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Abstract

Classically it is known that any set with packing dimension less than 1 is meager in the
sense of Baire category. We establish a resource-bounded extension: if a class X has A-strong
dimension less than 1, then X is A-meager. This has the applications of explaining some of
Lutz’s simultaneous A-meager, A-measure 0 results and providing a new proof of a Gu’s strong
dimension result on infinitely-often classes.

1 Introduction

The most common mathematical notions of size and dimension now have resource-bounded versions
that are useful for complexity classes. We use A to denote a resource bound such as p (polynomial
time) or pspace (polynomial space).

e Resource-Bounded Category [7]: Extension of Baire category. Complexity classes may be
A-meager or A-comeager (or neither).

e Resource-Bounded Measure [8]: Extension of Lebesgue measure. The A-measure of a com-
plexity class X is denoted pua(X). A class X may have pa(X) =0 or ua(X) =1 (or neither,
in which case the class is called not A-measurable).

e Resource-Bounded Dimension [9]: Extension of Hausdorff dimension [6]. Each complexity
class X has a A-dimension dima (X) that is always a real number in [0,1].

e Resource-Bounded Strong Dimension [3]: Extension of packing dimension [12, 11]. Each
complexity class X has a A-strong dimension Dima (X) that is always a real number in [0,1].

In general, resource-bounded category and resource-bounded measure are incomparable: A-
meager does not imply A-measure 0, and vice versa. Regarding measure versus the two notions of
dimension, the following hold for every class X:

dima (X) < Dima (X)

and
dimA(X) <l= MA(X) = 0.
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In particular, it follows that if the A-strong dimension of X is less than 1, then X has A-measure
0. We show that Dima (X) < 1 also implies X is A-meager. This is an extension of the analogous
relationship between packing dimension and Baire category (see Edgar [4]).

We give two applications of this result:

e An explanation of why some complexity classes in the work of Lutz [7] have A-measure 0 and
are also A-meager. It is because they have A-strong dimension less than 1 (Gu [5]).

e A new category-based proof of Gu’s result regarding the strong dimension of infinitely-often
classes [5].

Section 2 contains preliminaries and background on category, measure, and dimension. Our
main theorem is presented in section 3. The applications are given in section 4.

2 Category, Measure, and Dimension

The Cantor space C is the set of all infinite binary sequences. A language (or decision problem)
is a subset of {0,1}*. We identify each language with the element of Cantor space that is its
characteristic sequence according to the standard enumeration of {0, 1}*. In this way, complexity
classes (sets of languages) are viewed as subsets of Cantor space.

A constructor is a function ¢ : {0,1}* — {0,1}*. The result of a constructor is the unique
sequence R(d) € C that extends 6(™)()\) for all n. (Here X is the empty string.)

Throughout this paper, A denotes a resource bound [8]. Examples of A include:

all = {f[f:{0,1}" —={0,1}"}

p = {f] fis polynomial-time computable}
p, = {f|f is quasipolynomial-time computable}
pspace = {f | f is polynomial-space computable}
comp = {f] fis computable}

For a resource bound A, we define the class
R(A) ={R(0) | 6 € A is a constructor}.

Then R(all) = C, R(p) = E, R(p,) = EXP, R(pspace) = ESPACE, and R(comp) = DEC. Each
resource bound A yields notions of resourced-bounded category, measure, and dimension that work
within the class R(A). We now review these concepts.

2.1 Category

Baire category classifies sets into two types: first category and second category. First category sets
are also commonly called meager. A set is meager if it is a countable union of nowhere dense sets.
An equivalent definition comes from Banach-Mazur games.

Let X C C and let I'1 and I';t be two classes of functions. In the Banach-Mazur game
G[X;T1,Tq] there are two players I and II. A strategy in the game is a constructor. In a play
of the game, player I chooses a strategy g € I't and player II chooses a strategy h € I'r1. The result
of this play is the sequence R(g,h) = R(hog). Intuitively, the result is the sequence obtained when
the two players start with the empty string and take turns extending it with their strategies. A
winning strategy for player II is a strategy h € I'rp such that for every g € I', R(g,h) ¢ X.



Theorem 2.1. (Banach and Mazur) A class X C C is meager if and only if player II has a winning
strategy in the game G[X;all, all].

Resource-bounded category [7] is defined by requiring player II’s winning strategy to be com-
putable within a resource bound.

Definition. Let X C C.
1. X is A-meager if player II has a winning strategy in the game G[X;all, A].
2. X is A-comeager if X¢ is A-meager.
3. X is meager in R(A) if X N R(A) is A-meager.
4. X is comeager in R(A) if X€ is meager in R(A).

The resource-bounded Baire category theorem [7] tells us that R(A) is not A-meager.

2.2 Measure
A martingale is a function d : {0, 1}* — [0, c0) satisfying the averaging condition

d(w) = d(w0) —;—d(wl)

for all w € {0,1}*. We say d succeeds on a sequence S € C if

limsup d(S[n) = co.

n—oo

(Here S[n is the length n prefix of S.) The success set of d is
S*[d] = {S € C | d succeeds on S}.

Ville used martingales to give an equivalent definition of Lebesgue measure 0.

Theorem 2.2. (Ville [13]) A class X C C has Lebesgue measure 0 if and only if there is a
martingale d with X C S*°[d].

Resource-bounded measure [8] arises from putting resource bounds on the martingales. We say
that d : {0,1}* — [0,00) is A-computable if there is an approximation d : N x {0,1}* — Q such
that |d(r,w) — d(w)| < 27" for all r € N,w € {0,1}* and d € A (with r encoded in unary and the
outputs encoded in binary).

Definition. Let X C C.

1. X has A-measure 0, written pua(X) = 0, if there is a A-computable martingale d with
X C S5*[d].

2. X has A-measure 1, written ua(X) =1, if ua(X€¢) = 0.
3. X has measure 0 in R(A), written u(X | R(A)) =0, if ua(X N R(A)) = 0.
4. X has measure 1 in R(A), written u(X | R(A)) =1, if ua(X¢| R(A)) = 0.

The resource-bounded measure conservation theorem [8] tells us that R(A) does not have A-measure
0.



2.3 Dimension and Strong Dimension

The most commonly used fractal dimension is the Hausdorff dimension dimg(X). Lutz used success
sets of functions called gales to characterize Hausdorff dimension. Let s > 0 be a real number. An
s-gale is a function d : {0,1}* — [0, 00) satisfying the condition

d(w) = d(w0) ;—S d(wl)

for all w € {0,1}*. Note that a martingale is a 1-gale. “Succeeds on” and “success set” are defined
for s-gales in the same way as for martingales.
Theorem 2.3. (Lutz [9]) For every X C C,

dimy(X) = inf {s |there is an s-gale d with X C S*[d]}.

Another common fractal dimension is the packing dimension dimp(X). This has an analogous
gale characterization using the notion of strong success. An s-gale d succeeds strongly on a sequence
SeCif

liminf d(S [n) = co.

n—oo

The strong success set of d is

o]
Sstr

[d] = {S € C | d succeeds strongly on S}.
Theorem 2.4. (Athreya, Hitchcock, Lutz, and Mayordomo [3]) For every X C C,

dimp (X) = inf {s |there is an s-gale d with X C Sg.[d]} .

str

Based on Theorems 2.3 and 2.4, resource-bounded dimension and resource-bounded strong
dimension are defined as extensions of Hausdorff dimension and packing dimension, respectively,
by requiring the gales to be computable within a resource bound.

Definition. Let X C C.
1. The A-dimension of X is
dima (X) = inf {s|there is a A-computable s-gale d with X C S*[d]}.

2. The A-strong dimension of X is

Dima (X) = inf {s|there is a A-computable s-gale d with X C Sg.[d]} .

str
3. The dimension of X in R(A) is dim(X | R(A)) = dima (X N R(A)).
4. The strong dimension of X in R(A) is Dim(X | R(A)) = Dima (X N R(A)).

We say that an s-gale d is exactly A-computable if the range of d is rational and the values can
be computed by a function in A. The ezact computation lemma [9] tells us that we may restrict to
exactly computable s-gales in the above definitions.

Proposition 2.5. (]9, 3]) Let X C C.
1. 0 < dima(X) < Dima(X) < 1.
2. If dima(X) < 1, then X has A-measure 0.



3 Main Theorem

It is known classically that if the packing dimension dimp(X) < 1, then X is meager (see Edgar
[4, page 65]). We now establish the resource-bounded extension of this fact.

Theorem 3.1. Let X C C.
1. If Dima(X) < 1, then X is A-meager.
2. If Dim(X | R(A)) < 1, then X is meager in R(A).

Proof. Part 2 is immediate from part 1. Assume the hypothesis of part 1. Then for some s < 1,
there is an exactly-A-computable s-gale d with X C S[d].

str

Let t = [ﬁ—‘ For each w € {0,1}*, we inductively construct an extension w’ of w by the
following algorithm.

w' = w.

for i =1 to t|w|
if d(w'0) < d(w'l)
w' = w'0.
else

w = w'l.

Because d is an s-gale, the average of d(w'0) and d(w'1) is 2°71d(w’). One of d(w'0) and d(w'l)
must be no more than this average, so d(w’) decreases by multiplicative factor of 2°~1 (or a smaller
factor) each iteration of the for-loop. Therefore, d(w') < 20=Dld(w) at the end.

We define a constructor h: {0,1}* — {0,1}* by

h(w) = w'.
Then h € A by the above algorithm. For each w € {0, 1}*,
d(h(w)) < 26- DUl g(w) < 27510l q(w).
Also, d(w) < 2°*ld()\) because d is an s-gale, so we have
d(h(w)) < d(X) (3.1)

for every w € {0,1}*.

Since h € A, it suffices to show that h always wins the Banach-Mazur game G[X;all, A] for
player II. Let g be any constructor. Let R(g,h) be the sequence built when g and h are played
against each other. We need to show that R(g,h) ¢ X. For this we can show R(g,h) ¢ S$[d] since
X C S d].

Define wy = A and wy, = h(g(wp—1)) for all n > 1. Then each w,, is a prefix of R(g,h) and for
every n > 1,

d(wn) = d(h(g(wn-1))) < d(})
by (3.1). Therefore
liminf d(R(g, h) [n) < d(N),

n—oo

i.e., d does not succeed strongly on R(g,h). O

We remark that Theorem 3.1 does not extend to resource-bounded genericity, a different notion
of resource-bounded category. For example, we might ask if strong Dim,(X) < 1 implies that X
has no p-generics. This is false because there are sparse n2-generics [2] but the class of sparse
languages has strong p-dimension 0.



4 Corollaries

In general, A-measure 0 and A-meager are incomparable properties. For example, Mayordomo [10]
showed that the class of non-P-bi-immune languages has p-measure 0 but is not p-meager. There
are also examples of classes that are A-meager which do not have A-measure 0 [1]. However, Lutz
[7, 8] showed that several classes both have A-measure 0 and are A-meager. Proposition 2.5 and
Theorem 3.1 give us the following corollary which along with recent work of Gu [5] provides further
explanation of Lutz’s results.

Corollary 4.1. Let X C C.
1. If Dima(X) < 1, then X has A-measure 0 and is A-meager.
2. If Dim(X | R(A)) < 1, then X has measure 0 in R(A) and is meager in R(A).

For example, Lutz showed that for each constant ¢, the circuit-size complexity class SIZE(n¢)
has p,-measure 0 and is p,-meager. Gu showed Dimy, (SIZE(n¢)) = 0. By Corollary 4.1, this yields
a new proof of Lutz’s simultaneous measure 0 and meager result. Similarly, Lutz showed that
P /poly has p,-measure 0 and is p,-meager; Gu showed that Dimy, (P/poly) = 0.

However, we remark that the converse of Corollary 4.1 does not hold in general. For example,
the class SIZE(%) has pspace-measure 0 and is pspace-meager [7], but it has pspace-dimension 1
[9].

For a class X of languages, define
io-X ={AC{0,1}"| (3B € X)(3*°n)A—, = B_,}.

(Here A—,, = AN {0,1}".) Gu [5] showed that if X contains the empty language, then dim(io-X |
R(A)) > 1/2 and Dim(io-X | R(A)) = 1 for every A. Theorem 3.1 along with the resource-bounded
Baire category theorem provides a simpler proof of (a minor extension of) the latter fact.

Corollary 4.2. (Gu [5]) If X N R(A) # 0, then Dim(io-X | R(A)) = 1.
Proof. Let B € X N R(A). Then
E={AC{0,1}"| (3*n)A-, = B_,}

is a subclass of i0-X. Because B € R(A), it can be shown that F is A-comeager. In particular, E¢
is meager in R(A).

Suppose that Dim(io-X | R(A)) < 1. Then io-X is meager in R(A) by Theorem 3.1, so E
is also meager in R(A). But since the meager sets are closed under union, the resource-bounded
Baire category theorem tells us we cannot have both E and E° meager in R(A). O
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