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Abstract

The effective fractal dimensions at the polynomial-space level and above can all be equiva-
lently defined as the C-entropy rate where C is the class of languages corresponding to the level
of effectivization. For example, pspace-dimension is equivalent to the PSPACE-entropy rate.

At lower levels of complexity the equivalence proofs break down. In the polynomial-
time case, the P-entropy rate is a lower bound on the p-dimension. Equality seems unlikely, but
separating the P-entropy rate from p-dimension would require proving P 6= NP.

We show that at the finite-state level, the opposite of the polynomial-time case happens:
the REG-entropy rate is an upper bound on the finite-state dimension. We also use the finite-
state genericity of Ambos-Spies and Busse (2003) to separate finite-state dimension from the
REG-entropy rate.

However, we point out that a block-entropy rate characterization of finite-state dimen-
sion follows from the work of Ziv and Lempel (1978) on finite-state compressibility and the
compressibility characterization of finite-state dimension by Dai, Lathrop, Lutz, and Mayor-
domo (2004).

As applications of the REG-entropy rate upper bound and the block-entropy rate charac-
terization, we prove that every regular language has finite-state dimension 0 and that normality
is equivalent to finite-state dimension 1.

1 Introduction

The effective fractal dimensions, introduced by Lutz [17, 18] using success sets of gales, can be
equivalently formulated using growth rates of martingales [2] or log-loss of predictors [13] at all levels
of complexity. At the polynomial-space, computable, and constructive levels of effectivization, each
of these dimensions also admits an entropy rate characterization using the corresponding language
class [14, 12]. More specifically, polynomial-space dimension is equivalent to the PSPACE-entropy
rate, computable dimension is the DEC-entropy rate, and constructive dimension is the CE-entropy
rate.

At lower levels of complexity the equivalence proofs for dimension and entropy rates break
down. All we know in the polynomial-time case is that the P-entropy rate is a lower bound on
the p-dimension. Equality seems unlikely, but it follows from recent work [15] that separating the
P-entropy rate from p-dimension would require proving P 6= NP.

In this paper we investigate entropy rates at an even lower level of effectivization: finite-state
dimension, which was introduced by Dai, Lathrop, Lutz, and Mayordomo [8]. We show in section
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3 that the opposite of the polynomial-time case happens at the finite-state level: the REG-entropy
rate is an upper bound on the finite-state dimension. We also observe that the REG-entropy rate
behaves more like an effective box-counting dimension than an effective Hausdorff dimension.

In section 4 we establish relationships between the finite-state genericity of Ambos-Spies and
Busse [1] and the REG-entropy rate. In particular, an individual sequence is finite-state generic if
and only if its REG-entropy rate is 1. By results on the finite-state dimension of frequency classes
[8], this immediately implies a separation of finite-state dimension from the REG-entropy rate.

While finite-state dimension is not equivalent to the REG-entropy rate (and it does not seem to
admit an entropy rate characterization using any other language class), we point out in section 5
that a block-entropy rate characterization of finite-state dimension for individual sequences follows
from previous work. Ziv and Lempel [27] showed that the finite-state compressibility of a sequence
is equivalent to its block-entropy rate. Combining this with the finite-state compressibility charac-
terization of finite-state dimension [8] yields the equivalence. (In this introduction we are ignoring
some asymptotic details involving the difference between dimension and strong dimension [3] that
are handled in the body of the paper.) We also develop an extension of this characterization for
classes of sequences.

In section 6 we give some applications of the REG-entropy rate upper bound and the block-
entropy rate characterization, improving two results from [8]:

(i) Any sequence has finite-state dimension 1 if and only if it is normal.

(ii) Every regular language has finite-state dimension 0.

2 Preliminaries

We write {0, 1}∗ for the set of all finite binary strings and C for the Cantor space of all infinite
binary sequences. A language is a subset of {0, 1}∗. In the standard way, a sequence S ∈ C can
be identified with the language for which it is the characteristic sequence. The length of a string
w ∈ {0, 1}∗ is |w|. For a language A ⊆ {0, 1}∗, A=n is the set of all strings in A of length n.
The string consisting of the first n bits of x ∈ {0, 1}∗ ∪ C is denoted by x � n and the substring
consisting of the ith through jth bits of x is x[i..j]. We write w v x if w is a prefix of x. For a
string w ∈ {0, 1}∗, Cw = {S ∈ C | w v S}.

2.1 Finite-State Dimension

Finite-state dimension was developed by Dai, Lathrop, Lutz, and Mayordomo [8] as a generaliza-
tion of Hausdorff dimension [11]. Later, finite-state strong dimension was similarly introduced by
Athreya, Hitchcock, Lutz, and Mayordomo [3] as a generalization of packing dimension [26, 25].
We now recall an equivalent formulation of all these dimensions using log-loss prediction [13, 3].

Definition. A predictor is a function π : {0, 1}∗ × {0, 1} → [0, 1] such that for all w ∈ {0, 1}∗,
π(w, 0) + π(w, 1) = 1.

Definition. Let π be a predictor, w ∈ {0, 1}∗, S ∈ C, and X ⊆ C.

1. The cumulative log-loss of π on w is

Llog(π,w) =
∑
i<|w|

log
1

π(w � i, w[i])
.

(We use the convention that log 1
0 = ∞.)
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2. The log-loss rate of π on S is

Llog(π, S) = lim inf
n→∞

Llog(π, S �n)
n

.

3. The worst-case log-loss rate of π on X is

Llog(π,X) = sup
S∈X

Llog(π, S).

4. The strong log-loss rate of π on S is

Llog
str (π, S) = lim sup

n→∞

Llog(π, S �n)
n

.

5. The worst-case strong log-loss rate of π on a X is

Llog
str (π,X) = sup

S∈X
Llog

str (π, S).

In [13, 3], the following definitions are shown equivalent to the original definitions of Hausdorff
dimension and packing dimension. We refer to [10, 17, 3] for more background on these dimensions.

Definition. Let X ⊆ C. Let Π be the class of all predictors.

1. The Hausdorff dimension of X is

dimH(X) = inf{Llog(π,X) | π ∈ Π}.

2. The packing dimension of X is

dimP(X) = inf{Llog
str (π,X) | π ∈ Π}.

The finite-state dimensions may be similarly defined by using predictors that arise from finite-
state gamblers.

Definition. A finite-state gambler (FSG) is a tuple G = (Q, δ, β, q0) where

• Q is a nonempty, finite set of states,

• δ : Q× {0, 1} → Q is the transition function,

• β : Q× {0, 1} → Q ∩ [0, 1] is the betting function, which satisfies

β(q, 0) + β(q, 1) = 1

for all q ∈ Q, and

• q0 ∈ Q is the initial state.
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An FSG G = (Q, δ, β, q0) defines a predictor πG by

πG(w, a) = β(δ∗(w), a)

for all w ∈ {0, 1}∗ and a ∈ {0, 1}. Here δ∗ : {0, 1}∗ → Q is the standard extension of δ to strings
defined by the recursion

δ∗(λ) = q0,

δ∗(wa) = δ(δ∗(w), a).

We say that a predictor π is finite-state if π = πG for some FSG G.

Definition. Let X ⊆ C. Let Π(FS) be the class of all finite-state predictors.

1. The finite-state dimension of X is

dimFS(X) = inf{Llog(π,X) | π ∈ Π(FS)}.

2. The finite-state strong dimension of X is

DimFS(X) = inf{Llog
str (π,X) | π ∈ Π(FS)}.

The following holds for every X ⊆ C:

0 ≤ dimH(X) ≤ dimFS(X)

≤ ≤

dimP(X) ≤ DimFS(X) ≤ 1.

We will also consider the finite-state dimensions of individual sequences.

Definition. Let S ∈ C.

1. The finite-state dimension of S is dimFS(S) = dimFS({S}).

2. The finite-state strong dimension of S is DimFS(S) = DimFS({S}).

The following proposition states that changing an initial segment of a sequence does not change
its finite-state dimension.

Proposition 2.1. For all S ∈ C and x, y ∈ {0, 1}∗, dimFS(xS) = dimFS(yS) and DimFS(xS) =
DimFS(yS).

2.2 Entropy Rates

We now review entropy rates of languages and their relationship to dimension. The following
concept dates back to Chomsky and Miller [6] and Kuich [16].

Definition. Let A ⊆ {0, 1}∗. The entropy rate of A is

HA = lim sup
n→∞

log |A=n|
n

.

4



Intuitively, HA gives an asymptotic measurement of the amount by which every string in A=n is
compressed in an optimal code. The following equivalent definition of HA is useful in some contexts.

Lemma 2.2. (Staiger [23]) For any A ⊆ {0, 1}∗,

HA = inf

{
s

∣∣∣∣∣∑
w∈A

2−s|w| < ∞

}
.

For any language A we define two classes of sequences Ai.o. and Aa.e..

Definition. Let A ⊆ {0, 1}∗.

1. The i.o.-class of A is Ai.o. = {S ∈ C | (∃∞n)S �n ∈ A}.

2. The a.e.-class of A is Aa.e. = {S ∈ C | (∀∞n)S �n ∈ A}.

The name δ-limit of A and notation Aδ have also been used for Ai.o. [23, 24].

Definition. Let C be a class of languages and X ⊆ C.

1. The C-entropy rate of X is

HC(X) = inf{HA | A ∈ C and X ⊆ Ai.o.}.

2. The strong C-entropy rate of X is

Hstr
C (X) = inf{HA | A ∈ C and X ⊆ Aa.e.}.

Informally, HC(X) is the lowest entropy rate with which every element of X can be covered infinitely
often by a language in C.

For all X ⊆ C, classical results (see [20, 23]) imply

dimH(X) = HALL(X),

where ALL is the class of all languages and dimH is Hausdorff dimension. It is also known [3] that
packing dimension is the corresponding strong entropy rate:

dimP(X) = Hstr
ALL(X).

Using other classes of languages gives equivalent definitions of the constructive, computable, and
polynomial-space dimensions (see [14, 12, 3, 15] for definitions and more details): for all X ⊆ C,

cdim(X) = HCE(X), dimcomp(X) = HDEC(X), dimpspace(X) = HPSPACE(X)

and
cDim(X) = Hstr

CE(X), Dimcomp(X) = Hstr
DEC(X), Dimpspace(X) = Hstr

PSPACE(X).

In the polynomial-time setting, all that we know is HP(X) ≤ dimp(X) and Hstr
P (X) ≤ Dimp(X)

always hold.

3 Regular Entropy Rate

In this section we study HREG, the regular entropy rate, and its relationships with box-counting
dimension and finite-state dimension.
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3.1 Upper Bound on Box-Counting Dimension

We will show that HREG is an upper bound on the box-counting dimension. For any set X ⊆ C
and n ∈ N, let

Nn(X) = |{S �n | S ∈ X}|

be how many distinct strings of length n are prefixes of elements of X. Then the (upper) box-
counting dimension of X (see [10]) is

dimB(X) = lim sup
n→∞

log Nn(X)
n

.

We will use an everywhere version of the infinitely-often and almost-everywhere classes Ai.o.

and Aa.e..

Definition. For any A ⊆ {0, 1}∗, let A� = {S ∈ C | (∀n)S �n ∈ A}.

Using A�, we can define a concept similar to the entropy rates.

Definition. For any X ⊆ C and class C of languages, let

H�
C (X) = inf{HA | X ⊆ A� and A ∈ C}.

When the class of languages is unrestricted in this definition, we get the box-counting dimension.

Proposition 3.1. For every X ⊆ C, dimB(X) = H�
ALL(X).

We will see that HREG and Hstr
REG are both equivalent to H�

REG. First, we need some notation
and a lemma.

Notation. For any A ⊆ {0, 1}∗, let pref(A) = {w ∈ {0, 1}∗ | (∃x ∈ A)w v x}.

Lemma 3.2. (Staiger [23]) For every A ∈ REG, HA = Hpref(A).

Now we can see that the REG-entropy rate behaves like a finite-state box-counting dimension,
and that there is no difference between it and the strong REG-entropy rate.

Theorem 3.3. For every X ⊆ C, HREG(X) = Hstr
REG(X) = H�

REG(X).

Proof. The inequalities HREG(X) ≤ Hstr
REG(X) ≤ H�

REG(X) are immediate from the definitions.
Let s > HREG(X). It suffices to show that H�

REG(X) ≤ s. Let A ∈ REG such that HA < s and
X ⊆ Ai.o.. Then pref(A) ∈ REG and X ⊆ pref(A)�. By Lemma 3.2 we have Hpref(A) < s, so
H�

REG(X) ≤ s.

By Proposition 3.1, it follows that the box dimension is a lower bound on the regular entropy
rate.

Corollary 3.4. For every X ⊆ C, dimB(X) ≤ HREG(X).
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3.2 Upper Bound on Finite-State Dimension

Next we show that the REG-entropy rate is always an upper bound on the finite-state strong
dimension.

Theorem 3.5. For any X ⊆ C, DimFS(X) ≤ HREG(X).

Proof. If X is empty, then the statement trivially holds, so assume X 6= ∅. Let t > s > HREG(X) =
H�

REG(X) and let 0 < ε < t − s. It suffices to show that DimFS(X) ≤ t. Let A ∈ REG such that
X ⊆ A� and HA < s. Since X is not empty, we have A 6= ∅.

Let M = (Q, δ, q0, F ) be a minimal DFA for A. For each q ∈ Q, let

Wq = {w ∈ {0, 1}∗ | δ(q, w) ∈ F}

and
m(q) =

∑
w∈Wq

2−s|w|.

Since M is a minimal DFA, for each q there is some string xq such that δ(q0, xq) = q. Let

A(xq) = {w ∈ A | xq v w} = xqWq.

We have
m(q) = 2s|xq |

∑
w∈A(xq)

2−s|w| ≤ 2s|xq |
∑
w∈A

2−s|w|,

which is finite by Lemma 2.2. Note that for any q ∈ Q, we have

0Wδ(q,0) ∪ 1Wδ(q,1) ⊆ Wq,

so
m(δ(q, 0)) + m(δ(q, 1)) ≤ 2sm(q).

Define a betting function β : Q× {0, 1} → [0, 1] by

β(q, b) =
m(δ(q, b))

m(δ(q, 0)) + m(δ(q, 1))

if the denominator is not 0, and β(q, b) = 1
2 otherwise. Since β may not be rational-valued, let

β̂ : Q× {0, 1} → [0, 1] ∩Q be a betting function approximating β in the sense that for all q and b,
| log β(q, b)− log β̂(q, b)| < ε. Let G be the finite-state gambler G = (Q, δ, β̂, q0), and let πG be the
finite-state predictor associated with G.

7



Let w ∈ A. For each i (0 ≤ i ≤ |w|), let qi = δ(q0, w � i). We have

Llog(πG, w) =
|w|−1∑
i=0

− log πG(w � i, w[i])

=
|w|−1∑
i=0

− log β̂(qi, w[i])

≤ ε|w|+
|w|−1∑
i=0

− log β(qi, w[i])

= ε|w|+ log
|w|−1∏
i=0

m(δ(qi, 0)) + m(δ(qi, 1))
m(qi+1)

≤ ε|w|+ log
|w|−1∏
i=0

2sm(qi)
m(qi+1)

= (s + ε)|w|+ log
m(q0)
m(q|w|)

.

(The assumption w ∈ A is important here because it implies m(qi) is always nonzero.) It follows
that Llog

str (πG, S) ≤ t for any S ∈ A�. Therefore Llog
str (πG, X) ≤ t, so DimFS(X) ≤ t.

4 Finite-State Genericity

This section establishes some connections between regular entropy rates and the finite-state generic-
ity of Ambos-Spies and Busse [1]. From this we will see a separation of the regular entropy rate from
finite-state dimension. We first recall the concepts we need from [1]. A function f : {0, 1}∗ → {0, 1}∗
is finite-state computable if there is a DFA M along with strings labeling each of the states such
that f(w) is always the label for the state M is in after processing w.

Definition. Let S ∈ C.

1. S meets a function f : {0, 1}∗ → {0, 1}∗ if for some n we have

(S �n)f(S �n) v S.

2. S is finite-state generic if S meets every finite-state f : {0, 1}∗ → {0, 1}∗.

Ambos-Spies and Busse prove that several other definitions are equivalent to this definition of
finite-state genericity.

Recall that a set X ⊆ C is nowhere dense if it is contained in the complement of a dense, open
set. Equivalently, X is nowhere dense if

(∀w)(∃w′ w w)X ∩Cw′ = ∅.

In intuitive terms, X is full of holes: given any string w, we can always find an extension w′ that
is not a prefix of any sequence in X. We now define an effective version of nowhere density where
a finite-state function can always identify one of these holes.
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Definition. We say that X is finite-state nowhere dense if there is a finite-state function f :
{0, 1}∗ → {0, 1}∗ such that

(∀w)X ∩Cwf(w) = ∅.

This concept leads to another definition of finite-state genericity.

Proposition 4.1. A sequence S ∈ C is finite-state generic if and only if S is not contained in any
finite-state nowhere dense set.

Proof. Assume that S is not finite-state generic. Let f be a finite-state function which S does not
meet. Then Xf = {T ∈ C | T does not meet f} is finite-state nowhere dense (via f) and contains
S.

Now assume that S is contained in some finite-state nowhere dense set X. Let f be a finite-
state function showing that X is finite-state nowhere dense. Then S does not meet f , so S is not
finite-state generic.

4.1 Entropy Rates and Genericity

Notation. For any A ⊆ {0, 1}∗ and x ∈ {0, 1}∗, let

Ax = {w ∈ A | x v w}

be the set of all extensions of x in A.

The following lemma is essentially a restatement of Lemma 3.2.

Lemma 4.2. Let A ∈ REG and suppose that for infinitely many n,

|{x ∈ {0, 1}n | Ax 6= ∅}| ≥ 2sn.

Then HA ≥ s.

Proof. Recall from Lemma 3.2 that HA = Hpref(A). If Ax 6= ∅, then x ∈ pref(A), so the hypothesis
says |pref(A)=n| ≥ 2sn for infinitely many n. Therefore Hpref(A) ≥ s.

We now show a relationship between the regular entropy rate and finite-state nowhere dense
sets.

Theorem 4.3. For every X ⊆ C, HREG(X) < 1 if and only if X is finite-state nowhere dense.

Proof. Assume that HREG(X) < s < 1. Then there is an A ∈ REG with HA < s and X ⊆ Ai.o..
By Lemma 4.2 we know that for some n0, for all n ≥ n0,

|{x ∈ {0, 1}n | Ax 6= ∅}| < 2sn. (4.1)

Let M = (Q, δ, q0, F ) be the minimal DFA that decides A. For each q ∈ Q, let wq be a string of
minimal length with δ∗(q0, wq) = q. Define

w′
q =

{
wq if |wq| ≥ n0

wq0n0−|wq | otherwise.
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Let l be large enough so that 2s(|w′
q |+l) < 2l for all q ∈ Q. Then by (4.1), for each q ∈ Q there is

some xq ∈ {0, 1}l with Aw′
qxq = ∅. In each state q, our finite-state function outputs xq if |wq| ≥ n0,

0n0−|wq |xq if |wq| < n0. This function shows that X is finite-state nowhere dense.
For the other direction, assume that X is finite-state nowhere dense, and let f be a finite-state

function witnessing this. We can assume that f : {0, 1}∗ → {0, 1}k for some k > 0. Let

A = {x | (∀m < |x|/k) (x�mk)f(x�mk) 6v x}.

Then X ⊆ Ai.o. and A is regular, so HREG(X) ≤ HA. Now we will verify that HA < 1. Let n be
any length and write n = mk + l where l < k. An upper bound on |A=n| is (2k − 1)m · 2l, so

log |A=n|
n

≤ l + m log(2k − 1)
n

≤ k

n
+

log(2k − 1)
k

and we obtain

HA ≤ log(2k − 1)
k

< 1.

Combining Theorem 4.3 with Proposition 4.1, we obtain the following corollaries. We write
HREG(S) = HREG({S}) for any sequence S ∈ C.

Corollary 4.4. A sequence S ∈ C is finite-state generic if and only if HREG(S) = 1.

Corollary 4.5. If a set X ⊆ C contains a finite-state generic sequence, then HREG(X) = 1.

A sequence S ∈ C is saturated if it contains every finite binary string as a substring. Ambos-
Spies and Busse [1] showed a sequence is finite-state generic if and only if it is saturated. Therefore
Corollary 4.4 can be restated as follows.

Corollary 4.6. For every S ∈ C, HREG(S) = 1 if and only if S is saturated.

4.2 Separation of Dimension from Entropy Rates

We now separate the regular entropy rate from finite-state strong dimension. Recall from [8] that
the class

FREQα =
{

S ∈ C
∣∣∣∣ lim
n→∞

#(1, S �n)
n

= α

}
has finite-state dimension

dimFS(FREQα) = H(α) = α log
1
α

+ (1− α) log
1

1− α

for every α ∈ [0, 1]. In fact, the proof also shows that DimFS(FREQα) = H(α). Since FREQα is
dense for all α, we obtain

HREG(FREQα) = 1

from Theorem 4.3. Therefore (using α 6= 1
2) we see that proper inequality can hold in Theorem 3.5.

In fact, the we can get the same separation for singletons. If we take a sequence S ∈ FREQα

that is saturated, then HREG(S) = 1 by Corollary 4.6 but DimFS(S) ≤ H(α).
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5 Block-Entropy Rate

In this section we use a more general entropy notion, the block-entropy rate, to characterize the
finite-state dimensions. This is interesting because the block-entropy rate considers only frequency
properties of the sequence and does not involve finite-state machines.

5.1 Finite-State Dimension and Compressibility

First we recall the relationships between finite-state dimension and finite-state compressibility [8, 3].

Definition. A finite-state compressor (FSC) is a tuple C = (Q, δ, ν, q0), where

• Q is a nonempty, finite set of states,

• δ : Q× {0, 1} → Q is the transition function,

• ν : Q× {0, 1} → {0, 1}∗ is the output function, and

• q0 ∈ Q is the initial state.

The output of C on an input w ∈ {0, 1}∗ is the string C(w) defined by the recursion

C(λ) = λ,

C(xb) = C(x)ν(δ∗(x), b),

for all x ∈ {0, 1}∗ and b ∈ {0, 1}, where δ∗ is defined as in Section 2. We say that C is information-
lossless if the function w 7→ (C(w), δ∗(w)) is one-to-one.

Let C be the collection of all information-lossless finite-state compressors. For each k ∈ N , let
Ck be the collection of all k-state information-lossless finite-state compressors. For any S ∈ C,
define

ρFS(S) = inf
C∈C

lim inf
n→∞

|C(S �n)|
n

and
RFS(S) = inf

k∈N
lim sup

n→∞
min
C∈Ck

|C(S �n)|
n

.

The quantity RFS(S) was originally called ρ(S) in [27]. In [8], ρ(S) was modified to obtain
ρFS(S) and a compressibility characterization of finite-state dimension.

Theorem 5.1. (Dai, Lathrop, Lutz, and Mayordomo [8]) For every S ∈ C,

dimFS(S) = ρFS(S).

Later, when strong dimension was introduced, it was shown that RFS(S) characterizes finite-
state strong dimension.

Theorem 5.2. (Athreya, Hitchcock, Lutz, and Mayordomo [3]) For every S ∈ C,

DimFS(S) = RFS(S).
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5.2 Block Entropy and Compressibility

Let n, l ∈ N where l divides n. Given a string x ∈ {0, 1}n and a string w ∈ {0, 1}l, let

N(w, x) = |{0 ≤ i < n/l | x[il..(i + 1)l − 1] = w}|

be the number of times w occurs in the length-l blocks of x. The relative frequency of w in x is

P (w, x) =
l

n
N(w, x).

The lth block entropy of x is

Hl(x) =
1
l

∑
w∈{0,1}l

P (w, x) log
1

P (w, x)
,

i.e., the normalized entropy of the distribution P (·, x) on {0, 1}l.

Definition. Let S ∈ C.

1. The lth block-entropy rate of S is

Hl(S) = lim inf
k→∞

Hl(S �kl).

2. The block-entropy rate of S is
H(S) = inf

l∈N
Hl(S).

3. The lth upper block-entropy rate of S is

H l(S) = lim sup
k→∞

Hl(S �kl).

4. The upper block-entropy rate of S is

H(S) = inf
l∈N

H l(S).

Ziv and Lempel showed that the upper block-entropy rate corresponds to the finite-state com-
pressibility of a sequence.

Theorem 5.3. (Ziv and Lempel [27]) For every S ∈ C, RFS(S) = H(S).

5.3 Block Entropy and Dimension

From Theorems 5.2 and 5.3, we have the following block-entropy rate characterization of finite-state
strong dimension.

Theorem 5.4. For every S ∈ C, DimFS(S) = H(S).
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Does the analogous characterization dimFS(S) = H(S) hold for finite-state dimension? We will
show that it does, establishing it as a corollary of a more general characterization theorem for
classes of sequences.

For any S ∈ C and compressor C ∈ C, let

ρC(S) = lim inf
n→∞

|C(S �n)|
n

and let ρC(S) be the corresponding lim sup. From the proofs of Theorems 5.1 and 5.2 in [8, 3] for
individual sequences, it is straightforward to see the following for classes.

Theorem 5.5. For every X ⊆ C,

dimFS(X) = inf
C∈C

sup
S∈X

ρC(S)

and
DimFS(X) = inf

C∈C
sup
S∈X

ρC(S).

We will also need the following three lemmas.

Lemma 5.6. Let l ∈ N. There exists a compressor Cl ∈ C such that for all S ∈ C, ρCl
(S) ≤

Hl(S) + 2/l and ρCl
(S) ≤ Hl(S) + 2/l.

Proof. Fix l ∈ N. From Sheinwald’s proof [22] of Theorem 5.3 we know that for every x ∈ {0, 1}∗
there is a compressor Cx ∈ C2l (using Huffman coding) such that

|Cx(x)|
|x|

≤ Hl(x) +
1
l
.

From the proof of Theorem 5.2 given in [3], we obtain a compressor Cl such that for all C ∈ C2l

and x ∈ {0, 1}∗,

|Cl(x)| ≤ |C(x)|+ |x|
l

+ cl,

where cl is a constant. Therefore for all x,

|Cl(x)|
|x|

≤ Hl(x) +
2
l

+
cl

|x|
,

so we have ρCl
(S) ≤ Hl(S)+2/l for all S ∈ C. The proof of the second inequality is analogous.

Lemma 5.7. Let C ∈ C be a compressor. There is a constant c such that for all l ∈ N and S ∈ C,
Hl(S) ≤ ρC(S) + (c + log l)/l and Hl(S) ≤ ρC(S) + (c + log l)/l.

Proof. Let σ be the number of states in C and let rC be the maximum number of bits that C
outputs on a single transition. From Sheinwald’s proof [22] of Theorem 5.3, we have

Hl(S) ≤ ρC(S) +
log(σ2(1 + lrc))

l

for all S ∈ C and l ∈ N. Letting c be a constant such that c + log l ≥ log(σ2(1 + lrC)) establishes
the second inequality. The proof of the first inequality is analogous.
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Lemma 5.8. Let S ∈ C. For all k, l ≥ 1, Hkl(S) ≤ Hl(S) and Hkl(S) ≤ Hl(S).

Proof. Ziv and Lempel [27] proved that the limit lim
n→∞

Hl(S) exists for all S ∈ C. From this proof
we can extract the inequality

(l + m)Hl+m(x) ≤ lHl(x) + mHm(x)

for all x ∈ {0, 1}∗ and l, m ≥ 1. It follows by induction that for all k ≥ 1,

klHkl(x) ≤ klHl(x),

i.e., Hkl(x) ≤ Hl(x). From this Hkl(S) ≤ Hl(S) follows immediately.
To show Hkl(S) ≤ Hl(S), let s > Hl(S). Then there is an infinite set J ⊆ N such that for all

j ∈ J , Hl(S � jl) < s. Fix k. For each j ∈ J , let j′ be a multiple of k such that j ≤ j′ < j + k.
Then as j becomes large, |Hl(S � j′l) − Hl(S � jl)| → 0. For each j ∈ J , Hkl(S � j′l) ≤ Hl(S � j′l)
from the previous paragraph, so it follows that Hkl(S) < s. This holds for all s > Hl(S), so
Hkl(S) ≤ Hl(S).

We now give block-entropy rate characterizations of finite-state dimension and finite-state strong
dimension for classes of sequences.

Theorem 5.9. For every X ⊆ C,

dimFS(X) = inf
l∈N

sup
S∈X

Hl(S)

and
DimFS(X) = inf

l∈N
sup
S∈X

Hl(S).

Proof. We prove the finite-state dimension characterization; the argument for strong dimension is
analogous.

Let s > dimFS(X). Then by Theorem 5.5 there is a compressor C ∈ C such that for all S ∈ X,
ρC(S) < s. From Lemma 5.7 we have a constant c such that Hl(S) ≤ s + (c + log l)/l for all S ∈ X
and l ∈ N. Taking the infimum over all l, we have that the right-hand side is at most s. This holds
for all s > dimFS(X), so the ≥ inequality holds.

Now let s be greater than the right-hand side. Then there is an l ∈ N such that Hl(S) < s for
all S ∈ X. From Lemma 5.8, we have Hkl(S) ≤ Hl(S) for all S. Therefore from Lemma 5.6 we
obtain for each k a compressor Ckl such that ρCkl

(S) ≤ s+2/kl for all S ∈ X. Taking the infimum
over all k, we obtain dimFS(X) ≤ s by Theorem 5.5.

The dual of Theorem 5.4 follows immediately from Theorem 5.9.

Theorem 5.10. For every S ∈ C, dimFS(S) = H(S).

6 Applications

In this section we apply the upper bound of Theorem 3.5 and the equivalence of Theorem 5.10 to
prove a few finite-state dimension results.
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6.1 Normality

Definition. (Borel [5]) A sequence S ∈ C is normal if for every w ∈ {0, 1}∗,

lim
n→∞

1
n

∣∣∣{i < n
∣∣∣S[i..i + |w| − 1] = w

}∣∣∣ = 2−|w|. (6.1)

Dai, Lathrop, Lutz, and Mayordomo [8] used the work of Schnorr and Stimm [21] to show that
every normal sequence has finite-state dimension 1. We now use the block-entropy rate characteri-
zation to prove the converse, yielding that finite-state dimension 1 is equivalent to normality.1 This
result is analogous to Corollary 4.6 that equates saturation with REG-entropy rate 1.

Theorem 6.1. For every S ∈ C, dimFS(S) = 1 if and only if S is normal.

Proof. As mentioned above, we already know that S is normal implies dimFS(S) = 1 from [8]. Now
assume that S is not normal. We will use Theorem 5.10 to show that dimFS(S) < 1.

Since S is not normal, there is some string w such that (6.1) fails. Let l = |w|. For each i, write
xi = S[i..i + l − 1]. Then for some ε > 0,

(∃∞n)
∣∣∣∣ |{i < n | xi = w}|

n
− 2−|w|

∣∣∣∣ > ε.

This implies that

(∃m < l)(∃∞k)
∣∣∣∣ |{j < k | xjl+m = w}|

k
− 2−|w|

∣∣∣∣ >
ε

l
.

Fix an m that satisfies the previous line. Obtain a sequence S′ from S by removing the first m bits
from S. Then

(∃∞k)
∣∣P (w,S′ �kl)− 2−|w|

∣∣ >
ε

l
.

Whenever k satisfies the previous line, P (·, S′ �kl) is not uniform, so

(∃∞k)Hl(S′ �kl) < δ

for some fixed δ < 1. Therefore Hl(S′) < δ and we have

dimFS(S) = dimFS(S′) = H(S′) ≤ Hl(S′) < 1

by Proposition 2.1 and Theorem 5.10.

6.2 Regular Languages

A sequence S ∈ C is rational if there exist u, v ∈ {0, 1}∗ such that S = uv∞. Let Q be the set of
all rational sequences.

Theorem 6.2. (Dai, Lathrop, Lutz, and Mayordomo [8]) dimFS(Q) = 1.

Remark. We can use Theorem 5.9 to give an easy proof of Theorem 6.2. Let l ≥ 1.
Define a long string x by concatenating all 2l strings of length l together. Let S = x∞.
Then S ∈ Q and we have Hl(S) = 1 since the frequency distribution for blocks of
length l is nearly uniform for long prefixes of S. (It is exactly uniform at lengths that
are multiples of |x|.) We can do this for every l, so dimFS(Q) = 1 by Theorem 5.9.

1An anonymous referee pointed out that this converse can also be proved using [21].
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Since every rational sequence is the characteristic sequence of a regular language [1], Theorem 6.2
implies the following.

Theorem 6.3. dimFS(REG) = 1.

In contrast, it is also shown in [8] that dimFS(S) = 0 for every individual S ∈ Q. We will strengthen
this in Theorem 6.7, showing the same for each individual regular language.

The factor set Fl(S) of a sequence S ∈ C is the set of all finite strings of length l that appear
in S. The factor complexity function counts the number of factors for each l:

pS(l) = |Fl(S)|.

We define an analog of entropy in terms of a sequence’s factors:

h(S) = lim
l→∞

log pS(l)
l

.

This gives an upper bound on the regular entropy rate.

Lemma 6.4. For every S ∈ C, HREG(S) ≤ h(S).

Proof. Let l ≥ 1 and let Al = Fl(S)∗. Then Al is regular and S ∈ Ai.o.
l , so

HREG(S) ≤ HAl
=

log pS(l)
l

.

This holds for all l, so HREG(S) ≤ h(S).

Corollary 6.5. For any S ∈ C with pS(l) = 2o(l), dimFS(S) = HREG(S) = 0.

Though “most” sequences are saturated, many well studied sequences satisfy the condition of
Corollary 6.5. Specifically, this result gives a new proof that for any S ∈ Q, dimFS(S) = 0. Sturmian
sequences (see [4]), S ∈ C that satisfy pS(l) = l + 1 for all l, also have finite-state dimension 0.
Morphic sequences, sequences defined by an iteratively applied mapping {0, 1} 7→ {0, 1}∗ have
dimension zero since their factor complexity function is quadratic [9].

Automatic sequences are sequences, (an)n≥0 defined by a finite-state function, f : [n]k 7→ ∆
where ∆ is some finite output alphabet that is applied to each final state. Given the limited
computation power of such a model, it is not surprising that k-automatic sequences are not too
complex.

Theorem 6.6. (Cobham [7]) For every automatic sequence S, pS(l) = O(l). In particular, h(S) =
0.

More precisely, (an)n≥0 is defined by feeding a DFA with the canonical representation of n in
base-k. For our purposes, we only consider 2-automatic sequences with the same output alphabet
∆ = {0, 1}. In addition, we can equivalently consider (sn)n≥0 where sn is the nth string in the
standard enumeration since there exists a finite-state function g : [n]2 7→ sn (add 1 to [n]2 and drop
the leading bit—this can be computed by a simple finite-state transducer). An output mapping of
1 for any sn ∈ L and 0 otherwise defines the characteristic sequence of a regular language. For a
generalization to any enumeration system see [19].

We now have the result promised earlier: regular languages have finite-state dimension 0.

Theorem 6.7. For every A ∈ REG, dimFS(A) = HREG(A) = 0.
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6.3 Morphic Sequences

Automatic sequences are closely related to morphic sequences. A function ϕ : {0, 1}∗ → {0, 1}∗
is called a morphism if ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ {0, 1}∗. The iterative application of a
morphism ϕ is defined as ϕ0(b) = b and ϕi(b) = ϕ(ϕi−1(b)) for b ∈ {0, 1}. A morphism is expanding
if |ϕ(b)| ≥ 2 for all b ∈ {0, 1}. We call a morphism k-uniform if |ϕ(b)| = k for all b ∈ {0, 1}.
A 1-uniform morphism is called a coding. Morphisms can be very naturally applied to sequences
S ∈ C,

ϕ(S) = ϕ(S[0])ϕ(S[1])ϕ(S[2]) . . .

If ϕ(S) = S then ϕ is called a fixed point morphism.
The continued application of an expanding morphism may define a sequence S ∈ C. If for some

b ∈ {0, 1} and x ∈ {0, 1}+, ϕ(b) = bx then we say that ϕ is prolongable on b. The sequence defined
by such a morphism converges to

S = ϕω(b) = bxϕ(x)ϕ2(x)ϕ3(x) . . .

which is also a fixed point of ϕ. That is, ϕ(ϕω(b)) = ϕω(b). Such a sequence is called a pure
morphic sequence. If there is a coding τ : {0, 1} → {0, 1} such that S = τ(ϕω(b)) then it is simply
a morphic sequence.

Theorem 6.8. (Ehrenfeucht and Rozenberg [9]) The complexity of a sequence S ∈ C that is a
fixed point of any morphism (not necessarily of constant length) satisfies pS(l) ∈ O(l2)

Corollary 6.9. Let S ∈ C be a morphic sequence. Then dimFS(S) = HREG(S) = 0.

Acknowledgments. We thank Peter Bro Miltersen, Jack Lutz, Elvira Mayordomo, and Pascal
Weil for helpful comments and discussions. We also thank an anonymous referee for informing us
that [21] yields another proof of Theorem 6.1.
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