
NP-Hard Sets are Exponentially Dense Unless coNP ⊆ NP/poly

Harry Buhrman∗ John M. Hitchcock†

Abstract

We show that hard sets S for NP must have exponential density, i.e. |S=n| ≥ 2nε

for
some ε > 0 and infinitely many n, unless coNP ⊆ NP/poly and the polynomial-time hierarchy
collapses. This result holds for Turing reductions that make n1−ε queries.

In addition we study the instance complexity of NP-hard problems and show that hard sets
also have an exponential amount of instances that have instance complexity nδ for some δ > 0.
This result also holds for Turing reductions that make n1−ε queries.

1 Introduction

The density of NP-complete and hard sets was an early object of study in complexity theory.
Assuming that P is not equal to NP, the real question is how many instances are indeed hard? In
principle it could be that P 6= NP only because of a few instances that are hard to compute, but
almost all instances can be decided by an efficient algorithm. This question was formalized and
investigated in a large body of work starting with that of Berman and Hartmanis [2], Meyer and
Paterson [10], Fortune [5], Karp and Lipton [8], Mahaney [9], and many others.

It is problematic for this question to just focus on a fixed NP-complete set for the following
reason. Suppose that P 6= NP, and suppose there is a machine M that runs in polynomial time
on all but 2nε

many formulae of length n. We can then solve SAT in randomized polynomial time,
by simple padding. Given any formula φ we can construct 2n many different other formulae φ′i of
roughly the same length that are satisfiable if and only if φ is satisfiable. It is easy to see that M
will with high probability run in polynomial time on a randomly chosen φ′i. For this reason the
focus has been on the density of all NP-complete or NP-hard problems. This simple padding trick
cannot work for an arbitrary NP-complete problem, since the reduction can map the equivalent
formula φ′i back to the original φ. Therefore attention has been on the density of NP-complete and
NP-hard sets under various types of reductions.

Mahaney [9] showed that if there exists a sparse many-one hard set for NP then P = NP. A set is
sparse if for every length n it contains no more than p(n) strings for some polynomial p. This result
shows that many-one hard sets for NP are super-polynomially dense unless P = NP. Mahaney’s
result has been extended to weaker notions of reductions, notably by Ogihara and Watanabe for
bounded truth-table reductions [11]. But it remains an open question to show the same result for
log(n)-truth-table reductions, let alone for the more general Turing reductions. Karp and Lipton [8]

∗CWI Kruislaan 409, 1098 SJ Amsterdam, the Netherlands, and University of Amsterdam; e-
mail:buhrman@cwi.nl. Supported by an NWO VICI grant, BRRICKS, and EU-grant QAP.

†Department of Computer Science, University of Wyoming; e-mail: jhitchco@cs.uwyo.edu. Supported in part by
NSF grants 0515313 and 0652601.

showed that if there exists a sparse Turing hard set for NP, or equivalently if NP ⊆ P/poly, then
the polynomial-time hierarchy collapses to its second level (Σp

2 = Πp
2). Hence Turing hard sets for

NP are also super-polynomially dense unless the polynomial-time hierarchy collapses.
In this paper we improve these results from sparse to subexponential density. Generalizations

to sets with more than polynomial density had been studied before by Buhrman and Homer [3]. A
set S has subexponential density if for every ε > 0, ||S=n|| ≤ 2nε

for almost all n. We show that if
there exists an NP-hard set with subexponential density then coNP ⊆ NP/poly and by a result of
Yap [13] it follows that the polynomial-time hierarchy collapses to its third level (Σp

3 = Πp
3). Our

result holds for Turing reductions that make n1−ε queries (any ε > 0). This shows that NP-hard
sets have exponential density 2nε

for some ε > 0, unless coNP ⊆ NP/poly. This is the best possible
result for NP-hard sets with respect to their density, since simple padding shows that for every
ε > 0 there exists an NP-hard set with density less than 2nε

. Our results make use of the proof of
a recent combinatorial lemma due to Fortnow and Santhanam [4].

Another way to make the notion of hard instances precise is that of instance complexity due
to Orponen et. al. [12]. The instance complexity of an instance x with respect to some set A,
ic(x : A), is the size of the smallest (polynomial-time) program p that correctly decides x and
for all other instances either outputs no decision or the correct decision. It is easy to see that
ic(x : A) ≤ |x|+ O(1). Strings with high instance complexity do not have small efficient programs
that decide them. The instance complexity of NP-complete sets has been studied. The best known
bound [12] is that if every instance of SAT (or any NP-complete problem) has logarithmic instance
complexity, i.e. ic(φ : SAT) ≤ O(log |φ|) for all φ, then P = NP. We show that if SAT has sublinear
instance complexity, that is ic(φ : SAT) ≤ |φ|1−ε for all φ and some ε > 0, then coNP ⊆ NP/poly.

2 Preliminaries

We shall consider decision problems for languages over the alphabet Σ = {0, 1}. The length of a
string x ∈ {0, 1}∗ is denoted |x|; λ denotes the empty string. Given strings x, y, we denote with
x · y the concatenation of x and y: xy. We represent the pair <x, y> as the string x̄10y, where x̄
denotes x with each of its characters doubled.

For a set B and number n, B=n = {x ∈ B | |x| = n} and B≤n = {x ∈ B | |x| ≤ n}. The
cardinality of a finite set C is denoted ||C||.

A set S has subexponential density if for every ε > 0, ||S=n|| ≤ 2nε
for all but finitely many n.

We write SUBEXPD for the class of languages with subexponential density. A set is exponentially
dense if it does not have subexponential density.

An AND-function for a set A is a polynomial-time computable function g such that for all
strings x1, x2, . . . , xn, g(x1, x2, . . . , xn) ∈ A iff xi ∈ A for all i. Similarly, and OR-function g
satisfies g(x1, x2, . . . , xn) ∈ A iff xi ∈ A for some i. We say that g has order s if |g(x1, . . . , xn)| =
O

(
(
∑n

i=1 |xi|)s
)
. Observe that if g is an AND-function for A, then g is also an OR-function for Ā.

3 Reductions

To introduce the technique we will begin with the easier case of many-one reductions. This result
has the corollary that if SAT many-one reduces to a set of subexponential density, then coNP ⊆
NP/poly.

Theorem 3.1. Let A be any set that has an AND-function. If there is a set S with subexponential
density such that A ≤p

m S then A ∈ NP/poly.

Proof. Let g(x1, . . . , xn) be the AND-function for A. Let f be the many-one reduction from A to
S. We say that a string z ∈ S is NP-proof for x ∈ A, with |x| = n, iff there exist x1, . . . , xn, such
that for all i, |xi| = n and there exists an i, with x = xi, and in addition f(g(x1, . . . , xn)) = z.

The idea is to show that there exists a string z1 ∈ S that is NP-proof for half the strings in
A=n. We will then recurse on the remaining strings in A=n, for which z1 is not NP-proof, until we
end up with a sequence of at most n strings z1, . . . , zk such that for all x ∈ A=n there is an i such
that zi is NP-proof for x. These NP proofs serve as advice to show that A ∈ NP/poly.

First observe that if z is NP-proof for precisely t strings x ∈ A then∣∣∣∣{<x1, . . . , xn>

∣∣∣∣ |xi| = n and
f(g(x1, . . . , xn)) = z

}∣∣∣∣ ≤ tn (3.1)

Assume that f and g both run in time nc for some c. Let mn = n2c2 , hence |f(g(x1, . . . , xn))| ≤
mn. Since S has subexponential density, for large enough n it holds that ||S≤mn || < 2n.

Let t be the largest such that some z1 is NP-proof for t elements of length n in A. Since for
every n-tuple <x1, . . . , xn> with for all i, xi ∈ A, f(g(<x1, . . . , xn>)) maps to some string z in
S≤nm , we now have:

tn||S≤mn || ≥ ||A=n||n (3.2)

and hence
tn2n ≥ ||A=n||n (3.3)

which implies that t ≥ ||A=n||/2, and hence z1 is NP-proof for half the elements in A of length
n. The proof now continues by finding a z2 that is NP-proof for half of the elements in A for
which z1 is not NP-proof, resulting ultimately in the desired sequence z1, . . . , zk (k ≤ n). The
inductive generation of zi is possible because all the strings in A for which none of the z1, . . . , zi−1

is NP-proof, let’s call them A′, have the following property. For every y1, . . . , yn ∈ A′ it holds
that f(g(y1, . . . , yn)) ∈ S \ {z1, . . . , zi−1}. Hence the counting arguments in equations (3.1), (3.2),
and (3.3) still hold for A′.

Our main technical tool, Lemma 3.2 below, is a generalization of Theorem 3.1. Instead of a
many-one reduction to a subexponentially dense set, we consider a nondeterministic disjunctive
reduction to a family of sets where the density can be exponential.

Definition. Let B = (Bn | n ≥ 0) be a family of subsets of {0, 1}∗. We say that A NP-
reduces to B if there is an NPMV function N such that for all n, for all x ∈ {0, 1}n, x ∈ A
iff at least one output of N(x) is in Bn.

Lemma 3.2. Let A have an AND-function of order s and let α < 1/s. Let B = (Bn | n ≥ 0) be a
family of sets with ||Bn|| ≤ 2nα

for sufficiently large n. If A NP-reduces to B, then A ∈ NP/poly.

Proof. Let M compute the NPMV function for the reduction from A to B. Let g be the AND-
function for A. For simplicity we assume that for all x1, . . . , xn ∈ {0, 1}m, the length of g(x1, . . . , xn)
is exactly (nm)s. The general case when the length is O((nm)s) is similar.

Choose a constant k so that k
k+1 ≥ αs. Fix an input length m, let n = mk, and let N = (nm)s.

Note that we have
||BN || ≤ 2Nα

= 2m(k+1)sα ≤ 2mk
= 2n.

For any x ∈ {0, 1}m,

x ∈ A ⇐⇒ there exist x1, . . . , xn ∈ {0, 1}m

with xi = x for some i such that
M on input g(x1, . . . , xn) outputs
some string z ∈ BN .

Call such a string z an NP-proof that x ∈ A. As in the proof of Theorem 3.1, we claim that there
exists a collection of at most m strings z1, . . . , zl such that each x ∈ A=m has an NP-proof in the
collection.

Suppose that z is an NP-proof for exactly t strings in A=m. Then

||{<x1, . . . , xn> | M(g(x1, . . . , xn)) outputs z}|| ≤ tn.

Let t be the maximal such that some string z is an NP-proof for t strings. Then

||A=m||n ≤ ||BN || · tn ≤ 2ntn,

so t ≥ ||A=m||/2. Therefore there is a string z1 that works for at least half of the strings in A=m.
Repeating this argument yields a string z2 that works for at least half of the remaining strings.
After at most m repetitions we have NP-proofs for all the strings.

As our first application of Lemma 3.2 we extend Theorem 3.1 to disjunctive reductions.

Theorem 3.3. If A has an AND-function and A ≤p
d SUBEXPD, then A ∈ NP/poly.

Proof. Suppose that A ≤p
d S ∈ SUBEXPD via a reduction g in p(n) time. Define an NPMV

function N that on input x guesses and outputs one of the queries in g(x). Let Bn = S≤p(n). Then
A NP-reduces to the family (Bn | n ≥ 0) via N .

Let α < 1/s where s is the order of the AND-function. We have ||Bn|| ≤ 2nα
for sufficiently

large n because S has subexponential density. By Lemma 3.2 we have A ∈ NP/poly.

We apply Theorem 3.3 with SAT to obtain the following:

Theorem 3.4. If coNP 6⊆ NP/poly, then every ≤p
d-hard set for coNP is exponentially dense.

Allender, Hemachandra, Ogiwara, and Watanabe [1] showed that if A ≤p
btt-reduces to a sparse

set, then A ≤p
d-reduces to another sparse set. Part of the proof shows that the complement of any

sparse set disjunctively reduces to a sparse set. This argument also applies to subexponentially
dense sets. For completeness we include a proof. Here we write that S has density d(n) if ||S≤n|| =
d(n).

Lemma 3.5. Let S be a set with density d(n). Then there is a set T with density at most nd(n)+n
such that S ≤p

d T . In particular, if S ∈ SUBEXPD, then S ≤p
d T for some T ∈ SUBEXPD.

Proof. We isolate the part we need of the proof in [1]. Let T be the set of all 0n1wb where b is a
bit and w has an extension in S=n, but wb does not have an extension in S=n. If S=n = ∅, we add
0n1 to T .

We claim that a string y is in S=n if and only if y has a prefix z such that 0n1z ∈ T .

- If y 6∈ S and S=n 6= ∅, then let z be the longest prefix of y that has an extension in S. The string
0n1z is in T . If S=n = ∅, then 0n1 is in T , so the claim holds for z = λ.

- If y ∈ S, then every prefix z of y has an extension in S and 0n1z 6∈ T .

Therefore S ≤p
d T via the reduction that lists the prefixes of its input.

For each length n, we added at most (n+1)||S=n||+1 strings to T . Therefore ||T≤n|| ≤
∑n−1

m=0(m+
1)||S=m||+ 1 ≤ nd(n) + n.

Theorem 3.3 and Lemma 3.5 yield the following for conjunctive reductions.

Theorem 3.6. If A has an OR-function and A ≤p
c SUBEXPD, then A ∈ coNP/poly.

Proof. Suppose that A ≤p
c S ∈ SUBEXPD. Then A ≤p

d S and by Lemma 3.5 there is a T ∈
SUBEXPD such that S ≤p

d T . Composing reductions yields A ≤p
d T , so A ∈ NP/poly by Theorem

3.3, because the OR-function for A is an AND-function for A.

Theorem 3.7. If coNP 6⊆ NP/poly, then every ≤p
c -hard set for NP is exponentially dense.

Our next theorem concerns query-bounded Turing reductions. In the proof we use techniques
from [1, 6] to convert the Turing reduction into an NP disjunctive reduction.

Theorem 3.8. Let A have an AND-function of order s and let α < 1/s. If A ≤p
nα−T SUBEXPD,

then A ∈ NP/poly.

Proof. Suppose A ≤p
nα−T S ∈ SUBEXPD via M . Fix an input length n. For an input x ∈ {0, 1}n,

consider using each z ∈ {0, 1}nα
as the sequence of yes/no answers to M ’s queries. Each z causes

M to produce a sequence of queries wx,z
1 , . . . , wx,z

nα and an accepting or rejecting decision. (We
can assume that M always makes nα queries.) Let Zx ⊆ {0, 1}nα

be the set of all query answer
sequences that cause M to accept x. Then we have x ∈ A if and only if

(∃z ∈ Zx)(∀1 ≤ j ≤ nα) S[wx,z
j] = z[j],

which is equivalent to
(∃z ∈ Zx)(∀1 ≤ j ≤ nα) z[j] · wx,z

j ∈ S ⊕ S,

where S ⊕ S is the disjoint union {0x | x ∈ S} ∪ {1x | x ∈ S}.
By Lemma 3.5 there is a set T ∈ SUBEXPD such that S ≤p

d T . Let U = T ⊕ S. We then have
S ⊕ S ≤p

d U via some reduction g. For each z ∈ Zx, let

Hx,z = {<u1, . . . , unα> | (∀j) uj ∈ g(z[j] · wx,z
j)}.

Let r(n) be a polynomial bounding the run time of g on inputs of the form z[j] ·wx,z
j , where |x| = n.

Define
Bn = {<u1, . . . , unα> | (∀j) uj ∈ U≤r(n)}.

Then we have
x ∈ A ⇐⇒ (∃z ∈ Zx)(∃y ∈ Hx,z)y ∈ Bn.

Define an NPMV function N that on input x chooses some z ∈ Zx and tuple y ∈ Hx,z and outputs
y. Then N is an NP-reduction of A to the family (Bn | n ≥ 0).

Let δ = (1/s − α)/2. Then since U ∈ SUBEXPD, ||U≤r(n)|| ≤ 2nδ
for sufficiently large n. This

implies
||Bn|| = ||U≤r(n)||n

α

≤ 2nα+δ
= 2n(1/s)−δ

.

Lemma 3.2 applies to show A ∈ NP/poly.

We now have the main result of this paper:

Theorem 3.9. If coNP 6⊆ NP/poly, then for all ε > 0, every ≤p
n1−ε−T

-hard set for NP is exponen-
tially dense.

Proof. Suppose that SAT ≤p
n1−ε−T

-reduces to a subexponentially dense set. Then SAT ≤p
n1−ε−T

-
reduces to the same set by inverting the reduction’s answers. Moreover SAT has an AND-function
of order s = 1. Theorem 3.8 applies to show coNP ⊆ NP/poly.

In fact, we can show a slightly stronger result. Theorem 3.8 still holds if the Turing reduction
uses nondeterminism:

Theorem 3.10. Let A have an AND-function of order s and let α < 1/s. If A ∈ NPS[nα] for some
S ∈ SUBEXPD, then A ∈ NP/poly.

Proof. We extend the proof of Theorem 3.8. Suppose A = L(MS[nα]) where M is an NP machine
running in time t(n). For an input x ∈ {0, 1}n, we can use any pair <p, z> where p ∈ {0, 1}t(n)

and z ∈ {0, 1}nα
to run M on input x. We use p to provide the nondeterministic choices and z to

provide the query answers. In this computation M produces a sequence of queries wx,p,z
0 , . . . , wx,p,z

nα

and an accepting or rejecting decision. Let Zx be the set of all <p, z> that cause M to accept x.
Then we have x ∈ A if and only if

(∃<p, z> ∈ Zx)(∀1 ≤ j ≤ nα) S[wx,p,z
j] = z[j].

The remainder of the proof carries through with z replaced by <p, z> throughout.

We obtain an extension of Theorem 3.10 to strong nondeterministic polynomial-time reductions.

Theorem 3.11. If coNP 6⊆ NP/poly, then for all ε > 0, every ≤SNP
n1−ε−T-hard set for NP is expo-

nentially dense.

Proof. Suppose that S has subexponential density and is ≤SNP
n1−ε−T-hard for NP. Then SAT ≤SNP

n1−ε−T

S, so SAT ∈ NPS[n1−ε]. Theorem 3.10 implies SAT ∈ NP/poly.

All our results to this point are conditional. For an unconditional result we go to the P̃H
hierarchy, where P̃ means nO(log n).

Theorem 3.12. For all ε > 0, every ≤p
n1−ε−T

-hard set for ΣP̃
3 is exponentially dense.

Proof. First, we claim that ΣP̃
3 6⊆ NP/poly. This is similar to Kannan’s proof that ΣP

2 does not
have nk-size circuits [7]. We can show that there is a set H ∈ ΣP̃

4 − NP/poly by a direct counting
argument. Then we consider two cases: if coNP 6⊆ NP/poly, the claim holds immediately because
coNP ⊆ ΣP̃

3 . Otherwise coNP ⊆ NP/poly and we have PH = ΣP
3 by Yap’s theorem [13]. From this

padding gives P̃H = ΣP̃
3 and therefore H ∈ ΣP̃

3 .

There is a many-one complete set A for ΣP̃
3 with an AND-function of order 1. Suppose that

A ≤p
n1−ε−T

-reduces to a set S of subexponential density. Theorem 3.8 implies A ∈ NP/poly, so

ΣP̃
3 ⊆ NP/poly, a contradiction.

We remark that Theorem 3.12 also holds for conjunctive, disjunctive, and SNP n1−ε-Turing reduc-
tions.

4 Instance Complexity

Let A be a set and let t(n) be a time bound. A program p is consistent with A for all x, p(x) ∈
{0, 1, ?}, and whenever p(x) 6= ?, p(x) = A(x). The t-instance complexity of x with respect to A,
written ict(x : A) is the length of a shortest program p such that

- p is consistent with A,

- p(x) halts within t(|x|) steps, and

- p(x) = A(x).

Formally, p(x) = U(p, x) where U is an efficient universal machine. See [12] for more information
on instance complexity.

Theorem 4.1. Let A have an AND-function of order s, let α < 1/s, and let q be a polynomial. If
icq(x : A) ≤ nα for all but finitely many x ∈ A, then A ∈ NP/poly.

Proof. For each n, let

Bn = {p | p is consistent with A and |p| ≤ nα}.

Then ||Bn|| ≤ 2nα+1. Define an NPMV function N that on input x guesses a program p and outputs
p if the program accepts x within q(|x|) steps. Then N reduces A to the family (Bn | n ≥ 0), so
Lemma 3.2 yields A ∈ NP/poly.

Corollary 4.2. If NP 6⊆ coNP/poly, then for every polynomial q and ε > 0, there exist infinitely
many φ ∈ SAT with icq(φ : SAT) > |φ|1−ε.

Corollary 4.2 should be contrasted with the result that if P 6= NP, then there are infinitely many
φ with icq(φ : SAT) ≥ c log |φ|. With the stronger NP 6⊆ coNP/poly hypothesis, we get a nearly
linear lower bound on the instance complexity of SAT instances. Since ict(n)(φ : SAT) ≤ |φ|+O(1)
for t(n) = O(n log n), this bound is fairly tight.

We can also show that the lower bound holds for a large set of SAT instances. Our next theorem
is an extension of Theorem 4.1 that accounts for the density of the hard instances.

Theorem 4.3. Let A have an AND-function of order s, let α < 1/s, and let q be a polynomial.
Define H = {x ∈ A | icq(x : A) > |x|α}. If ||H≤n|| ≤ 2nα

for sufficiently large n, then A ∈ NP/poly.

Proof. Let Pn = {p | p is consistent with A and |p| ≤ nα}. We define Bn as the disjoint union of
H≤n and Pn:

Bn = 0H≤n ∪ 1Pn.

Then ||Bn|| ≤ 2nα+2 for large n. Define an NPMV function N that on input x either

(i) outputs 0x, or

(ii) guesses a program p and outputs 1p if p accepts x within q(|x|) steps.

Then N reduces A to the family (Bn | n ≥ 0) and Lemma 3.2 implies A ∈ NP/poly.

Corollary 4.4. Suppose NP 6⊆ coNP/poly. Then for all ε > 0 and polynomials q,∣∣∣∣{φ ∈ SAT≤n | icq(φ : SAT) > |φ|1−ε
}∣∣∣∣ ≥ 2n1−ε

for infinitely many n.

Next we consider reductions to sets that have low instance complexity.

Theorem 4.5. Let A have an AND-function of order s and let α < 1/s. Let C be a set where
for all δ > 0, there is a polynomial r such that icr(x : C) < |x|δ for all but finitely many x. If
A ≤p

nα−T C, then A ∈ NP/poly.

Proof. Let M compute the reduction from A to C in t(n) time. Let ε = [(1/s) − α]/2. Choose
δ > 0 so that t(n)δ < nε for sufficiently large n. There is a polynomial r such that icr(x : C) < |x|δ
for almost all x.

Let x have length n. We can assume that M makes exactly nα queries on input x. Define an
NP machine N that on input x simulates M . When M makes a query qi, N does the following:

(i) Guess a program pi with |pi| < |qi|δ.

(ii) Run pi on input qi, aborting the computation if it runs for more than r(|qi|) steps.

(iii) If pi produces a decision, use that as the answer for query qi in the simulation of M .

(iv) If pi was aborted or did not output a decision, N halts and outputs nothing.

If M accepts x at the end of this simulation, then N outputs the tuple <p1, . . . , pnα> of programs
it guessed.

Each query qi has |qi| ≤ t(n). Then for sufficiently large n,

icr(qi : C) < |qi|δ ≤ t(n)δ < nε.

Define
En = {p | p is consistent with C and |p| < nε}

and
Bn = {<p1, . . . , pnα> | each pi ∈ En}.

Then ||Bn|| ≤ (2nε
)nα

= 2n(1/s)−ε
and N reduces A to the family (Bn | n ≥ 0). Lemma 3.2 now

applies to show A ∈ NP/poly.

We can also extend Theorem 4.5 to consider the density of the hard instances.

Theorem 4.6. Let A have an AND-function of order s and let α < 1/s. Let C be a set where for
all δ > 0, there is a polynomial r such that the collection of hard instances

Hδ,r = {x | icr(x : C) ≥ nδ}

has subexponential density. If A ≤p
nα−T C, then A ∈ NP/poly.

Proof. Let M compute the reduction from A to C in t(n) time. We assume that M makes exactly
nα queries. Let ε = [(1/s) − α]/2 and choose δ > 0 such that t(n)δ < nε for large n. There is a
polynomial r such that Hδ,r has subexponential density.

Let x have length n. Define an NP machine N that on input x simulates M . When M makes
a query qi, N nondeterministically chooses (I) or (II) below to answer the query:

(I) Guess a bit b and use it as the answer for query qi. Record zi = <b, qi>.

(II) (i) Guess a program pi with |pi| < |qi|δ.
(ii) Run pi on input qi, aborting the computation if it runs for more than r(|qi|) steps.

(iii) If pi was aborted or did not output a decision, N halts and outputs nothing.

(iv) If pi produces a decision, use that as the answer for query qi. Record zi = <λ, pi>.

If M accepts x at the end of the simulation, then N outputs the tuple <z1, . . . , znα>.
We have ||Hδ,r

≤t(n)|| < 2nε
for sufficiently large n. Define

En = {<λ, p> | p is consistent with C and |p| < nε},

Dn = {<1, q> | q ∈ Hδ,r
≤t(n) ∩ C}

∪{<0, q> | q ∈ Hδ,r
≤t(n) ∩ C},

and
Bn = {<z1, . . . , znα> | each zi ∈ Dn ∪ En}.

Then
||Bn|| =

(
||En||+ ||Hδ,r

≤t(n)||
)nα

≤ (2nε+1)nα ≈ 2n(1/s)−ε
.

We apply Lemma 3.2 to obtain A ∈ NP/poly.

Corollary 4.7. Suppose that NP 6⊆ coNP/poly and let C be ≤p
n1−ε−T

-hard for NP. There is a
δ > 0 such that for every polynomial r, the set{

x
∣∣∣icr(x : C) ≥ |x|δ

}
has exponential density.

Just like Theorem 3.11 we can show that Corollary 4.7 also holds for strong nondeterministic
polynomial-time reductions. Also, by following the line of argument in Theorem 3.12, we can obtain
an absolute result for instance complexity in ΣP̃

3 -hard sets.

Acknowledgements. We thank Lance Fortnow and Rahul Santhanam for sharing a preliminary
version of [4], and for useful discussions. We also thank Scott Aaronson, Steve Fenner, Kolya
Vereshchagin, and John Rogers for interesting discussions.

References

[1] E. Allender, L. A. Hemachandra, M. Ogiwara, and O. Watanabe. Relating equivalence and
reducibility to sparse sets. SIAM Journal on Computing, 21(3):521–539, 1992.

[2] L. Berman and H. Hartmanis. On isomorphisms and density of NP and other complete sets.
SIAM Journal on Computing, 6(2):305–322, 1977.

[3] H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles and the exponen-
tial hierarchy. In Proceedings of the 12th Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 116–127. Springer, 1992.

[4] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for
NP. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages
133–142, 2008.

[5] S. Fortune. A note on sparse complete sets. SIAM Journal on Computing, 8(3):431–433, 1979.

[6] J. M. Hitchcock. Online learning and resource-bounded dimension: Winnow yields new lower
bounds for hard sets. SIAM Journal on Computing, 36(6):1696–1708, 2007.

[7] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1–3):40–56, 1982.

[8] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes.
In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pages 302–309,
1980.

[9] S. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis.
Journal of Computer and System Sciences, 25(2):130–143, 1982.

[10] A. Meyer and M. Paterson. With what frequency are apparently intractable problems difficult?
Technical Report MIT/LCS/TM-126, MIT Laboratory for Computer Science, 1979.

[11] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility of NP
sets to sparse sets. SIAM Journal on Computing, 20(3):471–483, 1991.

[12] P. Orponen, K-I Ko, U. Schöning, and O. Watanabe. Instance complexity. Journal of the
ACM, 41(1):96–121, 1994.

[13] C. K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science, 26(3):287–300, 1983.

