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Abstract

We consider resource-bounded measure in double-exponential-time complexity classes. In
contrast to complexity class separation translating downwards, we show that measure separation
translates upwards. For example,

µp(NP) 6= 0 ⇒ µe(NE) 6= 0 ⇒ µexp(NEXP) 6= 0.

We also show that if NE does not have e-measure 0, then the NP-machine hypothesis holds.
We give oracles relative to which the converses of these statements do not hold. Therefore the
hypothesis on the e-measure of NE is relativizably weaker than the often-investigated p-measure
hypothesis on NP, but it has many of the same consequences.

1 Introduction

The strong hypothesis that NP does not have p-measure 0, written µp(NP) 6= 0, has been often
investigated and shown to have many plausible consequences in complexity theory that are not
known to follow from more traditional hypotheses such as P 6= NP. The natural question to ask
is whether µp(NP) 6= 0 is the weakest such hypothesis for which these consequences hold. For this
we consider resource-bounded measure in double-exponential time.

Book [4] showed that complexity class separations translate downward. For example,

E 6= NE ⇒ P 6= NP.

In contrast, we show that measure separations translate upward:

µp(NP) 6= 0 ⇒ µe(NE) 6= 0

and
µe(NE) 6= 0 ⇒ µexp(NEXP) 6= 0.

These upward separations illuminate the often-observed relationship between the measure of
NP and exponential-time classes. For example, Lutz [12] showed that µp(NP) 6= 0 implies ENP has
high NP-oracle circuit-size complexity, which in turn yields PNP = BPPNP via Nisan-Wigderson
pseudorandom generators [15]. Our result that µp(NP) 6= 0 implies µe(NE) 6= 0 makes it very clear

∗This research was supported in part by NSF grant 0515313.
†Department of Computer Science, University of Wyoming. rharkins@cs.uwyo.edu
‡Department of Computer Science, University of Wyoming. jhitchco@cs.uwyo.edu

1



why this result holds – if µe(NE) 6= 0, then NE has high circuit-complexity relative to any oracle
in E.

Hitchcock and Pavan [5] showed that many of the consequences of µp(NP) 6= 0 also follow from
the NP-machine hypothesis. This hypothesis asserts that there is an NP-machine accepting 0∗

such that no subexponential-time algorithm can compute its accepting computations. While at
first glance this is a curious statement, the NP-machine hypothesis turns out to capture much of
the essential character in nondeterministic hardness assumptions. We show that µe(NE) 6= 0 also
implies the NP-machine hypothesis.

We investigate the relative strength of the µe(NE) 6= 0 hypothesis by constructing an oracle
relative to which µe(NE) 6= 0 but µp(NP) = 0. We also construct an oracle where µexp(NEXP) 6= 0
and the NP-machine hypothesis fails. Taken together, our results suggest that µe(NE) 6= 0 is the
weakest useful measure hypothesis on nondeterministic classes.

For randomized classes the situation is quite different. We use recent work in derandomization
[7] and results on zero-one laws for p-measure [19, 8] to show that µp(BPP) = µe(BPE), and
similarly for ZPP, RP, and their exponential variants.

This paper is organized as follows. In section 2 we review resource-bounded measure and
explain how it is defined in double-exponential-time classes. The upward measure separations are
presented in section 3. In section 4 we consider weaker measure-theoretic hypotheses. We consider
randomized classes in Section 5. Section 6 concludes with a discussion of extensions to even larger
classes.

2 Resource-Bounded Measure

In this section we review some of the fundamental principles of resource-bounded measure, and
show how they extend to the double-exponential-time setting. For more information regarding
resource-bounded measure, see [10] and [11].

We identify each language A ⊆ {0, 1}∗ with its infinite binary characteristic sequence

χA = [[s0 ∈ L]][[s1 ∈ L]][[s2 ∈ L]] . . . ,

where s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . . is the standard enumeration of {0, 1}∗, and [[Ψ]] is the
boolean evaluation of Ψ. The set of all infinite binary sequences is the Cantor space C. With this
identification we view complexity classes as subsets of C.

A martingale is a function d : {0, 1}∗ → [0,∞) satisfying the averaging condition

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗. We can consider a martingale as a betting scheme that bets on the next bit of
the characteristic sequence of a language. The averaging condition says that the betting scheme is
fair. When a martingale makes a bet, it places a certain amount of its capital (not to exceed its
total capital) on the next bit in the sequence. Then that bit is revealed, and if the martingale has
guessed correctly, it receives back twice the amount it bid. Otherwise, it loses all the amount bid.
A martingale succeeds on a sequence A ∈ C if its capital is unbounded while betting on A:

lim sup
n→∞

d(A�n) = ∞.
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Here we write A�n for the first n bits of A. The success set of a martingale d, S∞[d], is the set of
all languages on which d succeeds.

Ville [20] proved that a class C ⊆ C has Lebesgue measure 0 if and only if there is some martin-
gale d such that C ⊆ S∞[d]. Resource-bounded measure is defined by restricting the martingales in
Ville’s theorem. A resource bound is a class ∆ of functions. For example, ∆ could be functions that
are computable in polynomial time. We say that a class C has ∆-measure 0 and write µ∆(C) = 0 if
for some martingale d ∈ ∆, C ⊆ S∞[d]. We say that a class C has ∆-measure 1 and write µ∆(C) = 1
if µ∆(Cc) = 0.

As martingales are real-valued functions, in general we have to work with computable approx-
imations, as the actual values may not be computable. However, Juedes and Lutz [9] proved an
exact computation lemma which states that given a martingale with a computable approximation,
we can obtain a rational-valued martingale computable within a slightly larger time bound with a
success set that subsumes the success set of the original martingale. Because of this, we can assume
that all martingales are rational-valued and exactly computable.

Useful in the theory of resource-bounded measure are functions called constructors. A con-
structor δ : {0, 1}∗ → {0, 1}∗ maps any string w ∈ {0, 1}∗ into an extension δ(w) = wz for some
z ∈ {0, 1}∗, z 6= ε. The result R(δ) of a constructor δ is the unique sequence R(δ) w δn(λ) for
all n ∈ N, i.e. the sequence obtained when δ is applied repeatedly to the empty string. For each
resource bound ∆, we define the complexity class

R(∆) = {R(δ) | δ ∈ ∆ is a constructor}.

Let ∆ be a standard resource bound. Lutz [10] showed that for each martingale d ∈ ∆ there is
a constructor δ ∈ ∆ such that the result R(δ) 6∈ S∞[d]. In particular, this implies that R(∆) does
not have ∆-measure 0. Furthermore, for every constructor δ ∈ ∆, there is a martingale d ∈ ∆ such
that d succeeds on R(δ). Together these statements justify ∆-measure as the “right” measure for
the class R(∆) and suggest the following definitions. Let C be a complexity class.

1. We say that C has measure 0 in R(∆) and write µ(C | R(∆)) = 0, if µ∆(C ∩R(∆)) = 0.

2. We say that C has measure 1 in R(∆) and write µ(C | R(∆)) = 1, if µ(Cc | R(∆)) = 0.

The two most common instances of ∆ are the following time-bounded classes.

p = p1 = {f | f is computable in nO(1) time } (polynomial)
p2 = {f | f is computable in 2(log n)O(1)

time} (quasipolynomial).

Lutz showed that for these resource bounds we have

R(p) = E = DTIME(2O(n))

and
R(p2) = EXP = DTIME(2nO(1)

).

Therefore p-measure yields measure in E and p2-measure yields measure in EXP.
We will work with the following exponential-time resource bounds.

e = e1 = {f | f is computable in 2O(n) time} (linear exponential)
exp = e2 = {f | f is computable in 2nO(1)

time} (polynomial exponential)

e3 = {f | f is computable in 22(log n)O(1)

time} (quasipolynomial exponential)
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It is routine to show the following. Here EE = DTIME(22O(n)
) and EEXP = DTIME(22nO(1)

).

Lemma 2.1.

1. R(e) = DTIME(2O(2n)).

2. R(exp) = EE.

3. R(e3) = EEXP.

Therefore exp-measure yields measure within EE and e3-measure gives measure within EEXP.
These results also relativize, in that if we allow the martingales access to an oracle A, then expA-
measure yields measure with EEA, eA

3 -measure gives measure with EEXPA, and in general ∆A-
measure yields measure within R(∆A).

Results from measure within E and EXP typically carry up to EE and EEXP. For example,
for all c ∈ N, DTIME(22cn

) has measure 0 in EE and DTIME(22nc

) has measure 0 in EEXP.
Mayordomo’s result [14] about bi-immunity extends to show that

{A | A is DTIME(22cn
)-bi-immune}

has measure 1 in EE. Lutz [10] showed that for all α < 1, the circuit-size complexity class

SIZE
(

2n

n

(
1 +

α log n

n

))
has pspace-measure 0. Here pspace denotes the class of functions computable in polynomial space.
Since pspace ⊆ exp, it follows immediately that these classes also have exp-measure 0. In fact, if
we instead consider A-oracle circuits for any oracle A ∈ E, the SIZEA versions of the above classes
can be shown to have e-measure 0.

We remark that the pi’s and ei’s in this section are the first few classes in a general hierarchy
that we discuss in section 6.

3 Upward Measure Separations

For a class C of languages, let Pm(C) = {A | (∃B ∈ C)A ≤p
m B} be the ≤p

m-closure of C. The
following result is often useful.

Theorem 3.1. (Juedes and Lutz [9]) For any class C, if µp2
(Pm(C)) = 0, then µp(C) = 0.

In particular, if C is closed under ≤p
m-reductions, then C has p-measure 0 if and only if it has

p2-measure 0.
The proof of Theorem 3.1 used the martingale dilation technique of Ambos-Spies, Terwijn, and

Zheng [2], which involves the following definitions.

1. For a string w ∈ {0, 1}∗ and a language A ⊆ {0, 1}∗, the restriction of w to A is the string
w �A defined by successively concatenating the bits w[n] for which sn ∈ A. (Recall that sn is
the nth string in the enumeration of {0, 1}∗.)

2. Let f : {0, 1}∗ → {0, 1}∗.
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(a) The range of f is the language range(f) = {f(x) | x ∈ {0, 1}∗}.
(b) We say that f is strictly increasing if x < y implies f(x) < f(y) for all strings x and y.

(c) For any language A, the preimage of A under f is f−1(A) = {x | f(x) ∈ A}.

3. Given a function f : {0, 1}∗ → {0, 1}∗ and a martingale d, the f-dilation of d is the function
fˆd : {0, 1}∗ → [0,∞) defined by

fˆd(w) = d(w �range(f)).

Lemma 3.2. (Ambos-Spies, Terwijn, and Zheng [2]) If f : {0, 1}∗ → {0, 1}∗ is strictly increasing
and d is a martingale, then fˆd is also a martingale. Moreover, for every language A ⊆ {0, 1}∗, if
d succeeds on f−1(A), then fˆd succeeds on A.

Theorem 3.1 extends to exponential-time measures as follows. Here we let Linm(C) be the
closure of C under linear-time many-one reductions, in analogy with Pm(C).

Theorem 3.3. Let C be a complexity class.

1. If µe2
(Linm(C)) = 0, then µe(C) = 0.

2. If µe3
(Pm(C)) = 0, then µe(C) = 0.

Proof. We prove (1). The proof of (2) is similar.
Assume that µe2

(Linm(C)) = 0. By the exact computation lemma, there exists an exact e2-
martingale d such that Linm(C) ⊆ S∞[d]. Fix k ≥ 1 such that d is a 2nk+1

-martingale and define
f : {0, 1}∗ → {0, 1}∗ such that

f(x) = 0k|x|1x.

Since f is strictly increasing, then the f -dilation of d, fˆd, is a martingale. Let w′ = w �range(f).
Note that the time required to compute w′ is O(|w|2), and to compute d(w′) is O(2|w

′|k+1
). But

|w′| is bounded by the number of x such that (k + 1)|x|+ 1 ≤ |s|w|| ≤ log(1 + |w|). Thus

|w′| ≤ 2(log(1+|w|)−1) 1
k+1

+1.

The time required to compute fˆd(w) is

O
(
|w|2 + 2|w

′|k+1
)

,

which simplifies to O
(
2c(1+|w|)) for some constant c. Therefore fˆd is an e-martingale.

Now let A ∈ C. Then f−1(A) ∈ Linm(A) ⊆ S∞[d], so A ∈ S∞[fˆd]. This shows that C ⊆
S∞[fˆd], and µe(C) = 0.

The closure of NE under linear-time reductions and NEXP under polynomial-time reductions
allows us to conclude the following.

Corollary 3.4.

1. µe(NE) 6= 0 ⇔ µe2
(NE) 6= 0.
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2. µe(NEXP) 6= 0 ⇔ µe2
(NEXP) 6= 0 ⇔ µe3

(NEXP) 6= 0.

Additionally, since NEXP = Pm(NE), we have our first instance of upward measure separation:

Theorem 3.5. If µe(NE) 6= 0, then µexp(NEXP) 6= 0.

Book [4] showed that complexity class equality propagates upwards. For example:

P = NP ⇒ E = NE,

E = NE ⇒ EE = NEE.

However, there are oracles against upward separations for complexity classes. For example, there
is an oracle relative to which PA 6= NPA and EA = NEA (see [1]). Despite this, we now show that
measure separations for these classes translate upward.

For a language A, let
Tally(A) = {0n | sn ∈ A}

and
Tally−1(A) = {sn | 0n ∈ A}.

For a class C, let Tally−1(C) = {Tally−1(A) | A ∈ C}.

Theorem 3.6. If µe(Tally−1(C)) = 0, then µp(C) = 0.

Proof. By the exact computation lemma, let d be an exact 2cn-time martingale that succeeds on
Tally−1(C). Define f : {0, 1}∗ → {0, 1}∗ by f(sn) = 0n. Then for all A, f−1(A) = Tally−1(A).
By Lemma 3.2, it follows that fˆd succeeds on C. The running time of fˆd is O(nc), so C has
p-measure 0.

Theorem 3.7. If µp(NP) 6= 0, then µe(NE) 6= 0.

Proof. Since Tally−1(NP) = NE, this is immediate from Theorem 3.6.

Theorem 3.7 also holds for many other classes. For example, if µp(BPP) 6= 0, then µe(BPE) 6= 0.
We will discuss randomized classes in more detail later in the paper.

4 Weaker Hypotheses

Recently, Hitchcock and Pavan [5] showed that if µp(NP) 6= 0, then the following hypothesis
holds.

NP-Machine Hypothesis: There is an NP machine M that accepts 0∗ and an ε > 0 such that
no 2nε

-time machine computes infinitely many accepting computations of M .

We now show that the NP-machine hypothesis holds under a hypothesis on the measure of NE,
which is weaker by Theorem 3.7.

Theorem 4.1. If µe(NE) 6= 0, then the NP-machine hypothesis holds.
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Proof. Let LLN be the set of all A that satisfy

lim
n→∞

#(1, A�n)
n

=
1
2
,

where #(1, w) denotes the number of 1’s in the string w. Then µe(LLN) = 1 (in fact, it is well-
known that µp(LLNc) = 0). Let X be the set all languages A that are 22n

-immune. Then we also
have µe(X) = 1.

Our assumption µe(NE) 6= 0 implies that there exists a language A ∈ NE∩LLN∩X. Let N be
an NTIME(2cn) machine that accepts A. Since A ∈ LLN, there is some n0 such that for all n ≥ n0,
A[n..2n] contains a 1.

We define an NP machine M as follows. On input 0n, M chooses a value m ∈ [n, 2n] and
simulates N on input sm. If n < n0, M accepts immediately. Otherwise, M accepts if N accepts
sm. If n ≥ n0, there will always be m ∈ [n, 2n] such that N accepts sm, so M will accept 0n. Thus
M accepts 0∗ and the computation time on input 0n is bounded by O(nc).

To see that M satisfies the NP-machine hypothesis, suppose to the contrary that there is some
algorithm D that computes infinitely many accepting computations of M that runs in time less
than 2nε

for all ε > 0. We construct an algorithm D′ as follows. For any string sn, D′ simulates
D on 0dn/2e, 0dn/2e+1, . . . , 0n. If D produces a witness for sn ∈ A, D′ accepts. The running time
of D′ is less than O(22ε|sn|

) and |L(D′)| = ∞, contradicting our assumption that A is 22n
-immune.

Therefore, the NP-machine hypothesis holds.

Combining Theorem 4.1 with results of [5] and [17], we have the following. Let CvKL (for Cook
versus Karp-Levin) be the assertion that there is a Turing-complete problem for NP that is not
many-one complete.

Corollary 4.2. If µe(NE) 6= 0, then NP = AM, PNP = BPPNP, PNP does not have nk-size circuits
for any fixed k, and CvKL holds.

There are additional consequences from [5] that we could list in Corollary 4.2.
We now have the following picture.

µ(NP | EXP) 6= 0
⇔ µp2

(NP) 6= 0
⇔ µp(NP) 6= 0

⇓

µ(NE | EE) 6= 0
⇔ µe2

(NE) 6= 0
⇔ µe(NE) 6= 0

⇒ NP-Machine
Hypothesis

⇒

NP = AM
PNP = BPPNP

PNP 6⊆ SIZE(nk)
CvKL

⇓
µ(NEXP | EEXP) 6= 0
⇔ µe3

(NEXP) 6= 0
⇔ µexp(NEXP) 6= 0
⇔ µe(NEXP) 6= 0
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Is it possible that µe(NE) = µp(NP)? That µe(NE) = µexp(NEXP)? Does µexp(NEXP) 6= 0
also imply the NP-machine hypothesis? The answers to these questions are probably no. We finish
this section by constructing oracles that demonstrate the above picture is likely the best possible.

Theorem 4.3. There is an oracle A relative to which µpA(NPA) = 0 but µeA(NEA) 6= 0.

Proof. We will construct our oracle A so that NEA = EEA while µpA(NPA) = 0. In the construction
we will use two bijections 〈·, ·〉 : N2 → N and 〈·, ·, ·〉 : N3 → N.

Let {M?
i } be an enumeration of all deterministic oracle machines and define

KA =
{

0〈i,m,t〉
∣∣∣ MA

i accepts 0m in < 2t/5 steps
}

.

This set is complete for EA ∩ TALLY under linear-time reductions. If we construct A so that
KA ∈ NPA, then by padding we have NEA = EEA, which implies µeA(NEA) 6= 0.

To obtain µpA(NPA) = 0, we will ensure that each NPA set either violates the law of large
numbers or has an infinite subset in P. For this, let {N?

i } be an enumeration of all NP oracle
machines, where Ni is clocked to run in time ni + i.

Initially we let A = ∅. The construction proceeds in stages. In stage n, n ≥ 0, we do the
following:

step 1 Let i, m, and t be such that 〈i, m, t〉 = n, and run MA
i on 0m for 2t/5 steps. Reserve for Ac

all strings not in A queried by this computation. If MA
i accepts, find the least y, |y| = 3n,

such that 〈0n, y〉 is not reserved for Ac and add 〈0n, y〉 to A.

step 2 Now let i and j be such that 〈i, j〉 = n, and consider NA
i on all strings x of size n. Let

x and p be minimal such that NA
i accepts x with computation path p and there exists s,

|s| = (i + 1) log n, such that 〈x, s, i〉 is neither reserved for Ac nor queried by NA
i (x) on path

p. Then we reserve for Ac all strings queried by path p of NA
i (x) and add 〈x, s, i〉 to A for

the minimal such s. If such an x and p do not exist, do nothing.

In each stage n, we reserve at most 2n/5 + ni + i strings for Ac. Therefore at the beginning of
stage n there are fewer than 2n/4 strings reserved for Ac, so we can find a y among the 23n possible
candidates to add to A in step 1. An NPA machine can decide KA on input 0n by guessing a string
y of length 3n and accepting if 〈0n, y〉 ∈ A.

To see that NPA has pA-measure 0, consider a language B decided by NA
i . We look at two

cases:

• For infinitely many n, |B=n| < 2n/3.

• For all but finitely many n, |B=n| ≥ 2n/3.

In the first case, B fails the law of large numbers. There is a p-martingale that succeeds on all such
B. In the second case, we claim that B has an infinite subset in PA. Consider the set

Qi =
{

x
∣∣∣ 〈x, s, i〉 ∈ A for some s ∈ {0, 1}(i+1) log |x|

}
.

Then Qi ∈ PA as we can check all possible s’s in O(ni+1) time. By construction of A, we have
Qi ⊆ L(NA

i ).
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Finally, we claim that Qi is infinite. Let n such that |B=n| ≥ 2n/3 and n = 〈i, j〉 for some j.
Since NA

i runs in time ni + i, each computation of NA
i on an input x of length n can query at most

ni strings. In particular, for each x ∈ B=n every accepting path p does not query some string of
the form 〈x, s, i〉. Therefore there are at least 2n/3 candidates 〈x, s, i〉 to add to A in step 2. Since
this is more than the number of strings reserved for Ac, Qi will have some element of length n.

Theorem 4.4. There is an oracle A relative to which µexpA(NEXPA) 6= 0 and the NPA-machine
hypothesis fails.

Proof. Let {M?
i } be an enumeration of all deterministic oracle machines, let {N?

i } be an enumera-
tion of all NP oracle machines, and define

KA =
{

0〈i,m,t〉
∣∣∣∣ MA

i accepts 0m in < 22(log t)1/3

steps
}

.

This is set is complete for EXPA ∩ TALLY under quasipolynomial-time reductions. We will con-
struct A so that KA ∈ NTIMEA(2(log n)2). This implies that NEXPA = EEXPA, which yields
µexpA(NEXPA) 6= 0.

Initially we let A = ∅. The construction proceeds in stages. In each stage n, n ≥ 0, we do the
following.

step 1 Let i, m, and t be such that 〈i,m, t〉 = n, and run MA
i on 0m for 22(log t)1/3

steps. Reserve for
Ac each string not in A queried by MA

i (0m). If MA
i accepts, find a y such that |y| = 2(log n)2

and 〈0n, y〉 is not reserved for Ac. Add 〈0n, y〉 to A.

step 2 Let i and j be such that 〈i, j〉 = n, and run NA
i on 0j . If NA

i accepts, let w be some
accepting computation path. Reserve for Ac all strings not in A queried by NA

i along w.
Find an r (if one exists) such that |r| = 2(log n)1/2

and for all k ∈ [0, . . . , |w|], 〈i, r, k〉 has not
been reserved for Ac. For each k ∈ [0, . . . , |w|], if w[k] = 1, add 〈i, r, k〉 to A. Otherwise
reserve 〈i, r, k〉 for Ac

By stage n, step one has reserved no more than n22(log n)1/3

strings, and step two has reserved

n2(log(n+1))2 strings. Altogether at most n22(log n)1/3

+ n2(log n)2 strings have been reserved, which is
less than the 22(log n)2

strings of size 2(log n)2 . Thus y exists at each stage. By construction, we have
0n ∈ KA ⇔ 〈0n, y〉 ∈ A for some y of length 2(log n)2 . This implies KA ∈ NTIME(2(log n)2).

To see that the NP-machine hypothesis fails, consider the following algorithm. To find an
accepting computation of NA

i on 0n, the algorithm loops over each r of size 2(log n)1/2
and constructs

a candidate string w by querying A for each 〈i, r, k〉, with k ∈ [0, . . . , ni + i]. Then the algorithm
checks if w is an accepting computation of Ni. If so, it outputs w.

We claim that if NA
i accepts 0∗, then by our construction infinitely many w will be encoded

in A, and the algorithm will be able to output those w. Thus there is a machine that will output
infinitely many accepting computations of NA

i .

The algorithm loops over each r, requiring 22(log n)1/2

iterations. Constructing each w and
checking if w is an accepting computation path of NA

i requires p(n) time for some polynomial p.

Thus it requires p(n)22(log n)1/2

time. Since 2(log n)1/2
is asymptotically less than nδ for all δ > 0, our
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running time is at most p(n)2nδ
= 2nδ′

, which is less than 2nε
for all ε. Therefore the NPA-machine

hypothesis fails.
We need only to check that r exists infinitely often for each NA

i . Our construction visits
each NPA machine an infinite number of times. The number of strings reserved by stage n is

O(2(log n)2 + n22(log n)1/3

). This is o(22(log n)1/2

), the number of candidate strings for r. Thus for
sufficiently large n, r exists.

As the proofs of Theorems 3.7 and 4.1 relativize, we also have the following for the oracle of
Theorem 4.4:

Corollary 4.5. There is an oracle A relative to which µexpA(NEXPA) 6= 0 but µeA(NEA) =
µpA(NPA) = 0.

5 Randomized Classes

In this section we show that the situation is dramatically different for randomized classes. The
resource-bounded measure of BPP, RP, and ZPP is very well understood. Each of these classes
has zero-one law [18, 19, 8], that is, their measure within EXP is either 0 or 1.

Recently, Impagliazzo, Kabanets, and Wigderson [7] showed that these randomized classes are
equal to EXP if and only if their exponential variant is equal to EE. We will combine this and
other results in [7] with the above zero-one laws to derive equivalences for the measures of these
classes. First, we need a simple result in e-measure.

Proposition 5.1. For every c ∈ N, io-[DTIME(22cn
)/cn] has e-measure 0.

The proof of Proposition 5.1 is analogous to the known result that io-[DTIME(2cn)/cn] has
p-measure 0 [10, 6]. (In fact, because we are working at the exponential-time level we could prove
something much stronger than this, pushing the advice up from linear to nearly 2n.)

Theorem 5.2. The following are equivalent.

(1) µ(BPP | EXP) = 0. (2) µ(BPE | EE) = 0.

(3) BPP 6= EXP. (4) BPE 6= EE.

Proof. By the measure conservation theorem we have (2) implies (4). The equivalence of (1) and
(3) was proved by van Melkebeek [19]. Impagliazzo, Kabanets, and Wigderson [7] showed that (3)
and (4) are equivalent. Finally, another result in [7] is that (4) implies BPE ⊆ io-[DTIME(22n

)/n],
which implies (2) by Proposition 5.1.

Theorem 5.3. The following are equivalent.

(1) µ(ZPP | EXP) = 0. (2) µ(RP | EXP) = 0.

(3) µ(ZPE | EE) = 0. (4) µ(RE | EE) = 0.

(5) RP 6= EXP. (6) ZPP 6= EXP.
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(7) RE 6= EE. (8) ZPE 6= EE.

Proof. Impagliazzo and Moser [8] showed that (1), (2), (5), and (6) are equivalent. The equiva-
lence of (5), (6), (7), and (8) follows from the work of Impagliazzo, Kabanets, and Wigderson [7].
Additionally, in [7] it was shown that (8) implies ZPE ⊆ io-DTIME(22n

), which implies (3) by
Proposition 5.1. The converse (3) implies (8) follows from the measure conservation theorem. As
(4) immediately implies (3), it remains to show that (3) implies (4).

Suppose that (4) does not hold, i.e., µ(RE | EE) 6= 0. Then using an argument similar to one
in [8], we can show that ZPP = BPP. This implies that ZPE = RE and therefore that (3) does not
hold.

Therefore
µ(BPP | EXP) = µ(BPE | EE)

and
µ(RP | EXP) = µ(ZPP | EXP) = µ(RE | EE) = µ(ZPE | EE),

each of these quantities is either 0 or 1.

6 Further Upward

The pi and ei hierarchies are the first two slices of a much larger hierarchy, which we now briefly
discuss. Let Γ0,0 be the class of all functions f : N → N such that (∃c)(∀∞n)f(n) ≤ cn. For each
i, j ≥ 0, we let

Γi+1,0 = {f | (∃g ∈ Γi,0)(∀∞n)f(n) ≤ 2g(n)}

and
Γi,j+1 = {f | (∃g ∈ Γi,j)(∀∞n)f(n) ≤ 2g(log n)}.

We note that the classes (Γ0,i)i∈N are the same as Lutz’s (Gi)i∈N classes [10].
For each i, j ≥ 0, we define the complexity class

Ti,j =
⋃

f∈Γi,j

DTIME(f)

and similarly we let ∆i,j be the class of all functions that are computable in time f(n) for some
f ∈ Γi,j . The union of all the Ti,j ’s gives the class ELEMENTARY [16]. Lutz’s hierarchies are the
slices pi = ∆0,i and Ei = T1,i−1 for all i ≥ 1. The exponential resource bounds we defined earlier
are ei = ∆1,i−1. The double-exponential time classes fit in as EE = T2,0 and EEXP = T2,1. Lutz’s
result that R(pi) = Ei and our Lemma 2.1 can be extended to show that for all i ≥ 0 and j ≥ 1,

R(∆i,j) = Ti+1,j−1.

Let us briefly consider the resource bound eexp = ee2 = ∆2,1. This is useful for measuring
the class NEE which is a subset of the triple-exponential class EEE = T3,0. We note that a more
general version of Theorem 3.6 holds: if µ∆i+1,j (Tally−1(C)) = 0, then µ∆i,j+1(C) = 0. Using this
along with an extension of Theorem 3.3, we have

µexp(NE) 6= 0 ⇒ µeexp(NEE) 6= 0.
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Lutz and Mayordomo [13] used Mayordomo’s bi-immunity result [14] to show that µp(NP) 6= 0
implies E 6= NE and EE 6= NEE. They combined this with Bellare and Goldwasser’s result that
EE 6= NEE implies search does not reduce to decision for all NP problems [3]. We can view Lutz
and Mayordomo’s result as an easy corollary of upward measure separation:

µp(NP) 6= 0 ⇒ µexp(NE) 6= 0 ⇒ µeexp(NEE) 6= 0 ⇒ · · ·
⇓ ⇓ ⇓

P 6= NP ⇐ E 6= NE ⇐ EE 6= NEE ⇐ · · ·

The upward separations in resource-bounded measure extend all the way through the above
hierarchy. This allows making weaker and weaker hypotheses on nondeterministic classes. However,
our results suggest that the measure hypothesis on NE is the weakest hypothesis that is generally
useful for complexity theory.

It would be interesting to see µp(NP) 6= 0, µexp(NE) 6= 0, and µeexp(NEE) studied further for
their relative explanatory power. We have shown the measure hypothesis on NE implies the NP-
machine hypothesis, which yields many, but not all the consequences of µp(NP) 6= 0. The measure
hypothesis on NEE implies at least one interesting consequence (search versus decision for NP).
The question to consider is: which of the consequences of µp(NP) 6= 0 require its full strength, and
which can be derived from these weaker hypotheses?
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