that for all x ∈ {0, 1}∗,
x ∈ L if and only if ŵ|x| · x̂ = 0.

Topologically, a linear threshold gate on n inputs describes a halfspace S in {0, 1}n, and an
exact linear threshold gate describes a hyperplane H in {0, 1}n, where strings in {0, 1}n are viewed
as binary vectors.

For more information on LT1 and ELT1, we refer the reader to Agrawal and Arvind [1], from
which we will make several useful extensions in Section 4.

2.2 Dimension and Learning

Resource-bounded dimension was introduced by Lutz [12] as a refinement of resource-bounded
measure [10]. Each class X of languages has a p-dimension dimp(X) ∈ [0, 1], and if dimp(X) < 1,
then X has p-measure 0. In this paper we do not use the original definition of p-dimension, but
instead the result that if X reduces to a learnable concept class family, then dimp(X) = 0 [6]. For
more information on measure and dimension we refer to [3, 7, 11, 14].

A concept is a set C ⊆ U for some universe U , or equivalently, a function mapping U to {0, 1}.
A concept class is a set C of concepts. In our setting, U is simply the set of all binary strings {0, 1}∗
and a concept is a Boolean function f : {0, 1}n → {0, 1}.

The online-mistake bound model of learning was introduced by Littlestone [9]. An online learner,
given a concept class C and a universe U , attempts to learn a target concept C ∈ C. The learner
is presented with a sequence of examples x1, x2, . . . in U . In the ith stage, the learner must predict
whether xi ∈ C. The answer for xi is then revealed, the learner may adjust its strategy, and the next
concept xi+1 is presented for classification. The learner makes a mistake if it incorrectly classifies
an example. The mistake bound of a learning algorithm for a concept class C is the maximum over
all C ∈ C of the number of mistakes made when learning C, over all possible sequences of examples.
The running time of the learner is the time required to predict the classification of an example.

We now recall the definitions of reducibility to learnable concept classes from [6]. Let L ⊆ {0, 1}∗
and let C = (Cn|n ∈ N) be a sequence of concept classes. For a time bound r(n), we say L reduces
to C in r(n) time if there is a reduction f computable in O(r(n)) time such that for infinitely many
n, there is a concept Cn ∈ Cn such that for all x ∈ {0, 1}≤n, x ∈ L if and only if f(x, 1n) ∈ Cn.
Note that the reduction is not required to hold for all n, but only infinitely many n.

Let L(t,m) be the set of all sequences of concept classes C such that for each Cn ∈ C, there is
an algorithm that learns Cn in O(t(n)) time with mistake bound m(n). Then the class RL(r, t,m)
is the class of languages that reduce to some sequence of concept classes in L(t,m) in r(n) time.

Theorem 2.1 (Hitchcock [6]). For every c ∈ N, the class RL(2cn, 2cn, o(2n)) has p-dimension 0.
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Because X ⊆ Y implies dimp(X) ≤ dimp(Y ), the task of proving that a class has p-dimesion 0
can be reduced to showing the class is a subset of RL(2cn, 2cn, o(2n)) for some constant c.

2.3 Learning Algorithms

We make use of two learning algorithms. The first is the second of Littlestone’s Winnow
algorithms [9], which can be used to learn Boolean r-of-k functions on n variables. In an r-of-k
function there is a subset V of the n variables with |V | ≤ k such that the function evaluates to 1 if at
least r of the variables in V are set to 1. Winnow2 has two parameters: a weight update multiplier
α and a threshold value θ. Initially, each of the variables xi has a weight wi = 1. Winnow2 operates
by predicting that an example x is in the concept if and only if

∑
1≤i≤nwixi > θ. The weights are

updated following each mistake by the following rubric:

• If Winnow2 incorrectly predicts that x is in the target concept, then for each xi such that
xi = 1, set wi = wi/α.

• If Winnow2 incorrectly predicts that x is not in the target concept, then for each xi such that
xi = 1, set wi = α · wi.

Littlestone showed that for α = 1
2r and θ = n, Winnow2 has a mistake bound on learning r-of-k

functions of 8r2 + 5k + 14kr lnn. Winnow2 also classifies examples in polynomial time.
The second learning algorithm we use is Maass and Turán’s [16] algorithm for learning half-

spaces. They first describe the Convex Feasability Problem: given a separation oracle and a
guarantee r for an unknown convex body P , find a point in P . By a guarantee, they mean a
number such that the volume of the convex body P (in d dimensions) within the ball of radius r
around 0̂ is at least r−d.

Theorem 2.2 (Maass and Turán [16]). Assume that there is an algorithm A∗ solving the Convex
Feasability Problem with query complexity q(d, log r) (where q is a function of both the dimension
d and the guarantee r) and time complexity t(d, log r). Then there is a learning algorithm A for
learning a halfspace in d dimensions and n values such that the mistake bound of A is q(d, 4d(log d+
log n + 3)) + 1 and the running time is at most t(d, 4d(log d + log n + 3)) + q(d, 4d(log d + log n +
3)) · p(d, log n) for some polynomial p.

Using Vaidya’s algorithm for learning convex bodies [17], which is an algorithm for the Convex
Feasability Problem, they show that learning a halfspace on d dimensions and n values (in our case,
with the binary alphabet, n = 2) has a mistake bound of O(d2(log d + log n)) and a polynomial
running time.

3 Majority Reductions

We say thatA ≤p
maj B if there is a polynomial-time computable function f : {0, 1}∗ → P({0, 1}∗)

such that for all x ∈ {0, 1}∗, x ∈ A if and only if

|f(x) ∩B| ≥ |f(x)|
2

.

The following lemma is routine and says that if B is nondense, then we can assume that the
majority reduction makes the same number of queries for all inputs of each length.
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Lemma 3.1. Let A ∈ Pmaj(DENSEc). Then there exists a B ∈ DENSEc, a majority reduction f
computable in polynomial time, and a polynomial r such that for all x ∈ {0, 1}∗, |f(x)| = r(|x|).

We now prove our first main result.

Theorem 3.2. Pmaj(DENSEc) has p-dimension 0.

Proof. It suffices to show that there is a concept class family CF ∈ L(2cn, o(2n)) and a reduction g
computable in 2cn time such that for all A ∈ Pmaj(DENSEc), A reduces to CF by g.

Let A ∈ Pmaj(DENSEc). Then there is a p(n)-time-bounded majority reduction f that makes
exactly r(n) queries for each n, and a set B ∈ DENSEc such that for all x ∈ {0, 1}∗, x ∈ A if and
only if |f(x) ∩B| ≥ |f(x)|

2 .
Let Qn =

⋃
|x|≤n f(x) be the set of all queries made by f up through length n. Then |Qn| ≤

2n+1p(n). Enumerate Qn as q1, . . . , qN . Then each subset R ⊆ Qn can be identified with its
characteristic string χR ∈ {0, 1}N according to this enumeration.

Let M(n) = |Qn ∩ B| for each n and let δ ∈ (0, 1). Then M(n) ≤ |B≤p(n)| < 2n
δ

for infinitely
many n because B is nondense. Our target concept is the r(n)

2 -of-M(n) threshhold function h :
{0, 1}N → {0, 1} defined using the variable set V = {i | χR [i] = 1}. Since for all x ∈ {0, 1}∗, f(x)
makes exactly r(|x|) number of queries and x ∈ A if and only if |f(x) ∩B| ≥ r(|x|)

2 , we have x ∈ A
if and only if h(χ

f(x)
) = 1.

Given x, χ
f(x)

can be computed in O(22n) time, and thus Winnow2 can classify examples in

O(22n) time. WheneverM(n) < 2n
δ
, Winnow2 makes at most 2r2(n)+5·2nδ+7·2nδr(n) ln 2n+1p(n) =

o(2n) mistakes while learning h. Thus Pmaj(DENSEc) ⊆ RL(22n, 22n, o(2n)) and the theorem fol-
lows by Theorem 2.1.

We remark that as r-of-k threshold functions are a special case of halfspaces, we could also use
the halfspace learning algorithm instead of Winnow2 to prove Theorem 3.2.

As Pdtt(DENSEc) ⊆ Pmaj(DENSEc) and Pctt(DENSEc) ⊆ Pmaj(DENSEc), Theorem 3.2 sub-
sumes two results from [6]. We also have the following corollary answering Fu’s question [5] about
hard sets for exponential time.

Corollary 3.3. E 6⊆ Pmaj(DENSEc). That is, every ≤p
maj-hard set for E is dense.

4 Iterated Reductions

Our proof that Pα logn−tt(Pctt(DENSEc)) has p-dimension zero follows the proof technique of
Agrawal and Arvind [1] that

Pbtt(Pctt(SPARSE)) ⊆ Pm(LT1)

to reduce the class to a family of halfspaces. We then use Maass and Turán’s [16] learning algorithm
to learn these halfspaces. As long as the reduction runs in 2n

α
time for some α < 1, the halfspaces

have subexponential size and the mistake bound is 2o(n). Therefore by Theorem 2.1,

dimp(R2n
α

m (LT1)) = 0, (4.1)

where Rt(n)
m (LT1) is the class of languages that reduce to some LT1 language by a many-one reduc-

tion that runs in time O(t(n)).
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Instead of Pα logn−tt(Pctt(DENSEc)) we will focus first on the smaller class

Pbtt(Pctt(DENSEci.o.)).

The benefit is that the nondense sets will be small almost everywhere rather than infinitely often,
and the bounded queries permit us to make simpler alterations to Agrawal and Arvind’s lemmas.
We will then show how to extend these results first to the α log n−tt case and then to the nondense
case.

The following technical lemma by Agrawal and Arvind is useful in that it permits us to assume
that any many-one reduction to threshold circuits could be adapted so that for all x, y ∈ {0, 1}n,
|f(x)| = |f(y)|. This simplifies arguments by circumventing the possibility that a reduction might
map each x ∈ {0, 1}n to a different threshold circuit.

Lemma 4.1. Let A ∈ Pm(ELT1) (resp. A ∈ Pm(LT1)). Then there exist L ∈ ELT1 (resp.
L ∈ LT1), an FP function f , and a polynomial r, such that for every x, for every n ≥ r(|x|), x ∈ A
iff f(x, 1n) ∈ H(ŵn) (resp. f(x, 1n) ∈ S+(ŵn)), where ŵn are the weight vectors associated with L.

Because we will deal with reductions running in superpolynomial time, Lemma 4.1 is insuffi-
cient for our needs. However, we observe that the restriction to a polynomial time bound can be
relaxed, as the proof of Lemma 4.1 only utilizes the closure of polynomials under multiplication
and composition with other polynomials. Thus we can extend this result to any family of time
bounds closed under the same operations.

Lemma 4.2. Let ∆ be a family of computable functions that is closed under multiplication and
composition with polynomials, and let F∆ be the functional class with bounds in ∆. Then Lemma
4.1 holds with f ∈ F∆ and r ∈ ∆.

Proof. Let A ∈ R∆
m(ELT1). Then there is an F∆ function g and B ∈ ELT1 such that x ∈ A iff

g(x) ∈ B. Let {d̂n}n≥0 be the weight vectors associated with B.
The idea is, for each n, run together consecutive weight vectors associated with B to form a

single weight vector, and then use a sliding window to focus the original reduction onto the proper
place in the new vector. As long as the new reduction produces a large enough query, the new
weight vector, and every weight vector larger than it, is guaranteed to contain the original weight
vector.

Specifically, we define a new family of weight vectors {ĉn}n≥0 as follows. Let m be the largest
integer such that n ≥ 1

2m(m+ 1), and let ĉn = (d̂1, d̂2, . . . , d̂m, 0̂n−m(m+1)/2). It is clear that these
weight vectors define a language L ∈ ELT1.

Let r′ ∈ ∆ such that for any x ∈ {0, 1}∗, |g(x)| ≤ r′(x). Let r ∈ ∆ such that r(n) ≥
1
2r
′(n)(r′(n) + 1) for all n ≥ 0. Since ∆ is closed under multiplication, we know such an r exists.

For x ∈ {0, 1}∗ such that |g(x)| = i, define f(x, 1n) = (0̂i(i−1)/2, g(x), 0̂n−i(i+1)/2) for all n ≥ r(|x|).
Then we have that x ∈ A iff f(x, 1n) ∈ L for every n ≥ r(|x|), which is essentially the statement of
the lemma.

The case for LT1 is proved the same way.

The following corollary captures the full power of this lemma. We say that a time bound t(n)
is subexponential if for all ε > 0, t(n) < 2n

ε
for all sufficiently large n. We write se for the class of

all subexponential time bounds.
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Corollary 4.3. Let A ∈ Rse
m(ELT1) (similarly, A ∈ Rse

m(LT1)). Then there is a subexponential-time
function f and a language B ∈ ELT1 (B ∈ LT1) such that for every n ∈ N, for all x, y ∈ {0, 1}≤n,
for all qi ∈ f(, x1n) and qj ∈ f(y, 1n), |qi| = |qj |.

Agrawal and Arvind showed that SPARSE ⊆ Pm(ELT1). We extend this in the following
lemma.

Lemma 4.4. DENSEci.o. ⊆ Rse
m(ELT1).

Proof. Let S ∈ DENSEci.o.. Then for all but finitely many n, |S≤n| ≤ 2n
ε

for all ε > 0. Let
S=n = {sn,1, sn,2, . . . , sn,m(n)}, where m(n) ≤ t(n) and t is a subexponential function. Let the
string sn,i also stand for the natural number representing the lexicographic rank of the string sn,i
in {0, 1}n for every n and 1 ≤ i ≤ m(n). Define Tn(z) to be the polynomial

∏m(n)
i=1 (z−sn,i). Clearly,

Tn(z) is a polynomial in z of degree bounded by t(n). For each string z ∈ {0, 1}n, we overload
notation and write Tn(z) to mean Tn applied to the lexicographic index of z in {0, 1}n. Then for
each z ∈ {0, 1}n, we have z ∈ S iff Tn(z) = 0.

Rewriting Tn(z), we have Tn(z) =
∑

1≤j≤t(n) ajz
j . For 1 ≤ j ≤ t(n), we can write zj as∑

1≤r≤n·t(n) 2ryj,r, where the yj,r essentially denotes the bits in the binary representation of zj .
Thus it follows that Tn(z) can be rewritten as a linear combination

∑
1≤j≤t(n)

∑
1≤r≤n·t(n)wj,ryj,r

of the bits yj,r defined above.
Now we can define a language L ∈ ELT1 using these linear functions to define the corresponding

weighted exact threshold gates in the circuit family accepting L. As there will be n · t(n)2 variables,
which is subexponential, we have that S ≤se

m L.

The notion of using the coefficients of a multivariate polynomial as the weights of threshold
circuit is one that appears often in the proofs of Agrawal and Arvind, and thus in our extension of
their proofs. To formalize this, Agrawal and Arvind made use of the following technical lemma.

Lemma 4.5. Let {Fn(x̂)}n≥1, Fn(x̂) defined over Qn, be a family of degree k multinomials (for a
constant k > 0). Let the family of weight vectors {ĉn}n>0 and the FP function f be such that for
every x̂ ∈ Qn, Fn(x̂) = ĉm · f(x̂) where f(x̂) ∈ Qm. Then the function f reduces the set

A =
⋃
n≥1

{x ∈ {0, 1}∗ | Fn(x) = 0}

to the set in ELT1 defined by weight vectors {ĉn}n>0. Also, f reduces the set

B =
⋃
n≥1

{x ∈ {0, 1}∗ | Fn(x) > 0}

to the set in LT1 defined by weight vectors {ĉn}n>0 (where a string x of length n is interpreted as
an n-dimensional 0-1 vector when it is an argument to Fn).

We note that Lemma 4.5 is sufficient for most of our proofs. As long as the degree of the multi-
nomials remains bound by a constant, the closure of subexponential functions under composition
with polynomials will guarantee that even a multinomial of subexponential size will reduce to a
threshold circuit of subexponential size. As we will eventually concern ourselves with multinomials
of unbounded degree, we provide a sketch of the proof to provide an intuition in how to extend
these results.
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Proof Sketch of Lemma 4.5. In polynomial time, we can rewrite Fn as a sum of monomials. A sim-
ple counting argument will yield that for a k-degree multinomial, there are

(
n+k
k

)
such monomials.

To construct a threshhold circuit, it suffices to order the monomials and use the coefficients of each
monomial for the weights.

Lemma 4.6. Rse
ctt(ELT1) = Rse

m(ELT1).

Proof. Let A be a set that is conjuctively reducible to some set B ∈ ELT1. Then there is an
se-computable function f such that for every x ∈ {0, 1}∗, f(x) is a list of queries such that x ∈ A
iff for every q in f(x), q ∈ B. Using Corollary 4.3, there exist B′ ∈ ELT1 defined by a family of
weight vectors {ĉn}n≥1, an se-computable function g, and a subexponential function r such that
for every x, for every j ≥ r(|x|), x ∈ A iff g(x, 1j) ⊆ H(ĉj).

Since f is a conjunctive reduction, there is a subexponential p such that for every x, g(x, 1r(|x|))
has exactly p(|x|) queries (this can be achieved simply by repeating the last query a suitable number
of times). Define

Fp(n)r(n)(q̂1, q̂2, . . . , q̂p(n)) =
p(n)∑
i=1

(ĉr(n) · q̂i)2

where q̂i ∈ {0, 1}r(n) for 1 ≤ i ≤ p(n). The set L is defined as

L =
⋃
n≥1

{
x ∈ {0, 1}p(n)r(n)

∣∣ Fp(n)r(n)(x) = 0
}
.

Note that as an argument to Fp(n)r(n), x is interpreted as a 0-1 vector.
It is easy to see that x ∈ A iff (q̂1, q̂2, . . . , q̂p(|x|)) ∈ L where g(x, 1r(|x|)) = {q̂1, . . . , q̂p(|x|)}.

Lemma 4.5 implies that L is in Rse
m(ELT1).

To show Pbtt(ELT1) ⊆ Pm(LT1), Agrawal and Arvind divide a k-tt reduction into each separate
condition η, and then note that

Pη(A) ⊆ Pb⊕(Pbc(P1−tt(A))),

where Pb⊕ is the closure under the bounded parity reduction and Pbc is the closure under the
bounded conjunctive reduction. They then show that

Pb⊕(Pbc(P1−tt(ELT1))) ⊆ Pm(LT1),

and finish their proof by showing Pm(LT1) is closed under the join operation, i.e. it is possible to
create a linear threshold circuit from all 22k k-tt conditions in polynomial time. We proceed in the
same fashion.

Lemma 4.7. Rse
b⊕(LT1) = Rse

m(LT1).

Proof sketch. We form a multinomial using the queries produced by the bounded parity reduction.
For each x, we assume there will be exactly k queries for some odd constant k, each of size n, and
we assume that for A ∈ LT1 with associated weight vectors {ŵn}n≥0, x ∈ A iff ŵ|x| · x̂ > 0, and
x /∈ A iff ŵ|x| · x̂ < 0. (For a proof of this, see [1], Lemma 3.2.) Let

Fkn(x̂1, . . . , x̂k) = (ŵn · x̂1) · · · (ŵn · x̂k).
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This multinomial preserves the parity as Fkn(x̂1, . . . , x̂k) > 0 iff an odd number of the queries
satisfy ŵn · x̂i > 0. Furthermore, the size of the input to Fkn can be computed in subexponential
time. As Fkn is a degree k multinomial, we can use Lemma 4.5 to finish the proof.

Lemma 4.8. Rse
bd(ELT1) = Rse

m(ELT1).

Proof. The proof uses the exact same multinomial as in Lemma 4.7. Disjunction is preserved in
that Fkn(x̂1, . . . , x̂k) = 0 so long there exists an i such that ŵn · x̂i = 0.

For the next two lemmas, we use a special reduction defined by Agrawal and Arvind. A τ -
reduction is a 2-tt reduction where X ≤τ Y if on input x, the reduction produces two queries q1

and q2 such that x ∈ X if and only if q1 ∈ Y and q2 /∈ Y .

Lemma 4.9. Rse
τ (ELT1) ⊆ Rse

m(LT1).

Proof. Using the queries q1 and q2 produced by the τ -reduction in reducing A ∈ Rse
τ (ELT1) to

B ∈ ELT1, the following degree 4 multinomial suffices to prove the lemma:

F2n(q̂1, q̂2) = (1− 2(l · q̂1 · ŵn)2)(q̂2 · ŵn)2,

where ŵn is a weight vector associated with B, and l is the least common multiplier of the denom-
inators of the weights in ŵn.

Lemma 4.10. Pbc(Rse
1−tt(ELT1)) ⊆ Rse

τ (ELT1).

Proof. For A ∈ Pbc(Rse
1−tt(ELT1)), there is a reduction f to B ∈ ELT1 with k queries such that

x ∈ A iff m of the k queries are in B and k−m are not in B. We label these queries q̂1, q̂2, . . . , q̂m and
r̂1, r̂2, . . . , r̂k−m. Thus x ∈ A iff q̂i ∈ B for all 1 ≤ i ≤ m and no r̂j ∈ B for all 1 ≤ j ≤ k −m. We
can look at this as the combination of a bounded conjunctive reduction and a bounded disjunctive
reduction, both requiring subexponential time. By Lemma 4.6 and Lemma 4.8, we can alter these
reductions to a single query each to a language B′ ∈ ELT1. Call these single queries q̂ and r̂. Then
x ∈ A iff q̂ ∈ B′ and r̂ /∈ B′. This transformation can be carried out in subexponential time, so the
lemma follows.

We are ready to prove the simplified version of our main result.

Theorem 4.11. Pbtt(Pctt(DENSEci.o.)) has p-dimension 0.

Proof. Through Lemma 4.4, Lemma 4.6, Lemma 4.10, and Lemma 4.7 respectively, the following
holds for each truth-table condition η:

Pη(Pctt(DENSEci.o.)) ⊆ Pb⊕(Pbc(P1−tt(Pctt(DENSEci.o.))))
⊆ Pb⊕(Pbc(P1−tt(Pctt(Rse

m(ELT1)))))
⊆ Pb⊕(Pbc(P1−tt(Rse

ctt(ELT1))))
⊆ Pb⊕(Pbc(P1−tt(Rse

m(ELT1))))
⊆ Pb⊕(Pbc(Rse

1−tt(ELT1)))
⊆ Pb⊕(Rse

τ (ELT1))
⊆ Rse

m(LT1).
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For k queries, there are 22k truth-table conditions. Through the reduction above, each condition
corresponds to a different set of weights ĉn,j , 1 ≤ j ≤ 22k , defining a threshold circuit that is
subexponential in size. Let us say this size is s(n). Thus we can create a single linear threshhold
circuit with weights d̂n = (ĉn,1, ĉn,2, . . . , ĉn,22k ) as the join of all these individual circuits. The size

of this new circuit is 22k ·s(n) ≤ 2n
δ

for some δ such that 0 < δ < 1. Let L ∈ LT1 be the set defined
by the weight vectors {d̂n} .

Let A ∈ Pbtt(Pctt(DENSEci.o.)). Let g be the k-tt reduction, and suppose that g(x) uses the
condition which corresponds to ĉ|x|,j . Let q̂x be the many-one query corresponding to that condition
produced by the reduction above. Then the reduction f mapping A to L is defined by

f(x) = (0̂(j−1)s(|x|), q̂x, 0̂(22k−(j+1))s(|x|)).

Then x ∈ A iff f(x) ∈ L. It follows that

Pbtt(Pctt(DENSEci.o.)) ⊆ R2n
δ

m (LT1),

which yields the theorem by (4.1).

The following extension shows how to handle the case of α log n many queries.

Theorem 4.12. Pα logn−tt(Pctt(DENSEci.o.)) has p-dimension 0.

Proof. With α log n queries, we are challenged to show that we can use the general construction
described above while still keeping a time bound of 2o(n). The main difference lies in that, for each
truth table condition η, Pη(C) becomes Pnα−⊕(Pα logn−c(P1−tt(C))). Thus the multinomials used
in Lemmas 4.7, 4.8, and 4.10 are not of constant degree.

We can still show Pα logn−c(P1−tt(ELT1)) ⊆ Rse
τ (ELT1). We need only handle the portion

dealing with the disjunctive query, for we can already handle unbounded number of conjuctive
queries to a language in ELT1. In an extension of Lemma 4.8, we use the reduction described in
Lemma 4.5, extended to handle multinomials of unbounded degree, to create a single query of size(

2n
ε

+ α log n
α log n

)
≤
(
2n

ε
+ α log n

)α logn ≤
(
22nε

)α logn ≤ 22αnε logn

which is still subexponential.
We cannot exactly show that Pnα−⊕(LT1) ⊆ Rse

m(LT1), but the bounds we make are sufficient.
Using a similar method as in the proof of Lemma 4.7 the resulting query to a linear threshhold
circuit has size (

2n
ε

+ nα

nα

)
≤
(
2n

ε
+ nα

)nα ≤ (22nε
)nα ≤ 22nα+ε

which, for sufficiently small ε is 2o(n).
The join then proceeds as above. We note that the size of the final query is bounded by

2n
α · 2nα+ε

for sufficiently small ε, which remains 2o(n).

Now we are prepared to state our main result.
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Theorem 4.13 (Main Theorem). Pα logn−tt(Pctt(DENSEc)) has p-dimension 0.

Proof. We note that the construction to show that Pα logn−tt(Pctt(DENSEci.o.)) has p-dimension
0 describes a reduction f that runs in time 2n

kε
, for some ε > 0 related to the density of the

nondense sets involved and k is a constant determined by the iterated reductions. Since a language

L ∈ DENSEci.o. has density |L≤n| ≤ 2n
1
2k for all but finitely many n, we can easily assume that

ε < 1
2k , which satisfies our requirement that the reduction to a linear threshhold circuit require

subexponential time.
The reduction f always carries out a specific construction while making the assumption that

the density of L≤n is always bounded by 2n
ε

for some fixed ε. As long as this assumption is met,
the reduction is correct.

In the broader case, we can only count on the nondense language being sufficiently sparse
infinitely often. The α log n-tt–ctt reduction to a nondense set can be viewed as a reduction g
running in time nd for some constant d. Thus a query to a nondense set can be of size nd, meaning
that we have to worry about the density of L≤nd , not simply L≤n. The concern is that while for
every ε > 0, |L≤n| < 2n

ε
infinitely often, it is sufficiently dense at each L≤nd to make the reduction

f fail for all but finitely many cases.
However, we recall that for L ∈ DENSEc, for all δ > 0, for infinitely many n, |L≤n| < 2n

δ
.

It is easy to show that, for sufficiently small δ, that if |L≤m| < 2n
δ

for nd ≤ m ≤ (n + 1)d, then
|L≤nd | < 2(nd)ε . Since there must be infinitely many such m, it holds that |L≤nd | < 2(nd)ε infinitely
often, which is sufficient to show p-dimension 0.

Corollary 4.14. E 6⊆ Pα logn−tt(Pctt(DENSEc)).

Theorem 4.13 gives the answer to Lutz and Mayordomo’s question [13].

Corollary 4.15. Pbtt(Pctt(DENSEc)) has measure 0 in E.

5 Conclusion

We conclude with a brief remark about the density of hard sets for NP. If NP has positive
p-dimension, then it follows from our results that

NP 6⊆ Pmaj(DENSEc)

and
NP 6⊆ Pα logn−tt(Pctt(DENSEc))

for all α < 1. These conclusions are stronger than what is known from the hypothesis P 6= NP. If
P 6= NP, then NP 6⊆ Pbtt(Pctt(SPARSE)) [2], but nothing is known about majority reductions.

One direction for further research is to improve the α log n-tt bound in Theorem 4.13. Can the
bound be improved to nα-tt? Or ideally, to subsume the main result in [6], can it be improved to nα-
T? A more basic direction is to find further applications of learning algorithms in resource-bounded
measure and dimension.
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