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Abstract

Classically it is known that any set with packing dimension less than 1 is meager in the
sense of Baire category. We establish a resource-bounded extension: if a class X has ∆-strong
dimension less than 1, then X is ∆-meager. This has the applications of explaining some of
Lutz’s simultaneous ∆-meager, ∆-measure 0 results and providing a new proof of a Gu’s strong
dimension result on infinitely-often classes.

1 Introduction

The most common mathematical notions of size and dimension now have resource-bounded versions
that are useful for complexity classes. We use ∆ to denote a resource bound such as p (polynomial
time) or pspace (polynomial space).

• Resource-Bounded Category [7]: Extension of Baire category. Complexity classes may be
∆-meager or ∆-comeager (or neither).

• Resource-Bounded Measure [8]: Extension of Lebesgue measure. The ∆-measure of a com-
plexity class X is denoted µ∆(X). A class X may have µ∆(X) = 0 or µ∆(X) = 1 (or neither,
in which case the class is called not ∆-measurable).

• Resource-Bounded Dimension [9]: Extension of Hausdorff dimension [6]. Each complexity
class X has a ∆-dimension dim∆(X) that is always a real number in [0,1].

• Resource-Bounded Strong Dimension [3]: Extension of packing dimension [12, 11]. Each
complexity class X has a ∆-strong dimension Dim∆(X) that is always a real number in [0,1].

In general, resource-bounded category and resource-bounded measure are incomparable: ∆-
meager does not imply ∆-measure 0, and vice versa. Regarding measure versus the two notions of
dimension, the following hold for every class X:

dim∆(X) ≤ Dim∆(X)

and
dim∆(X) < 1 ⇒ µ∆(X) = 0.
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In particular, it follows that if the ∆-strong dimension of X is less than 1, then X has ∆-measure
0. We show that Dim∆(X) < 1 also implies X is ∆-meager. This is an extension of the analogous
relationship between packing dimension and Baire category (see Edgar [4]).

We give two applications of this result:

• An explanation of why some complexity classes in the work of Lutz [7] have ∆-measure 0 and
are also ∆-meager. It is because they have ∆-strong dimension less than 1 (Gu [5]).

• A new category-based proof of Gu’s result regarding the strong dimension of infinitely-often
classes [5].

Section 2 contains preliminaries and background on category, measure, and dimension. Our
main theorem is presented in section 3. The applications are given in section 4.

2 Category, Measure, and Dimension

The Cantor space C is the set of all infinite binary sequences. A language (or decision problem)
is a subset of {0, 1}∗. We identify each language with the element of Cantor space that is its
characteristic sequence according to the standard enumeration of {0, 1}∗. In this way, complexity
classes (sets of languages) are viewed as subsets of Cantor space.

A constructor is a function δ : {0, 1}∗ → {0, 1}∗. The result of a constructor is the unique
sequence R(δ) ∈ C that extends δ(n)(λ) for all n. (Here λ is the empty string.)

Throughout this paper, ∆ denotes a resource bound [8]. Examples of ∆ include:

all = {f | f : {0, 1}∗ → {0, 1}∗}
p = {f | f is polynomial-time computable}

p2 = {f | f is quasipolynomial-time computable}
pspace = {f | f is polynomial-space computable}
comp = {f | f is computable}

For a resource bound ∆, we define the class

R(∆) = {R(δ) | δ ∈ ∆ is a constructor}.

Then R(all) = C, R(p) = E, R(p2) = EXP, R(pspace) = ESPACE, and R(comp) = DEC. Each
resource bound ∆ yields notions of resourced-bounded category, measure, and dimension that work
within the class R(∆). We now review these concepts.

2.1 Category

Baire category classifies sets into two types: first category and second category. First category sets
are also commonly called meager. A set is meager if it is a countable union of nowhere dense sets.
An equivalent definition comes from Banach-Mazur games.

Let X ⊆ C and let ΓI and ΓII be two classes of functions. In the Banach-Mazur game
G[X; ΓI,ΓII] there are two players I and II. A strategy in the game is a constructor. In a play
of the game, player I chooses a strategy g ∈ ΓI and player II chooses a strategy h ∈ ΓII. The result
of this play is the sequence R(g, h) = R(h◦g). Intuitively, the result is the sequence obtained when
the two players start with the empty string and take turns extending it with their strategies. A
winning strategy for player II is a strategy h ∈ ΓII such that for every g ∈ ΓI, R(g, h) 6∈ X.
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Theorem 2.1. (Banach and Mazur) A class X ⊆ C is meager if and only if player II has a winning
strategy in the game G[X; all, all].

Resource-bounded category [7] is defined by requiring player II’s winning strategy to be com-
putable within a resource bound.

Definition. Let X ⊆ C.

1. X is ∆-meager if player II has a winning strategy in the game G[X; all,∆].

2. X is ∆-comeager if Xc is ∆-meager.

3. X is meager in R(∆) if X ∩R(∆) is ∆-meager.

4. X is comeager in R(∆) if Xc is meager in R(∆).

The resource-bounded Baire category theorem [7] tells us that R(∆) is not ∆-meager.

2.2 Measure

A martingale is a function d : {0, 1}∗ → [0,∞) satisfying the averaging condition

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗. We say d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S �n) = ∞.

(Here S �n is the length n prefix of S.) The success set of d is

S∞[d] = {S ∈ C | d succeeds on S}.

Ville used martingales to give an equivalent definition of Lebesgue measure 0.

Theorem 2.2. (Ville [13]) A class X ⊆ C has Lebesgue measure 0 if and only if there is a
martingale d with X ⊆ S∞[d].

Resource-bounded measure [8] arises from putting resource bounds on the martingales. We say
that d : {0, 1}∗ → [0,∞) is ∆-computable if there is an approximation d̂ : N × {0, 1}∗ → Q such
that |d̂(r, w)− d(w)| ≤ 2−r for all r ∈ N, w ∈ {0, 1}∗ and d̂ ∈ ∆ (with r encoded in unary and the
outputs encoded in binary).

Definition. Let X ⊆ C.

1. X has ∆-measure 0, written µ∆(X) = 0, if there is a ∆-computable martingale d with
X ⊆ S∞[d].

2. X has ∆-measure 1, written µ∆(X) = 1, if µ∆(Xc) = 0.

3. X has measure 0 in R(∆), written µ(X | R(∆)) = 0, if µ∆(X ∩R(∆)) = 0.

4. X has measure 1 in R(∆), written µ(X | R(∆)) = 1, if µ∆(Xc | R(∆)) = 0.

The resource-bounded measure conservation theorem [8] tells us that R(∆) does not have ∆-measure
0.
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2.3 Dimension and Strong Dimension

The most commonly used fractal dimension is the Hausdorff dimension dimH(X). Lutz used success
sets of functions called gales to characterize Hausdorff dimension. Let s ≥ 0 be a real number. An
s-gale is a function d : {0, 1}∗ → [0,∞) satisfying the condition

d(w) =
d(w0) + d(w1)

2s

for all w ∈ {0, 1}∗. Note that a martingale is a 1-gale. “Succeeds on” and “success set” are defined
for s-gales in the same way as for martingales.

Theorem 2.3. (Lutz [9]) For every X ⊆ C,

dimH(X) = inf {s |there is an s-gale d with X ⊆ S∞[d]} .

Another common fractal dimension is the packing dimension dimP(X). This has an analogous
gale characterization using the notion of strong success. An s-gale d succeeds strongly on a sequence
S ∈ C if

lim inf
n→∞

d(S �n) = ∞.

The strong success set of d is

S∞str[d] = {S ∈ C | d succeeds strongly on S}.

Theorem 2.4. (Athreya, Hitchcock, Lutz, and Mayordomo [3]) For every X ⊆ C,

dimP(X) = inf {s |there is an s-gale d with X ⊆ S∞str[d]} .

Based on Theorems 2.3 and 2.4, resource-bounded dimension and resource-bounded strong
dimension are defined as extensions of Hausdorff dimension and packing dimension, respectively,
by requiring the gales to be computable within a resource bound.

Definition. Let X ⊆ C.

1. The ∆-dimension of X is

dim∆(X) = inf {s |there is a ∆-computable s-gale d with X ⊆ S∞[d]} .

2. The ∆-strong dimension of X is

Dim∆(X) = inf {s |there is a ∆-computable s-gale d with X ⊆ S∞str[d]} .

3. The dimension of X in R(∆) is dim(X | R(∆)) = dim∆(X ∩R(∆)).

4. The strong dimension of X in R(∆) is Dim(X | R(∆)) = Dim∆(X ∩R(∆)).

We say that an s-gale d is exactly ∆-computable if the range of d is rational and the values can
be computed by a function in ∆. The exact computation lemma [9] tells us that we may restrict to
exactly computable s-gales in the above definitions.

Proposition 2.5. ([9, 3]) Let X ⊆ C.

1. 0 ≤ dim∆(X) ≤ Dim∆(X) ≤ 1.

2. If dim∆(X) < 1, then X has ∆-measure 0.
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3 Main Theorem

It is known classically that if the packing dimension dimP(X) < 1, then X is meager (see Edgar
[4, page 65]). We now establish the resource-bounded extension of this fact.

Theorem 3.1. Let X ⊆ C.

1. If Dim∆(X) < 1, then X is ∆-meager.

2. If Dim(X | R(∆)) < 1, then X is meager in R(∆).

Proof. Part 2 is immediate from part 1. Assume the hypothesis of part 1. Then for some s < 1,
there is an exactly-∆-computable s-gale d with X ⊆ S∞str[d].

Let t =
⌈

s
1−s

⌉
. For each w ∈ {0, 1}∗, we inductively construct an extension w′ of w by the

following algorithm.

w′ := w.
for i = 1 to t|w|

if d(w′0) ≤ d(w′1)
w′ := w′0.

else
w′ := w′1.

Because d is an s-gale, the average of d(w′0) and d(w′1) is 2s−1d(w′). One of d(w′0) and d(w′1)
must be no more than this average, so d(w′) decreases by multiplicative factor of 2s−1 (or a smaller
factor) each iteration of the for-loop. Therefore, d(w′) ≤ 2(s−1)t|w|d(w) at the end.

We define a constructor h : {0, 1}∗ → {0, 1}∗ by

h(w) = w′.

Then h ∈ ∆ by the above algorithm. For each w ∈ {0, 1}∗,

d(h(w)) ≤ 2(s−1)t|w|d(w) ≤ 2−s|w|d(w).

Also, d(w) ≤ 2s|w|d(λ) because d is an s-gale, so we have

d(h(w)) ≤ d(λ) (3.1)

for every w ∈ {0, 1}∗.
Since h ∈ ∆, it suffices to show that h always wins the Banach-Mazur game G[X; all,∆] for

player II. Let g be any constructor. Let R(g, h) be the sequence built when g and h are played
against each other. We need to show that R(g, h) 6∈ X. For this we can show R(g, h) 6∈ S∞str[d] since
X ⊆ S∞str[d].

Define w0 = λ and wn = h(g(wn−1)) for all n ≥ 1. Then each wn is a prefix of R(g, h) and for
every n ≥ 1,

d(wn) = d(h(g(wn−1))) ≤ d(λ)

by (3.1). Therefore
lim inf
n→∞

d(R(g, h)�n) ≤ d(λ),

i.e., d does not succeed strongly on R(g, h).

We remark that Theorem 3.1 does not extend to resource-bounded genericity, a different notion
of resource-bounded category. For example, we might ask if strong Dimp(X) < 1 implies that X
has no p-generics. This is false because there are sparse n2-generics [2] but the class of sparse
languages has strong p-dimension 0.
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4 Corollaries

In general, ∆-measure 0 and ∆-meager are incomparable properties. For example, Mayordomo [10]
showed that the class of non-P-bi-immune languages has p-measure 0 but is not p-meager. There
are also examples of classes that are ∆-meager which do not have ∆-measure 0 [1]. However, Lutz
[7, 8] showed that several classes both have ∆-measure 0 and are ∆-meager. Proposition 2.5 and
Theorem 3.1 give us the following corollary which along with recent work of Gu [5] provides further
explanation of Lutz’s results.

Corollary 4.1. Let X ⊆ C.

1. If Dim∆(X) < 1, then X has ∆-measure 0 and is ∆-meager.

2. If Dim(X | R(∆)) < 1, then X has measure 0 in R(∆) and is meager in R(∆).

For example, Lutz showed that for each constant c, the circuit-size complexity class SIZE(nc)
has p2-measure 0 and is p2-meager. Gu showed Dimp2

(SIZE(nc)) = 0. By Corollary 4.1, this yields
a new proof of Lutz’s simultaneous measure 0 and meager result. Similarly, Lutz showed that
P/poly has p3-measure 0 and is p3-meager; Gu showed that Dimp3

(P/poly) = 0.
However, we remark that the converse of Corollary 4.1 does not hold in general. For example,

the class SIZE(2n

n ) has pspace-measure 0 and is pspace-meager [7], but it has pspace-dimension 1
[9].

For a class X of languages, define

io-X = {A ⊆ {0, 1}∗ | (∃B ∈ X)(∃∞n)A=n = B=n}.

(Here A=n = A ∩ {0, 1}n.) Gu [5] showed that if X contains the empty language, then dim(io-X |
R(∆)) ≥ 1/2 and Dim(io-X | R(∆)) = 1 for every ∆. Theorem 3.1 along with the resource-bounded
Baire category theorem provides a simpler proof of (a minor extension of) the latter fact.

Corollary 4.2. (Gu [5]) If X ∩R(∆) 6= ∅, then Dim(io-X | R(∆)) = 1.

Proof. Let B ∈ X ∩R(∆). Then

E = {A ⊆ {0, 1}∗ | (∃∞n)A=n = B=n}

is a subclass of io-X. Because B ∈ R(∆), it can be shown that E is ∆-comeager. In particular, Ec

is meager in R(∆).
Suppose that Dim(io-X | R(∆)) < 1. Then io-X is meager in R(∆) by Theorem 3.1, so E

is also meager in R(∆). But since the meager sets are closed under union, the resource-bounded
Baire category theorem tells us we cannot have both E and Ec meager in R(∆).
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