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Abstract

The word “martingale” has related, but different, meanings in probability theory
and theoretical computer science. In computational complexity and algorithmic infor-
mation theory, a martingale is typically a function d on strings such that E(d(wb)|w) =
d(w) for all strings w, where the conditional expectation is computed over all possible
values of the next symbol b. In modern probability theory a martingale is typically a
sequence ξ0, ξ1, ξ2, . . . of random variables such that E(ξn+1|ξ0, . . . , ξn) = ξn for all n.

This paper elucidates the relationship between these notions and proves that the
latter notion is too weak for many purposes in computational complexity, because
under this definition every computable martingale can be simulated by a polynomial-
time computable martingale.

1 Introduction

Since martingales were introduced by Ville [22] in 1939 (having been implicit in earlier works
of Lévy [9, 10]), they have followed two largely disjoint paths of scientific development and
application. Along the larger and, to date, more significant path, Doob developed them
into a powerful tool of probability theory that, especially following his influential 1953 book
[6], has become central to many areas of research, including probability, stochastic processes,
functional analysis, fractal geometry, statistical mechanics, and mathematical finance. Along
the smaller and more recent path, effective martingales (martingales satisfying various com-
putability conditions) have been used in theoretical computer science, first in the 1970’s
by Schnorr [18, 19, 20, 21] in his investigations of Martin-Löf’s definition of randomness
[15] and variants thereof, and then in the 1990’s by Lutz [12, 14] in the development of
resource-bounded measure. Many researchers have extended these developments, and effec-
tive martingales are now an active research topic that makes frequent contributions to our
understanding of computational complexity, randomness, and algorithmic information.
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A curious thing about these two paths of research is that they interpret the word “mar-
tingale” differently. In computational complexity and algorithmic information theory, a
martingale is typically a real-valued function d on {0, 1}∗ such that

E[d(wb)|w] = d(w) (1.1)

for all strings w, where the expectation is conditioned on the bit history w (the string seen
thus far) and computed over the two possible values of the next bit b. When the underlying
probability measure is uniform (0 and 1 equally likely, independent of prior history), equation
(1.1) becomes the familiar identity

d(w) =
d(w0) + d(w1)

2
. (1.2)

Intuitively, a martingale d is a strategy for betting on the successive bits of an infinite binary
sequence, and d(w) is the amount of capital that a gambler using d will have after w if the
sequence starts with w. Thus d(λ) is the initial capital, and equation (1.1) says that the
payoffs are fair.

On the other hand, in probability theory, a martingale is typically a sequence ξ0, ξ1, ξ2, . . .
of random variables such that

E[ξn+1|ξ0, . . . , ξn] = ξn (1.3)

for all n ∈ N. Such a sequence is also called a martingale sequence or a martingale process,
and we exclusively use the latter term here in order to distinguish the two notions under
discussion.

To understand the essential (i.e., essential and nonobvious) difference between martin-
gales and martingale processes, we first need to dispose of three inessential differences. First
a martingale is a function from {0, 1}∗ to R, while a martingale process is a sequence of
random variables. To see that this is only a difference in notation, let C be the Cantor
space, consisting of all infinite binary sequences. Then we can identify each martingale d
with the sequence ξ0, ξ1, ξ2, . . . of functions ξn : C → R defined by

ξn(S) = d(S[0..n− 1]),

where S[0..n−1] is the n-bit prefix of S. Then ξ0, ξ1, ξ2, . . . is a sequence of random variables
and equation (1.1) says that

E[ξn+1|w] = ξn (1.4)

for all n ∈ N and w ∈ {0, 1}n. (See sections 2 and 3 for a precise treatment of this and other
ideas developed intuitively in this introduction.)

The other two inessential differences are that martingales, unlike martingale processes,
are typically required to be nonnegative and to have C as their underlying sample space
(i.e., as the domain of each of the random variables ξn). To date it has been convenient to
include nonnegativity in the martingale definition because most applications have required
martingales that are nonnegative (or, equivalently, bounded below). Similarly, it has been
convenient to have C – or some similar sequence space – as the underlying sample space
because martingales have been used to investigate the structures of such spaces. However,
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the first of these requirements has an obvious effect, not needing further analysis, while
the second is inessential and unlikely to persist into the future. In this paper, in order
to facilitate our comparison, we ignore the nonnegativity requirement on martingales, and
for both martingales and martingale processes, we focus on the case where the underlying
sample space is C.

The essential difference between the martingale processes of probability theory and the
martingales of theoretical computer science is thus the difference between equations (1.3)
and (1.4). Translating our remarks following (1.1) into the notation of (1.4), ξn denotes the
gambler’s capital after n bets, and equation (1.4) says that for each bit history w ∈ {0, 1}n,
the expected value of the gambler’s capital ξn+1 after the next bet, conditioned on the bit
history w, is the gambler’s capital ξn before the next bet. In contrast, equation (1.3) says
that for each capital history c0, . . . , cn, the expected value of the gambler’s capital ξn+1 after
the next bet, conditioned on the capital history ξ0 = c0, . . . , ξn = cn, is the gambler’s capital
ξn before the next bet. As we shall see, it is clear that (1.3) holds if (1.4) holds, but if two or
more bit histories correspond to the same capital history, then it is possible to satisfy (1.3)
without satisfying (1.4). Thus the martingale requirement of theoretical computer science is
stricter than the martingale process requirement of probability theory.

In this paper we prove that this strictness is essential for computational complexity in
the sense that martingale processes cannot be used in place of martingales as a basis for
resource-bounded measure or resource-bounded randomness.

Resource-bounded measure uses resource-bounded martingales to define measure in com-
plexity classes [12, 13, 14]. For example, a set X of decision problems has measure 0 in the
complexity class E = DTIME(2linear), and we write µ(X|E) = 0, if there is a polynomial
time computable nonnegative martingale that succeeds, i.e., wins an unbounded amount of
money on, every element of X ∩E. An essential condition for this definition to be nontrivial
is that E does not have measure 0 in itself, i.e., that there is no polynomial-time nonneg-
ative martingale that succeeds on every element of E. This is indeed true by the Measure
Conservation Theorem [12].

In contrast, we show here that there is a polynomial-time nonnegative martingale process
that succeeds on every element of E. In fact, our main theorem says that for any computable
nonnegative martingale process d, there is a polynomial-time nonnegative martingale process
d′ that succeeds on every sequence that d succeeds on. That is, computable nonnegative mar-
tingale processes cannot use time beyond polynomial to succeed on additional sequences. It
follows that for every subclass C of every computably presentable class of decision problems –
and hence for every reasonable uniform complexity class C – there is a polynomial-time non-
negative martingale process that succeeds on every element of C. Thus martingale processes
cannot be used as a basis for resource-bounded measure.

Martingale processes are similarly inadequate for resource-bounded randomness. For ex-
ample, a sequence S ∈ C is p-random if there is no polynomial-time nonnegative martingale
that succeeds on it [20, 12]. An essential feature of resource-bounded randomness is the exis-
tence [20], in fact abundance [12, 2], of decidable sequences that are random with respect to a
given resource bound. For example, although no element of E can be p-random, almost every
element of the complexity class EXP = DTIME(2polynomial) is p-random [12, 2]. However,
the preceding paragraph implies that for every decidable sequence S there is a polynomial-
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time nonnegative martingale process that succeeds on S, so no decidable sequence could be
p-random if we used martingale processes in place of martingales in defining p-randomness.
Moreover, we also show that there exist computably random sequences (sequences on which
no computable nonnegative martingale succeeds) on which polynomial-time nonnegative
martingale processes can succeed.

Historically, the 1939 martingale definition of Ville [22] was the strict definition (1.4) now
used in theoretical computer science. It was Doob [5] who in 1940 relaxed Ville’s definition to
the form (1.3) that is now so common in probability theory [7, 17, 1]. Of course the difference
in usage between these two fields is not at all a dichotomy. The relaxed definition (1.3) is
used in randomized algorithms [16] and other areas of theoretical computer science where the
complexities of the martingales are not an issue, and probability theory also uses the more
abstract notion of an ~F -martingale process (also formulated by Doob [5] and described in
section 3 below), of which martingales and martingale processes are the two extreme cases.

Our results show that resource-bounded measure and randomness do in fact require
martingales that are stricter than the martingale processes used so commonly in probability
theory. However, these results do not disparage the latter notion. Quite to the contrary,
it is to be anticipated that theoretical computer science will avail itself of and effectivize
increasingly sophisticated aspects of martingales and measure-theoretic probability in the
coming years. Our results and the arguments by which we prove them are to be regarded as
steps toward expanding the interface between these two fields.

2 Preliminaries

A decision problem (a.k.a. language) is a set A ⊆ {0, 1}∗. We identify each language with
its characteristic sequence [[s0 ∈ A]][[s1 ∈ A]][[s2 ∈ A]] · · · , where s0, s1, s2, . . . is the standard
enumeration of {0, 1}∗ and [[φ]] = if φ then 1 else 0. We write A[i..j] for the string
consisting of the i-th through j-th bits of (the characteristic sequence of) A.

A class C of languages is computably presentable (a.k.a. recursively presentable [3]) if
there is an effective enumeration M0, M1, . . . of deterministic Turing machines, each of which
halts on all inputs, such that C = {L(Mi)|i ∈ N}, where L(Mi) is the language decided by
Mi.

A prefix set is a language A such that no element of A is a prefix of any other element of
A. If A is a language and n ∈ N, then we write A=n = A ∩ {0, 1}n and A≤n = A ∩ {0, 1}≤n.

The Cantor space C is the set of all infinite binary sequences. If w ∈ {0, 1}∗ and
x ∈ {0, 1}∗ ∪ C, then w v x means that w is a prefix of x. The cylinder generated by a
string w ∈ {0, 1}∗ is Cw = {A ∈ C | w v A}.

A σ-algebra on C is a nonempty collection F of subsets of C that is closed under
complements and under countable unions. For any collection A of subsets of C there is
a unique smallest σ-algebra σ(A) on C that contains A. The Borel σ-algebra on C is
B = σ({Cw|w ∈ {0, 1}∗}). We use the uniform probability measure on C, which is the
function µ : B → [0, 1] determined by the values µ(w) = µ(Cw) = 2−|w| for all w ∈ {0, 1}∗.

Let F be a σ-algebra on C. We say that a function f : C → R is F-measurable if for all
t ∈ R,

{S ∈ C|f(S) ≤ t} ∈ F .
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A random variable on C is a function ξ : C → R that is B-measurable. We write E[ξ] for
the expectation of a random variable ξ. The indicator function of a set A ⊆ C is the function

1A : C → {0, 1}

1A(S) =

{
1 if S ∈ A

0 if S 6∈ A.

If ξ is a random variable and A ⊆ C satisfies µ(A) > 0, then the conditional expectation of
ξ given A is

E[ξ|A] =
E[ξ · 1A]

µ(A)
.

If ξ0, . . . , ξn+1 are random variables and t0, . . . , tn ∈ R, we write E[ξn+1|ξ0 = t0, . . . , ξn = tn]
for E[ξn+1|{S ∈ C|ξ0(S) = t0, . . . , ξn(S) = tn}]. If ξ is a random variable, A is a countable
partition of C, and F = σ(A), then the conditional expectation of ξ given F is the random
variable

E[ξ|F ] : C → R

E[ξ|F ](S) = E[ξ|A] where S ∈ A ∈ A

which is defined for µ-almost all S.
We say that a real-valued function f : {0, 1}∗ → R is computable if there is a computable

function f̂ : N×{0, 1}∗ → Q such that for all n ∈ N and w ∈ {0, 1}∗, |f(w)− f̂(n, w)| ≤ 2−n.
We say that f̂ is a computation of f . We often write f̂n(w) for f̂(n,w). If f̂ is computable
in polynomial-time (where n is input in unary), then f is polynomial-time computable. If
f : {0, 1}∗ → Q is itself a (polynomial-time) computable function, then we say that f is
(polynomial-time) exactly computable.

We say that f : {0, 1}∗ → R is constructive (a.k.a. lower semicomputable) if there is
a computable function h : N × {0, 1}∗ → Q such that for any w ∈ {0, 1}∗, h(n, w) ≤
h(n + 1, w) < f(w) for all n ∈ N and limn→∞ h(n, w) = f(w).

3 Varieties of Martingales

In this section we introduce the different notions of martingales used in theoretical computer
science and probability theory. As noted in the introduction, we use the terms “martin-
gale” for the former and “martingale process” for the latter. We begin with the martingale
definition commonly used in the theory of computing.

Definition. A function d : {0, 1}∗ → R is a martingale if

d(w) =
d(w0) + d(w1)

2
(3.1)

for all w ∈ {0, 1}∗.
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Intuitively, a martingale d represents a strategy in a betting game. The gambler begins
with d(λ) of capital and is betting on an unknown sequence S ∈ C. The gambler places a
wager on the first bit of S being 0 or 1. If the first bit of S is 0, the gambler then holds d(0)
capital; otherwise, the first bit is 1 and the gambler holds d(1) capital. The gambler then
bets on the second bit of S possibly using his knowledge of the first bit of S. In general,
after n rounds of this game, the gambler knows that the first n bits of S are w = S[0..n− 1].
Using this knowledge he wagers on the (n + 1)-st bit of S. Equation (3.1) says that this is
a fair gambling game. That is, the payoffs are fair: if S is chosen uniformly at random, the
gambler can expect to have the same amount of capital after each stage of the game.

We will use random variables and conditional expectations to make this idea of fair
gambling more precise. Let d : {0, 1}∗ → R be an arbitrary function. For each n ∈ N, we
define the function

ξd,n : C → R

ξd,n(S) = d(S[0..n− 1]).

Observe that each ξd,n is a discrete random variable on (C,B, µ). We associate the sequence of

random variables ~ξd = (ξd,0, ξd,1, . . .) with d. We can now interpret the martingale condition
(3.1) as a conditional expectation.

Observation 3.1. A function d : {0, 1}∗ → R is a martingale if and only if

E[ξd,|w|+1|Cw] = ξd,|w| (3.2)

for all w ∈ {0, 1}∗.

In probability theory, martingales are typically defined in the following more general
form.

Definition. Let ~ξ = (ξ0, ξ1, . . .) be a sequence of random variables. We say that ~ξ is a
martingale process if for all n ∈ N, E[ξn] < ∞ and

E[ξn+1|ξ0 = c0, . . . , ξn = cn] = cn (3.3)

for all values of c0, . . . , cn ∈ R. (As we shall see below, condition (3.3) can also be stated
more concisely using a conditional expectation given a σ-algebra.)

We can also view a martingale process ~ξ as a gambling game. Again the gambler is
wagering on an unknown sequence S ∈ C. The initial capital is ξ0(S). After the nth stage of
the game, the gambler has capital ξn(S). The condition (3.3) says that the payoffs are fair
in this game. This notion of fairness is more relaxed than the martingale condition (3.2). In
order to make a precise comparison we extend the definition of martingale processes.

Definition. A function d : {0, 1}∗ → R is a martingale process if ~ξd is a martingale process.

The martingale process condition for a function d is

E[ξd,n+1|ξd,0 = c0, . . . , ξd,n = cn] = cn. (3.4)
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Figure 3.1: The martingale process d1 of Example 3.3.

This fairness condition involves the capital history of the gambling game rather than revealed
bit history of the sequence S. In (3.2), the conditioning is done on the bit history w. The
conditioning in (3.4) is done on the capital history. Intuitively, the martingale condition is
more “local” than the martingale process condition.

We now give a more concrete characterization of which functions d : {0, 1}∗ → R are
martingale processes. Define an equivalence relation ≈d on {0, 1}∗ by

x ≈d y ⇐⇒ |x| = |y| and (∀1 ≤ i ≤ |x|) d(x[0..i− 1] = d(y[0..i− 1]).

For each w ∈ {0, 1}∗ we define the equivalence class [w]d = {v ∈ {0, 1}∗|w ≈d v}.

Observation 3.2. A function d : {0, 1}∗ → R is a martingale process if and only if

2
∣∣∣[w]d

∣∣∣d(w) =
∑

v∈[w]d

d(v0) + d(v1) (3.5)

for all w ∈ {0, 1}∗.

Any martingale d is also a martingale process; the following example shows that the
converse is not true.

Example 3.3. Define for all u ∈ {0, 1}∗

d1(λ) = d1(0) = d1(1) = 1,
d1(0u) = 0,
d1(1u) = 2.

Then d1 is not a martingale, but d1 is a martingale process. Because the strings 0 and 1
have the same capital histories, [0]d1 = {0, 1}, so the averaging condition (3.5) allows the
capital to “shift” in a manner not allowed by a martingale.

We now discuss a more general formulation of martingales that is used in probability
theory. See also [5, 6, 16, 4] for discussions of this notion. The following definition will yield
the martingales and martingale processes defined above as special cases.

Definition. 1. A filtration on C is a sequence of σ-algebras ~F = (F0,F1, . . .) on C such
that Fn ⊆ Fn+1 for all n ∈ N.
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2. Let ~ξ be a sequence of random variables and let ~F be a filtration on C. Then ~ξ is an
~F-martingale process if the following conditions hold.

(i) For all n ∈ N, ξn is Fn-measurable and E[ξn] < ∞.

(ii) For all n ∈ N,
E[ξn+1|Fn] = ξn. (3.6)

We also say that ~ξ is a martingale relative to ~F .

The conditional expectation (3.6) can be viewed as a more generalized notion of fairness

in the gambling game. For example, if ~ξ is an ~F -martingale process for some filtration ~F ,
then ~ξ is also a martingale process. Before we make any further comparisons we extend the
filtration definition to functions.

Definition. Let ~F be a filtration. A function d : {0, 1}∗ → R is an ~F -martingale process if
~ξd is an ~F -martingale process.

For each n ∈ N, let
Mn = σ({Cw|w ∈ {0, 1}n}).

We let ~M = (M0,M1, . . .).

Observation 3.4. A function d : {0, 1}∗ → R is a martingale if and only if d is an ~M-
martingale process.

Let d : {0, 1}∗ → R be arbitrary. For each n ∈ N, define

Bd,n = {[w]d|w ∈ {0, 1}n},

Cd,n =

{ ⋃
w∈A

Cw

∣∣∣∣∣ A ∈ Bd,n

}
, and

Fd,n = σ(Cd,n).

We let ~Fd = (Fd,0,Fd,1, . . .).

Observation 3.5. A function d : {0, 1}∗ → R is a martingale process if and only if d is an
~Fd-martingale process.

If d is a martingale relative to some filtration ~F , then d is also an ~Fd-martingale process.
That is, the martingale process requirement uses the coarsest filtration possible. On the
other hand, the martingale requirement uses the essentially finest filtration ~M. (If ~F is a

finer filtration than ~M, then d is an ~F -martingale process if and only if d is an ~M-martingale
process.)

A very useful property of martingales in theoretical computer science is that the sum
of two martingales is a martingale. For any filtration ~F , the analogous fact also holds for
~F -martingale processes. In contrast, it is well known [4] that the sum of two martingale
processes need not be a martingale process. We include an example for completeness.
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Figure 3.2: The martingale d2 and the function d of Example 3.6.

Example 3.6. Define for all u ∈ {0, 1}∗ and v ∈ {0, 1}+

d2(λ) = 1, d2(0u) = 0, d2(1u) = 2,

and
d(λ) = 2, d(0) = 1, d(1) = 3, d(0v) = 0, d(1v) = 4.

Then d2 is martingale, so it is a martingale process. Let d1 be the martingale process from
Example 3.3. Then d = d1 + d2, but d is not a martingale process.

4 Martingale Processes and Complexity

In this section we present our results, all of which concern the complexities and success sets
of martingale processes.

Definition. Let d : {0, 1}∗ → R.

1. We say that d succeeds on a sequence S ∈ C if lim supn→∞ d(S[0..n− 1]) = ∞.

2. The success set of d is S∞[d] = {S ∈ C|d succeeds on S}.

The following technical lemma is crucial for our main theorem.

Lemma 4.1. (Exact Computation Lemma) For every computable martingale process d and
every m ∈ N, there is an exactly computable martingale process d′ such that for all w ∈
{0, 1}∗, |d′(w)− d(w)| < 2−m.
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Proof. Let d and m be as given, and let d̂ be a computation of d. We define d′ : {0, 1}∗ → Q
by recursion on the lengths of strings.

At length 0 we set d′(λ) = d̂m+1(λ).
Assume that d′(w) has been defined for all w ∈ {0, 1}≤n. Then we define a reflexive,

symmetric relation ∼ on {0, 1}n+1 by

x ∼ y ⇐⇒
[
x′ ≈d′ y′ and |d̂r+1(x)− d̂r+1(y)| ≤ 2−r

]
,

where x′, y′ are the n-bit prefixes of x, y, respectively, and r = m+2n+5. We then let ≈ be
the transitive closure of ∼, noting that ≈ is an equivalence relation on {0, 1}n+1. For each
w ∈ {0, 1}n+1, let

d′′(w) = avg
v≈w

d̂r+1(v), (4.1)

where “avg” denotes the arithmetic mean. Finally, for each u ∈ {0, 1}n and b ∈ {0, 1}, let

∆u = d′(u)− avg
v≈d′u

b∈{0,1}

d′′(vb) (4.2)

and
d′(ub) = d′′(ub) + ∆u. (4.3)

This completes the definition of d′.
It is clear that d′ is exactly computable. Also, for all u ∈ {0, 1}∗, (4.3) and (4.2) ensure

that
avg
v≈d′u

b∈{0,1}

d′(vb) = d′(u),

whence d′ is a martingale process.
We now note four things about the construction of d′. First, for all x, y ∈ {0, 1}∗, it is

clear that
x ≈d y ⇒ x ≈ y. (4.4)

Second, the triangle inequality and the fact that there are only 2n+1 strings in {0, 1}n+1 tell
us that for all x, y ∈ {0, 1}n+1,

x ≈ y ⇒ |d̂r+1(x)− d̂r+1(y)| ≤ (2n+1 − 1)2−r. (4.5)

By (4.1) and (4.5), then, we have

|d′′(w)− d̂r+1(w)| ≤ (2n+1 − 1)2−r,

whence by the triangle inequality,

|d′′(w)− d(w)| ≤ 2n+1−r (4.6)

for all w ∈ {0, 1}n+1. Third, for all x, y ∈ {0, 1}n+1,

x ≈ y ⇒ d′′(x) = d′′(y). (4.7)
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Fourth, for all u, v ∈ {0, 1}n,
u ≈d′ v ⇒ ∆u = ∆v, (4.8)

from which (4.3) tells us that for all x, y ∈ {0, 1}n+1,

x ≈d′ y ⇐⇒ d′′(x) = d′′(y). (4.9)

To complete the proof it suffices to show that

|d′(u)− d(u)| ≤ 2−m(1− 2−(|u|+1)) (4.10)

holds for all u ∈ {0, 1}∗. We prove this by induction on u. Since

|d′(λ)− d(λ)| ≤ 2−(m+1) = 2−m(1− 2−(0+1)),

it is clear that (4.10) holds for λ. Assume that (4.10) holds for u, let n = |u|, and let
b ∈ {0, 1}. Then by (4.3) and (4.6) we have

|d′(ub)− d(ub)| ≤ |d′′(ub)− d(ub)|+ |∆u| ≤ 2n+1−r + |∆u|. (4.11)

Also, by (4.2) and the induction hypothesis, we have

|∆u| ≤ |d′(u)− d(u)|+

∣∣∣∣∣∣d(u)− avg
v≈d′u

b∈{0,1}

d′′(vb)

∣∣∣∣∣∣
≤ 2−m(1− 2−(n+1)) +

∣∣∣∣∣∣d(u)− avg
v≈d′u

b∈{0,1}

d′′(vb)

∣∣∣∣∣∣
(4.12)

We now have two cases.

Case I. [u]d′ = [u]d. Then, since d is a martingale process, (4.6) tells us that∣∣∣∣∣∣d(u)− avg
v≈d′u

b∈{0,1}

d′′(vb)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ avg
v≈du

b∈{0,1}

d(vb)− avg
v≈du

b∈{0,1}

d′′(vb)

∣∣∣∣∣∣
≤ avg

v≈du
b∈{0,1}

|d(vb)− d′′(vb)|

≤ 2n+1−r.

Case II. [u]d′ 6= [u]d. Then n > 0 and by (4.4), (4.7), and (4.9) there exist u1, . . . , uk ∈
{0, 1}n such that {[u1]d, . . . , [uk]d} is a partition of [u]d′ . For each 1 ≤ i ≤ k, (4.9) and (4.6)
tell us that

|d(u)− d(ui)| ≤ |d(u)− d′′(u)|+ |d′′(u)− d(ui)|
= |d(u)− d′′(u)|+ |d′′(ui)− d(ui)|
≤ 2 · 2n−r

= 2n+1−r,
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whence ∣∣∣∣d(u)− avg
1≤i≤k

d(ui)

∣∣∣∣ ≤ 2n+1−r. (4.13)

Also, since d is a martingale process, (4.6) tells us that∣∣∣∣∣∣ avg
1≤i≤k

d(ui)− avg
v≈d′u

b∈{0,1}

d′′(vb)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ avg
1≤i≤k

d(ui)− avg
1≤i≤k

avg
v≈dui
b∈{0,1}

d′′(vb)

∣∣∣∣∣∣
≤ avg

1≤i≤k

∣∣∣∣∣∣d(ui)− avg
v≈dui
b∈{0,1}

d′′(vb)

∣∣∣∣∣∣
= avg

1≤i≤k

∣∣∣∣∣∣ avg
v≈dui
b∈{0,1}

d(vb)− avg
v≈dui
b∈{0,1}

d′′(vb)

∣∣∣∣∣∣
≤ avg

1≤i≤k
avg

v≈dui
b∈{0,1}

|d(vb)− d′′(vb)|

≤ 2n+1−r.

Combined with (4.13), this tells us that∣∣∣∣∣∣d(u)− avg
v≈d′u

b∈{0,1}

d′′(vb)

∣∣∣∣∣∣ ≤ 2n+2−r.

In either Case I or Case II, (4.12) tells us that

|∆u| ≤ 2−m(1− 2−(n+1)) + 2n+2−r,

whence (4.11) and our choice of r tell us that

|d′(ub)− d(ub)| < 2−m(1− 2−(n+1)) + 2n+3−r

= 2−m(1− 2−(n+1)) + 2−(m+n+2)

= 2−m(1− 2−(n+2)),

i.e., (4.10) holds for ub.

Our next lemma can be regarded as a “speedup” theorem for exactly computable mar-
tingale processes, but its proof uses a very slow simulation technique analogous to slow
diagonalization.

Lemma 4.2. For every exactly computable nonnegative martingale process d there is a
polynomial-time exactly computable nonnegative martingale process d′ such that S∞[d] =
S∞[d′].

12



Proof. Let d be an exactly computable martingale process. Consider an algorithm that on
input w of length n computes d(v) for all strings v in standard ordering until it has used n2

computation steps. Let m(n) be the largest integer such that d(v) is computed for all strings
of length m(n) by this algorithm and choose N such that m(N) > 0. We define

d′ : {0, 1}∗ → R

d′(w) =

{
d(λ) if |w| < N

d(w[0..m(|w|)− 1]) if |w| ≥ N.

Then d′ is a polynomial-time exactly computable martingale process and S∞[d] = S∞[d′].

We now have the main theorem of this paper, which says that polynomial-time com-
putable martingale processes are equivalent to arbitrary computable martingale processes.

Theorem 4.3. For every computable nonnegative martingale process d there is a polynomial-
time exactly computable nonnegative martingale process d′ such that S∞[d] = S∞[d′].

Proof. This follows immediately from Lemmas 4.1 and 4.2.

Theorem 4.3 has the following consequence for resource-bounded measure.

Corollary 4.4. For every computably presentable class C, there is a polynomial-time exactly
computable nonnegative martingale process d such that C ⊆ S∞[d].

Proof. Lutz [12] has shown that for every computably presentable class C (called “rec-
countable” in the terminology of [12]) there is a computable nonnegative martingale d such
that C ⊆ S∞[d]. Since d is a computable martingale process, the conclusion of the corollary
follows by Theorem 4.3.

Since complexity classes such as E, EXP, ESPACE, etc. are all computably presentable,
Corollary 4.4 implies that martingale processes cannot be used in place of martingales as a
basis for resource-bounded measure.

We now prove a generalized Kraft inequality that enables us to establish an upper bound
on the power of computable martingale processes. For any function d : {0, 1}∗ → R and
A ⊆ {0, 1}∗, we say that A is closed under ≈d if for all w ∈ {0, 1}∗,

w ∈ A ⇒ [w]d ⊆ A.

Lemma 4.5. If d is a nonnegative martingale process and A ⊆ {0, 1}∗ is a prefix set that is
closed under ≈d, then ∑

w∈A

d(w)2−|w| ≤ d(λ).

Proof. We first use induction on n to prove that for all n ∈ N, the lemma holds for all prefix
sets A ⊆ {0, 1}≤n that are closed under ≈d. For n = 0, this is trivial. Assume that it holds
for n, and let A ⊆ {0, 1}≤n+1 be a prefix set that is closed under ≈d. Let

A′ = {w ∈ {0, 1}n | w0 ∈ A or w1 ∈ A} ,

13



A′′ = {v ∈ {0, 1}n | (∃w ∈ A′)v ≈d w},

B = {w ∈ A′′ | (∀v ∈ [w]d) w ≤ v},

and let
C = A≤n ∪ A′′.

Note that C is a prefix set and C is closed under ≈d. Also, A≤n ∩ A′ = ∅ because A is a
prefix set, so A≤n ∩ A′′ = ∅ because A is closed under ≈d. Also,∑

w∈A=n+1

2−|w|d(w) = 2−(n+1)
∑

w∈A=n+1

d(w)

≤ 2−(n+1)
∑
w∈A′

[d(w0) + d(w1)]

≤ 2−(n+1)
∑

w∈A′′

[d(w0) + d(w1)]

= 2−(n+1)
∑
w∈B

∑
v∈[w]d

[d(v0) + d(v1)]

= 2−(n+1)
∑
w∈B

2
∣∣∣[w]d

∣∣∣d(w)

= 2−n
∑

w∈A′′

d(w).

Since C ⊆ {0, 1}≤n, it follows by the induction hypothesis that∑
w∈A

2−|w|d(w) =
∑

w∈A≤n

2−|w|d(w) +
∑

w∈A=n+1

2−|w|d(w)

≤
∑

w∈A≤n

2−|w|d(w) +
∑

w∈A′′

2−|w|d(w)

=
∑
w∈C

2−|w|d(w)

≤ d(λ).

This completes the proof that for all n ∈ N, the lemma holds for all prefix sets A ⊆ {0, 1}≤n

that are closed under ≈d.
To complete the proof of the lemma, let A be an arbitrary prefix set that is closed under

≈d. Then ∑
w∈A

2−|w|d(w) = sup
n∈N

∑
w∈A≤n

2−|w|d(w) ≤ d(λ).

Theorem 4.6. For every computable nonnegative martingale process d there is a constructive
nonnegative martingale d′ such that S∞[d] ⊆ S∞[d′].
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Proof. By Lemma 4.1 we may assume that d is exactly computable. Without loss of gener-
ality we also assume that d(λ) ≤ 1. For each k ∈ N , let

Ak =

{
w ∈ {0, 1}∗

∣∣∣∣ max
0≤i<|w|

d(w[0..i− 1]) < 2k ≤ d(w)

}
.

Then each Ak is a prefix set that is closed under ≈d, so Lemma 4.5 implies that∑
w∈Ak

2−|w|2k ≤
∑

w∈Ak

2−|w|d(w) ≤ d(λ) ≤ 1;

hence ∑
w∈Ak

2−|w| ≤ 2−k.

For each k ∈ N we define a function

d′k : {0, 1}∗ → [0,∞)

d′k(w) =


1 if (∃v ∈ Ak)v v w∑
v∈Ak
wvv

2|w|−|v| otherwise.

Next we define
d′ : {0, 1}∗ → [0,∞)

d′ =
∞∑

k=0

d′k.

As each d′k is a martingale and

d′(λ) =
∞∑

k=0

∑
w∈Ak

2−|w| ≤
∞∑

k=0

2−k = 2,

d′ is a martingale. Also, d′ is constructive because the set

A = {〈k, w〉 | w ∈ Ak}

is decidable.
For each k ∈ N, let

Ak =
⋃

w∈Ak

Cw.

For all S ∈ Ak there is some nk such that d′k(S[0..n− 1]) = 1 for all n ≥ nk. For each m ∈ N
and S ∈

⋂m
k=0Ak, d′(S[0..n−1]) ≥

∑k
i=0 d′k(S[0..n−1]) ≥ k+1 for all n ≥ max{n0, . . . , nk},

so

S∞[d] =
∞⋂

k=0

Ak ⊆ S∞[d′].
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Theorem 4.6 implies that no computable nonnegative martingale process can succeed on
a sequence that is random in the sense of Martin-Löf [15]. In contrast, we now show that
there exist computably random sequences (sequences on which no computable nonnegative
martingale succeeds [20]) on which polynomial time nonnegative martingale processes can
succeed. In the following theorem K(x) denotes the Kolmogorov complexity of x as defined
in [11].

Theorem 4.7. For every S ∈ C satisfying K(S[0..n − 1]) < n − log n almost everywhere,
there is a polynomial-time nonnegative martingale process that succeeds on S.

Proof. We begin by fixing some suitable constants. Choose c0, c1 ∈ N such that

K(v) ≤ K(uv) + K(|u|) + c0 (4.14)

for all u, v ∈ {0, 1}∗ and
K(n) ≤ log n + c1 (4.15)

for all n ∈ N. Let c = c0 + c1 and choose N0 ∈ N such that for all n ≥ N0,

log(2) n + log(3) n + c < log n− 1. (4.16)

Let S ∈ C be such that K(S[0..n−1]) < n− log n for all n ≥ N1 and set N = max{N0, N1}.
We now describe an inductive procedure that will be used to build a martingale process

that succeeds on S. Initially, we let

m0 = N,

M0 = m0,

W0,0 = {0, 1}N ,

a0 = 0,

C0,0 = 2N .

Now assume that mi, Mi, Wi,k, ai, and Ci,k have been defined for all 0 ≤ i ≤ k. We use a
dovetailing procedure to compute some string xk+1 ∈ W0,k ∪ · · · ∪Wk,k satisfying K(xk+1) <
|xk+1| − log |xk+1|. Let i be the index of the set Wi,k containing xk+1. Now we set

Wj,k+1 = Wj,k,

Cj,k+1 = Cj,k

for all j ∈ {0, . . . , k} − {i},

Wi,k+1 = Wi,k − {xk+1},
Ci,k+1 = Ci,k − 2(ai + 1),

and

Mk+1 = Mk + 22Mk ,

mk+1 = Mk+1 − |xk+1|,
Wk+1,k+1 = xk+1 · {0, 1}mk+1 ,

ak+1 = ai + 1,

Ck+1,k+1 = (2ak+1)2
mk+1 .
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We define a function d : {0, 1}∗ → R as follows. For all w ∈ {0, 1}<M1 , we let d(w) = 1.
For all k ≥ 1 and w ∈ {0, 1}<Mk+1 − {0, 1}<Mk , we compute the unique index i ∈ {0, . . . , k}
such that w has a prefix in Wi,k, and we let

d(w) =
Ci,k

|Wi,k|
.

Then d is an exactly computable function.
We claim that d is a nonnegative function. By a counting argument we know that for all

n, ∣∣∣{v ∈ {0, 1}n
∣∣∣K(v) < n− 1

}∣∣∣ ≤ 2n−1. (4.17)

In particular, there are fewer than 2m0−1 strings w ∈ {0, 1}m0 satisfying K(w) < |w|−log |w|,
so C0,j ≥ 0 for all j ∈ N. Now let k ≥ 1. Let v ∈ {0, 1}mk and suppose that

K(xkv) < |xkv| − log |xkv|.

Notice that mk ≥ 22|xk| , so |xk| ≤ log(2) |v|. Applying (4.14), (4.15), and (4.16), we have

K(v) ≤ K(xkv) + K(|xk|) + c0

< |xkv| − log |xkv|+ K(|xk|) + c0

≤ |xkv| − log |xkv|+ log |xk|+ c

≤ |v|+ log(2) |v| − log |v|+ log(3) |v|+ c

< |v| − 1

This together with (4.17) implies that there are no more than 2mk−1 strings w ∈ Wk,k for
which K(w) < |w| − log |w|. Hence Ck,j > 0 for all j ≥ k, so d is a nonnegative function.

We claim that d is a martingale process. For all w ∈ {0, 1}<M1−1, it is clear that the
martingale process condition holds. Suppose it holds for all w ∈ {0, 1}<Mk−1. In the kth

stage of the above procedure, for some i an xk ∈ Wi,k−1 is chosen. Let w ∈ {0, 1}Mk−1 and
suppose that w has a prefix in Wi,k−1. Then∑

v∈[w]d

d(v0) + d(v1) =
∑

u∈Wi,k−1

v∈{0,1}mk

d(uv)

=
∑

u∈Wi,k−1−{xk}
v∈{0,1}mk

d(uv) +
∑

v∈{0,1}mk

d(xkv)

= (|Wi,k−1| − 1)2mk
Ci,k

|Wi,k|
+ 2mk

Ck,k

|Wk,k|

= (|Wi,k−1| − 1)2mk
Ci,k−1 − 2(ai + 1)

|Wi,k−1| − 1
+ 2mk

(2ak)2
mk

2mk

= 2mkCi,k−1

= 2 · (2mk−1|Wi,k−1|)
Ci,k−1

|Wi,k−1|

= 2
∣∣∣[w]d

∣∣∣d(w),
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so the martingale process condition holds for w. Now suppose that w has a prefix in Wj,k−1

where j 6= i. Then Wj,k−1 = Wj,k and Cj,k−1 = Cj,k, so d(v) = d(v0) = d(v1) for all
v ∈ [w]d and hence the martingale process condition holds for w. Also, the martingale process
condition holds for all w ∈ {0, 1}<Mk+1−1 − {0, 1}<Mk because again d(v) = d(v0) = d(v1)
for all v ∈ [w]d. Therefore, by induction, d is a martingale process.

For all n ≥ N , K(S[0..n− 1]) < n− log n, so for every a ≥ 1 there is some k(a) ≥ 1 such
that xk(a) v S and ak(a) = a. Then

d(S[0..Mk(a) − 1]) =
Ck(a),k(a)

|Wk(a),k(a)|
= 2a

for all a ≥ 1, so it follows that S ∈ S∞[d]. The theorem now follows by Lemma 4.2.

Corollary 4.8. There exist a computably random sequence S and a polynomial-time non-
negative martingale process d such that d succeeds on S.

Proof. Lathrop and Lutz [8] proved that there is a computably random sequence S ∈ C
that is ultracompressible in the sense that for every computable, non-decreasing, unbounded
function g : N → N, for all but finitely many n ∈ N, K(S[0..n− 1]) < K(n) + g(n). Such a
sequence S clearly satisfies the hypothesis of Theorem 4.7.
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[9] P. Lévy. Propriétés asymptotiques des sommes de variables indépendantes ou en-
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