
Partial Bi-immunity, Scaled Dimension, and

NP-Completeness

John M. Hitchcock∗ A. Pavan† N. V. Vinodchandran‡

Abstract

The Turing and many-one completeness notions for NP have been previously separated under
measure, genericity, and bi-immunity hypotheses on NP. The proofs of all these results rely on
the existence of a language in NP with almost everywhere hardness.

In this paper we separate the same NP-completeness notions under a partial bi-immunity
hypothesis that is weaker and only yields a language in NP that is hard to solve on most strings.
This improves the results of Lutz and Mayordomo (Theoretical Computer Science, 1996), Ambos-
Spies and Bentzien (Journal of Computer and System Sciences, 2000), and Pavan and Selman
(Information and Computation, 2004). The proof of this theorem is a significant departure from
previous work. We also use this theorem to separate the NP-completeness notions under a scaled
dimension hypothesis on NP.

1 Introduction

Completeness is, arguably, the single most important concept in complexity theory. Many well-
studied complexity classes have complete problems. Complete problems capture the inherent diffi-
culty of a class. Informally, a language L is complete for a class if L belongs to the class and every
language in the class is polynomial-time reducible to L. However, there is no unique notion of a
polynomial-time reduction. Various types of reductions give rise to various notions of completeness.
A comparison of these notions of completeness helps us understand the structure of a complexity
class.

Cook [5], in his paper on NP-completeness, used Turing reductions, whereas Karp [14] and
Levin [17], in their papers on NP-completeness, used many-one reductions. Informally, with Turing
reductions an instance of a problem can be solved by asking polynomially many queries about the
instances of another problem. Moreover, these queries can be adaptive, i.e, a query can depend on
the answers to the previous queries. Many-one reductions are more restrictive. Here we require
instances of one problem to be mapped into instances of the other. It is easy to see that if L is
complete under many-one reductions, then L is complete under Turing reductions. The interesting
question is whether the converse is true.

∗Department of Computer Science, University of Wyoming, Laramie, WY 82071. jhitchco@cs.uwyo.edu. Part
of this research was done while this author was visiting the University of Nebraska-Lincoln. Research supported in
part by NSF grant CCF-0515313.

†Department of Computer Science, Iowa State University, Ames, IA 50011. pavan@cs.iastate.edu. Research
supported in part by NSF grants CCR-0344187 and CCF-0430807.

‡Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588.
vinod@cse.unl.edu. Research supported in part by NSF grant CCF-0430991 and University of Nebraska Layman
Award.

1

It seems, to capture the intuition that if a complete problem is easy, then the entire class
is easy, Turing reductions are “correct” reductions to define completeness. This leads us to the
following question: for a class are there languages that are complete using Turing reductions, but
not complete using many-one reductions? This is one of the outstanding questions in the field.

These questions are well studied for exponential-time classes such as EXP and NEXP. For
example, Ladner, Lynch and Selman [16] showed that there exist languages A and B in E such that
A is Turing reducible to B but not many-one reducible to B. Ko and Moore [15] demonstrated the
existence of ≤p

T -complete sets for EXP that are not ≤p
m-complete. Watanabe [25] extended this

result significantly, showing that ≤p
1tt, ≤

p
btt, ≤

p
tt, and ≤p

T -completeness are mutually different, while
Homer, Kurtz, and Royer [13] proved that ≤p

m and ≤p
1tt-completeness are identical. Buhrman,

Homer, and Torenvliet [3] achieved the separation for NEXP. See the survey articles by Homer [11,
12] and Buhrman and Torenvliet [4] for more details.

However, the progress on understanding the behavior of reducibilities within NP has been
painfully slow. One of the first results is due to Selman [24] who showed under a reasonable
assumption that Turing reductions and many-one reductions differ in NP. Longpré and Young [18]
showed that for every polynomial t, there exist a language L that is Turing complete for NP but
not many-one complete under t(n)-time bounded reductions. However, L is many-one complete if
we allow slower reductions. Thus the question of whether Turing completeness is different from
many-one completeness for NP remained open for a long time.

Lutz and Mayordomo [20] were the first to separate these NP-completeness notions under a
plausible hypothesis. They showed that under the measure hypothesis, which asserts that “NP
does not have p-measure 0,” there exists a 2-Turing complete language for NP that is not many-one
complete. Ambos-Spies and Bentzien [1] extended this result significantly. They used the genericity
hypothesis that asserts “NP has a p-generic language”, which is weaker than the measure hypothesis,
to separate 2-Turing completeness from many-one completeness. In addition, Ambos-Spies and
Bentzien separate nearly all NP-completeness notions for bounded truth-table reducibilities. Pavan
and Selman [23] showed that the bi-immunity hypothesis, which says NP contains a 2nε

-bi-immune
language, implies 2-Turing completeness is different from many-one completeness for NP. Since
the genericity hypothesis implies the bi-immunity hypothesis, this improved the results of Lutz and
Mayordomo, and Ambos-Spies and Bentzien. Pavan [22] surveys these results.

However, all known hypotheses that separate completeness notions within NP, such as the mea-
sure hypothesis, the genericity hypothesis, and the bi-immunity hypothesis, assume the existence
of a language L in NP with almost everywhere hardness, i.e., every machine that decides L takes
more than subexponential time (2nε

) on all but finitely many inputs. Thus the next logical step is
to relax the almost everywhere hardness condition. In particular, it is unknown whether we can
separate completeness notions under any kind of average-case hardness assumptions. In this paper
we make progress toward this direction.

We separate completeness notions under a certain (weak) average-case hardness assumption
which we call the partial bi-immunity hypothesis. Informally, a language L is partial bi-immune
if every machine that decides L takes at least 2nε

time on all but 2no(1)
strings of length n (a

similar partial immunity notion is studied by Grollmann and Selman [6]). The partial bi-immunity
hypothesis asserts that NP contains a language that is partial bi-immune. We show as our main
theorem that under the partial bi-immunity hypothesis, Turing completeness is different from many-
one completeness for NP. We note that the proofs of [20, 1, 23] do not go through if we replace their
respective hypotheses with the partial bi-immunity hypothesis. It is essential that the language
is almost everywhere hard for those proofs. On the other hand, those proofs do not really make
use of properties of NP – the arguments go through for any class that is closed under union,

2

intersection, and disjoint unions. We achieve our result by making crucial use that the partial
bi-immune language is in NP and using very different techniques. In particular, we make use of the
unique property of NP – polynomial-time verifiability – which allows us to define left sets, a useful
tool introduced by Ogiwara and Watanabe [21]. Thus the partial bi-immunity hypothesis becomes
the weakest known hypothesis that separates Turing completeness from many-one completeness for
NP.

Lutz [19] recently introduced resource-bounded dimension, an extension of classical Hausdorff
dimension that is useful for distinguishing among resource-bounded measure 0 classes. Dimension
hypotheses such as “NP has positive p-dimension” or “NP has p-dimension 1,” which are weaker
than the measure hypothesis, can be studied for their consequences [7]. While the measure hypoth-
esis asserts the existence of language in NP that is almost everywhere hard, a dimension hypothesis
only implies the existence of a language in NP that is only average-case hard in some sense. Thus
it is interesting to ask whether Turing completeness can be separated from many-one completeness
using a dimension hypothesis. We give a partial answer to this question.

We show that if a certain scaled dimension [9] hypothesis holds, then Turing completeness for
NP is different from many-one completeness. The scaled dimension hypothesis asserts that NP
has positive scaled p-dimension in the −3rd order. This scaled dimension hypothesis (which has
also been used in [10]) is stronger than the dimension hypotheses, but weaker than the measure
hypothesis. This hypothesis appears to be incomparable with the genericity and bi-immunity
hypotheses. We use previous work on scaled dimension [8] and our main theorem to derive this
result.

2 Preliminaries

A is many-one reducible to B, A ≤p
m B, if there is a polynomial-time computable function f such

that x belongs to A if and only if f(x) is in B. A is Turing reducible to B, A ≤p
T B, if A can be

decided by a polynomial-time bounded oracle machine that is allowed to make membership queries
to B. Note that the queries to B can be adaptive. We say A is k-Turing reducible to B if A is
Turing reducible to B via a oracle machine that makes k queries. Given a reduction ≤p

r , a set S
is ≤p

r-complete for NP if S ∈ NP and every set in NP is ≤p
r-reducible to S. We assume without

explicitly mentioning that any fraction is rounded up to get an integer if required.

3 Partial Bi-immunity

In this section we show that the partial bi-immunity hypothesis implies the separation of Turing
completeness from many-one completeness for NP.

First we review the notion of almost-everywhere hardness. An infinite language is immune to
a complexity class C or is C-immune, if no infinite subset of L belongs to C. An infinite language is
C-bi-immune if both L and L are C-immune. Balcázar and Schöning [2] observed that a language L
is DTIME(t(n))-bi-immune if and only if every machine that correctly decides L takes more than
t(n) time on all but finitely many strings.

Bi-immunity Hypothesis: For some ε > 0, NP contains a DTIME(2nε
)-bi-immune language.

We now introduce the notion of partial bi-immunity.

Definition. A language L is (t(n), q(n))-partial-bi-immune, if for every machine M that correctly
decides L, for all but finitely many n, M takes more than t(n) time on all but q(n) strings of length

3

n.

In other words, if a language L is (t(n), q(n))-partial-bi-immune, then for every machine M that
decides L, for all but finitely many n

|{x ∈ Σn | TM (x) ≤ t(n)}| ≤ q(n),

where TM (x) denotes the running time of M on x.
Thus if L is (t(n), q(n))-partial-bi-immune, it is possible that there exists a machine for L which

runs for less than t(n) time on q(n) strings of length n for every n. Every DTIME(t(n))-bi-immune
language is (t(n), q(n))-partial-bi-immune for any q(n). However the converse is not true. For
example, for any constructible function q(n) where 0 < q(n) < 2n, we can easily construct a
language in EXP that is (2n, q(n))-partial-bi-immune but not 2n-bi-immune.

Partial Bi-immunity Hypothesis: For some ε > 0, NP contains a (2nε
, 2no(1)

)-partial-bi-immune
language.

In other words, the partial bi-immunity hypothesis asserts that for some ε > 0, there is a
language in NP that is (2nε

, 2nγ
)-partial-bi-immune for all γ > 0. It is obvious that the partial

bi-immunity hypothesis is weaker than the bi-immunity hypothesis. The following theorem is an
improvement of the result of Pavan and Selman [23] that achieves the same conclusion under the
bi-immunity hypothesis. Its proof uses substantially different techniques.

Theorem 1 (Main theorem). If the partial bi-immunity hypothesis holds, then Turing complete-
ness is different from many-one completeness for NP.

Proof. Let L be a language in NP which is partial bi-immune. Let N be a nondeterministic
machine for L running in time nl for some l. Let M be the standard brute-force deterministic
machine deciding L which runs in time 2nl

.
In order to define the candidate language we first define segmented languages Le, Lo, and

PadSAT in the following manner. Let k = b10l/εc. Let t1 = 2 and ti = tk
2

i−1. Define

E = {x | t1/k
i ≤ |x| < tki for even i }

O = {x | t1/k
i ≤ |x| < tki for odd i }

Note that E and O partition the set of all strings and hence for any string x, |x| ≥ 2, x is in exactly
one of E and O. Let Le = L ∩ E, Lo = L ∩O, and PadSAT = SAT ∩O.

Note that Lo and Le can be decided in deterministic time 2nl
by appropriately modifying the

machine M for L. Now define our Turing complete language. To keep the notation simpler, we use
a three letter alphabet.

C = 0(Lo ∪ PadSAT) ∪ 1(Lo ∩ PadSAT) ∪ 2Lo.

Proposition 2. C is 2-Turing complete for NP.

Proof of Proposition 2. Observe that C ∈ NP and PadSAT is many-one complete for NP. Hence it
suffices to show that we can decide PadSAT by making 2 adaptive queries to C. Given an instance
x of PadSAT, if x ∈ Lo, then x ∈ PadSAT if and only if x ∈ (Lo ∩ PadSAT), else x ∈ PadSAT if
and only if x ∈ (Lo ∪ PadSAT). Thus C is 2-Turing complete for NP. � Proposition 2.

Next we will define a language in NP that is not many-one reducible to C. We will use left
sets [21] for this.

4

Definition. For a language L ∈ NP decided by an NP-machine N , define

Left(L) = {〈x, y〉 | there exists a z such that y ≤ z and
z is an accepting computation of N on input x}.

Here < is the dictionary order, with 0 < 1. Note that Left(L) ∈ NP.

We will show that under the partial bi-immunity assumption the language Left(Le) is not
many-one reducible to C. For this we will assume the contrary and show that either there exists
a deterministic machine MLe that correctly decides Le which, at infinitely many input lengths n
from E, runs in time ≤ 2nε

on all strings at those lengths; or there exists a machine MLo that
correctly decides Lo which, at infinitely many input lengths n from O, runs in time ≤ 2nε

for more
than 2no(1)

strings. Since Le coincides with L on strings from E, and Lo coincides with L on strings
from O, this contradicts the partial bi-immunity of L.

Assume that Left(Le) reduces to the candidate language by a many-one reduction f running
in time nr for some r. For an input length n, let Sn denote the set {f(〈x, y〉) | |x| = n, |y| ≤ nl}.
Divide Sn into three disjoint sets as follows.

An = {z ∈ Sn | |z| ≤ n
1
k }

Bn = {z ∈ Sn | z ∈ E, z /∈ An}
Cn = {z ∈ Sn | z /∈ An ∪Bn}

Observation 3. Cn is a subset of O. If n = t2i for an i, then for every z ∈ Cn, |z| > nk.

First we state a claim that we use for the proof.

Claim 4. One of the following holds.

1. (∃∞n ∈ {t2i}i≥1) for which there exist at least 2nε/2
distinct strings {0zi}1≤i≤2nε/2 in Cn so

that for each of these strings 0zi, f−1(0zi) ∩ Left(Le) = ∅

2. (∃∞n ∈ {t2i}i≥1) for which there exist at least 2nε/2
distinct strings {1zi}1≤i≤2nε/2 in Cn so

that for each of these strings 1zi, f−1(1zi) ⊆ Left(Le)

3. (∃∞n ∈ {t2i}i≥1) for which there exist at least 2nε/2
distinct strings {2zi}1≤i≤2nε/2 in Cn so

that for each of these strings 2zi, f−1(2zi) ∩ Left(Le) = ∅

Assuming Claim 4, we can finish the proof of the theorem. We now do this and defer the proof
of Claim 4 until later.

We give a description of machine MLo for deciding Lo and argue that for infinitely many input
lengths m from O, for more than 2mγ

strings of this length, the machine runs in time ≤ 2mε
, where

γ = ε
4(rl+r) . Since L is the same as Lo on strings from O, this contradicts the partial bi-immunity

of L.

Machine MLo(z)
1 m← |z|; If z /∈ O, reject z.
2 for n = 1 to m

1
k

3 for all x of length n
4 for all y, |y| ≤ nl

5

5 compute f(〈x, y〉);
6 If for no 〈x, y〉, f(〈x, y〉) = bz with b ∈ {0, 1, 2}
7 then run M on z.
8 else /* for some 〈x, y〉 and for some b ∈ {0, 1, 2}, f(〈x, y〉) = bz */
9 Case b of
10 b = 0: if 〈x, y〉 /∈ Left(Le)
11 reject z
12 else run M on z
13 b = 1: if 〈x, y〉 ∈ Left(Le)
14 accept z
15 else run M on z
16 b = 2: if 〈x, y〉 ∈ Left(Le)
17 accept z, else reject z.

We now show that for every length n at which one of the three cases of Claim 4 holds, there
exists an input length m from O such that MLo runs in less than 2mε

time on more than 2mγ
strings

of length m, where γ = ε/4(rl + r).
Observe that the above algorithm computes f only on tuples 〈x, y〉 for which |y| ≤ |x|l. Since

f is nr time bounded, |f(〈x, y〉)| ≤ |x|r(l+1). Let n be an input length for which the first part of
Claim 4 holds. Since n = t2i, by Observation 3 for every 0z ∈ Cn, |0z| > nk. Thus there are
2nε/2

strings 0z ∈ Cn with nk < |0z| ≤ nr(l+1) and f−1(0z) ∩ Left(Le) = ∅. Therefore, by the
pigeonhole principle, there is some input length m, nk < m ≤ nr(l+1), where there are at least
2nε/4 ≥ 2mε/4r(l+1)

strings 0z so that f−1(0z) ∩ Left(Le) = ∅. Note that by definition of Cn, all
strings of length m are in O.

We claim that these strings will be correctly rejected in line 11 of the machine. Let z be one
such string. Thus there exists 〈x, y〉 such that f(〈x, y〉) = 0z, and 〈x, y〉 /∈ Left(Le). Since f is a
many-one reduction, we have f(〈x, y〉) /∈ Left(Le)⇒ 0z /∈ C ⇒ z /∈ L0 ∪ PadSAT⇒ z /∈ L0.

Similar arguments show that if n is a length at which the second part or the third part of the
claim holds, there exists a length m from O such that MLo runs in less than 2mε

time on more than
2mε/4(rl+r)

strings of length m.
The running time of the machine on these strings is bounded as follows. Each iteration of the

for loop takes 2n × 2nl+1 × nr(l+1) × 2nl
. Since the maximum value of n is m

1
k and k = 10l/ε, the

total time is bounded by ≤ 2mε
.

Thus f can not be a many-one reduction from Left(Le) to C. Thus C is not many-one complete
for NP. Modulo the proof of Claim 4, we have established the theorem.

We will now prove Claim 4. For that we first need to establish an additional claim.

Claim 5. For all strings 〈x, y〉 so that |x| = t2i for some i and f(〈x, y〉) ∈ An∪Bn the membership
of 〈x, y〉 in Left(Le) can be decided in deterministic time 2nε/2

.

Proof of Claim 5. Let bz = f(〈x, y〉), where b ∈ {0, 1, 2}. Then if bz ∈ Bn, then it is in E, and not
in C. Hence 〈x, y〉 6∈ Left(Le). If bz ∈ An then |z| ≤ n

1
k . We can decide the membership of bz in

C, if we know the membership of z in Lo and PadSAT. The membership of z in PadSAT can be
decided in time 2|z| and the membership in Lo can be decided in time 2|z|

l
. Thus the total time

taken is 2|z| + 2|z|
l

< 2n1/k
+ 2nl/k

. Since k = 10l/ε, this is less than 2nε/2
. Finally, since f is a

many-one reduction from Left(Le) to C, 〈x, y〉 ∈ Left(Le)⇔ bz ∈ C. � Claim 5.

6

Proof of Claim 4. Under the assumption that the claim is not true, we will show that the machine
MLe described below will correctly decide Le. Moreover, for all but finitely many inputs lengths n
of the form t2i, for all inputs at that length, MLe will run in time ≤ 2nε

. This will contradict the
partial bi-immunity of L, since L and Le are identical on input lengths of the form t2i.

For an arbitrary length n, let 0Cn denote the set of elements in Cn of the form 0z. Similarly
define 1Cn and 2Cn. For an input x, let Tx denote the computation tree of N on input x. The
machine will keep three lists l0, l1, l2 where li will contain nodes y of Tx so that f(〈x, y〉) ∈ iCn.
It will also satisfy the invariant that the size of li is always ≤ 2nε/2

. A description of the machine
MLe is given below.

Machine MLe(x)
1 if |x| is not of the form t2i

2 then simulate the deterministic machine for Le and decide.
3 n← |x|;
4 l0, l1, l2 ← λ; /* Initialize lists to the root of Tx */
5 while |li| ≤ 2nε/2

for all i = 0, 1, 2
6 X ← Expand(l0 ∪ l1 ∪ l2);
7 if X = NULL /* All the nodes in the lists are leaves */
8 then if N(x) accepts on computation path y for some y ∈ l0 ∪ l1 ∪ l2 accept.
9 else reject. /* N is the nondeterministic machine for L */
10 else for each y ∈ X
11 if f(〈x, y〉) ∈ An ∪Bn

12 simulate 2nε/2
-machine for deciding 〈x, y〉 ∈ Left(Le); /* Claim 5 */

13 if 〈x, y〉 ∈ Left(Le) accept. /* ∃z ≤ y which is an accepting path of N */
14 else X ← X \ {y};
15 if X = φ reject.
16 X ←Shorten(X);
17 for i=0,1,2 place y from X in list li if and only if f(〈x, y〉) ∈ iCn

18 end-while
19 If |l0| > 2nε/2

or |l2| > 2nε/2
then accept.

20 If |l1| > 2nε/2
then Prune(l1);

21 goto line 5; /* while loop */

Expand takes a set of nodes in the computation tree and outputs all their children. If all the
nodes in the set are leaves, then Expand returns NULL. Shorten takes a set X of nodes, and
for two strings y1, y2 ∈ X, if y1 < y2 and f(〈x, y1〉) = f(〈x, y2〉) then it discards y1 from X. Thus
Shorten removes redundancies in the set. Prune takes a set of nodes and returns the first (in
the dictionary order) 2nε/2

nodes in the set and discards all others.
We will first argue that MLe decides Le correctly. Since for inputs at lengths other than {t2i},

MLe ’s behavior is identical to that of the deterministic machine for Le, it decides correctly on all
these inputs. For deciding inputs at length t2i, it uses the structure of left-cuts: 〈x, y〉 ∈ Left(Le)⇒
∀z ≤ y 〈x, z〉 ∈ Left(Le).

Consider an input x of length n = t2i for some arbitrary i. We first claim that if MLe accepts
x, then x ∈ Le. If MLe accepts in line 8, then it found an accepting computation of N on x. So x
indeed belongs to Le. From now on assume that it accepts in line 19.

7

Since we assumed that Claim 4 is false, we have that ∀∞(n ∈ t2i),

|f(Left(Le)) ∩ 0Cn| ≤ 2nε/2
, (1)

|f(Left(Le)) ∩ 2Cn| ≤ 2nε/2
. (2)

Consider line 19 of the machine. Suppose |l0| > 2nε/2
. This means that |f({〈x, y〉|y ∈ l0}) ∩

0Cn| > 2nε/2
. Hence from the inequality 1 and the fact that f is a reduction, it follows that there

exists y ∈ lo such that 〈x, y〉 ∈ Left(Le). Therefore x ∈ Le. Similarly we can argue for the case
|l2| > 2nε/2

. Hence the decision made by MLe at line 19 is correct.
Next we argue that if x ∈ Le, then MLe accepts x. For this, it suffices to show that if MLe does

not accept x in line 19, then it accepts in line 8. We claim that after every iteration of the while
loop, the rightmost accepting computation of N on x passes through a node in l0∪ l1∪ l2. Initially,
l0∪ l1∪ l2 contains the root of Tx, thus the claim is true initially. Assume that the claim is true after
the (k − 1)th iteration of the loop. Consider the kth iteration of the while loop. Line 6 places all
the children of nodes in l0 ∪ l1 ∪ l2 in X, thus the rightmost accepting computation passes through
a node in X. We delete a node y from X in line 14, only if y /∈ Left(Le). Thus the rightmost
accepting computation can not pass through y. Suppose the procedure SHORTEN removes a node
y1 from X. This happens only if there exists y2 such that y1 < y2 and f(〈x, y1〉) = f(〈x, y2〉). In this
case either both 〈x, y1〉 and 〈x, y2〉 belong to Left(Le) or both of them do not belong to Left(Le).
Thus the rightmost accepting computation can not pass through y1. If after line 17, |li| ≤ 2nε/2

for every i, then the kth iteration of the while loop ends here, so X contains a node through which
the rightmost accepting computation passes through. On the other hand, if |l1| > 2nε/2

, then the
algorithm performs PRUNE(l1). Note that since we assumed the algorithm does not halt in line
19, this is the only possibility.

Assume that PRUNE(l1) deletes some nodes from X. Since we assumed Claim 4 is false, it
holds that

|f(Left(Le)) ∩ 1Cn| ≤ 2nε/2
. (3)

Since |l1| > 2nε/2
, this means that |f({〈x, y〉|y ∈ l1}) ∩ 1Cn| > 2nε/2

. From the inequality (3)
and the fact that f is a reduction, there are |li| − 2nε/2

strings y such that 〈x, y〉 6∈ Left(Le). From
the structure of left-cuts it follows that all but the first 2nε/2

are not in Left(Le). Hence we can
discard these elements from l1 since none of their children will lead to an accepting computation
of N . Thus after the kth iteration of the while loop the rightmost accepting computation passes
through a node in X.

Since the depth of Tx is nl, the while-loop is executed at most nl times. For each iteration of the
loop, |X| ≤ 6×2nε/2

. The maximum running time needed for each of the elements in X is when line
12 is executed which is O(2nε/2

). Therefore the running time is bounded by O(nl× 2nε/2 × 2nε/2
) ≤

2nε
.
Thus MLe takes less than 2nε

time on every string from ∪n=t2iΣ
n. This contradicts the partial

bi-immunity of L. Thus Claim 4 is true. � Claim 4.

� Theorem 1.

8

4 Scaled Dimension

In this section, we use Theorem 1 and previous work to derive the separation of NP-completeness
notions from a scaled dimension hypothesis. We refer to [9, 8] for definitions and background of
scaled dimension. For this paper, all we need is the following immediate consequence of Theorem
5.2 in [8].

Theorem 6. For all c ∈ N and α ∈ [0, 1], the class of all languages that are not (2cn, 22(log n)1−α

)-
partial-bi-immune has −3rd-order scaled p-dimension at most α.

Corollary 7. For all c ∈ N, the class of all languages that are not (2cn, 2no(1)
)-partial-bi-immune

has −3rd-order scaled p-dimension 0.

Corollary 8. If the −3rd-order scaled p-dimension of NP is positive, then the partial bi-immunity
hypothesis holds.

The following theorem is immediate from Theorem 1 and Corollary 8.

Theorem 9. If the −3rd-order scaled p-dimension of NP is positive, then Turing completeness is
different from many-one completeness for NP.

5 Conclusions

In this section we mention the hypotheses studied in the context of separating completeness notions
and compare them. Consider the following hypotheses.

• (Measure) NP does not have p-measure 0.

• (Generic) NP contains a p-generic language.

• (Bi-immune) For some ε > 0, NP contains a 2nε
-bi-immune language.

• (Partial) For some ε > 0, NP contains a (2nε
, 2no(1)

)-partial-bi-immune language.

• (Scaled) The −3rd-order scaled p-dimension of NP is positive.

• (Separation) Turing completeness is different from many-one completeness for NP.

We currently know that

(Measure)⇒ (Generic)⇒ (Bi-immune)⇒ (Partial)⇒ (Separation)

and
(Measure)⇒ (Scaled)⇒ (Partial)⇒ (Separation).

For future work, it would be interesting to see if we can replace the partial bi-immune language
in our result by a language that is hard on average. Another open problem is whether the separation
of completeness notions can be obtained from a −2nd-order scaled dimension hypothesis on NP.

9

References

[1] K. Ambos-Spies and L. Bentzien. Separating NP-completeness under strong hypotheses. Jour-
nal of Computer and System Sciences, 61(3):335–361, 2000.

[2] J. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Mathematical Systems
Theory, 18(1):1–18, June 1985.

[3] H. Buhrman, S. Homer, and L. Torenvliet. Completeness notions for nondeterministic com-
plexity classes. Mathematical Systems Theory, 24:179–200, 1991.

[4] H. Buhrman and L. Torenvliet. On the structure of complete sets. In 9th IEEE Annual
Conference on Structure in Complexity Theory, pages 118–133, 1994.

[5] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM
Symposium on Theory of Computing, pages 151–158, 1971.

[6] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17(2):309–355, April 1988.

[7] J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension.
Theoretical Computer Science, 289(1):861–869, 2002.

[8] J. M. Hitchcock. Small spans in scaled dimension. SIAM Journal on Computing, 34(1):170–
194, 2004.

[9] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform complexity.
Journal of Computer and System Sciences, 69(2):97–122, 2004.

[10] J. M. Hitchcock and A. Pavan. Hardness hypotheses, derandomization, and circuit complexity.
In Proceedings of the 24th Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 336–347. Springer-Verlag, 2004.

[11] S. Homer. Structural properties of nondeterministic complete sets. In Proceedings of the 5th
Annual IEEE Annual Conference on Structure in Complexity Theory, pages 3–10, 1990.

[12] S. Homer. Structural properties of complete problems for exponential time. In L. A. Hemas-
paandra and A. L. Selman, editors, Complexity Theory Retrospective II, pages 135–153.
Springer-Verlag, 1997.

[13] S. Homer, S. Kurtz, and J. Royer. On 1-truth-table-hard languages. Theoretical Computer
Science, 115(2):383–389, 1993.

[14] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-
putations, pages 85–104. Plenum Press, New York, 1972.

[15] K. Ko and D. Moore. Completeness, approximation and density. SIAM Journal on Computing,
10(4):787–796, Nov. 1981.

[16] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial time reducibilities.
Theoretical Computer Science, 1:103–123, 1975.

[17] L. A. Levin. Universal sequential search problems. Problems of Information Transmission,
9:265–266, 1973. English translation of original in Problemy Peredaci Informatsii.

10

[18] L. Longpré and P. Young. Cook reducibility is faster than Karp reducibility. Journal of
Computer and System Sciences, 41:389–401, 1990.

[19] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236–1259,
2003.

[20] J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions if
NP is not small. Theoretical Computer Science, 164:141–163, 1996.

[21] M. Ogiwara and O. Watanabe. On polynomial time bounded truth-table reducibility of NP
sets to sparse sets. SIAM Journal on Computing, 20(3):471–483, 1991.

[22] A. Pavan. Comparison of reductions and completeness notions. In L. Hemaspaandra, editor,
SIGACT News, Complexity Theory Column 40. ACM Press, June 2003.

[23] A. Pavan and A. L. Selman. Bi-immunity separates strong NP-completeness notions. Infor-
mation and Computation, 188(1):116–126, 2004.

[24] A. L. Selman. Reductions on NP and P-selective sets. Theoretical Computer Science, 19:287–
304, 1982.

[25] O. Watanabe. A comparison of polynomial time completeness notions. Theoretical Computer
Science, 54:249–265, 1987.

11

