
COSC 3015: Lecture 1

Lectured given by Prof. Caldwell and scribed by Sunil Kothari

August 26, 2008

1 Books and Programming Environments

1.1 Books for functional programming

Haskell is a lazy language. Chris Okasaki looked at imperative data structures
in a functional setting. For example, binomial trees, splay trees, red-black trees,
etc.

1.2 Higher-order Perl by Mark Jason Dominus

Lisp has higher-order functions. That means, functions are first class members.
You have C++ pointers which pint to a piece of code. Java has lambda expres-
sions now. There are links to the author’s lecture on the web. Perl6 is being
implemented in Haskell.

1.3 Programming Environments

There are two implementations:

• Hugs - Haskell Implementation, choose the editor you want to use

• GHCi - Glasgow Haskell Compiler

• Emacs - Text editor

Dr. Caldwell uses emacs - as a text editor. We will use interpreter even though
Haskell programs can be compiled. Let’s go for Hugs then.

2 What is functional programming ?

It’s defined by other programming paradigms.

1

2.1 Imperative Programming

• Fortran, C , C++, Ada, Pascal, Java, Basic, Perl.

• Inherent in this model of programming is the state based computation;
command based.

• A computation is a sequence of memory states.
S0 → S1 → S2− > ...

Object-oriented programming can also be looked as imperative programming.
It’s a kind of data abstraction mechanism built upon imperative (or functional)
programming language.
- e.g. OCaml - Object oriented Caml a functional PL.

2.2 Logic Programming

Prolog - a variant is Lambda Prolog (functional logical hybrid). A program is a
logical description of a problem to be solved. Computation is a form of search
for a solution. You have to write description of a problem in the form of Horn
clauses. It’s a kind of a restricted logic.

2.3 Functional Programming

Functional programming languages are expression based. You write an expres-
sion describing the desired solution – and computation is the process of evalu-
ating the expression. Here’s a Haskell program for Quick sort.

2.3.1 Lists in Haskell

There are two constructors.

• [] - empty list

• h : hs - cons - that sticks the value created by h onto the left hand of the
list hs.
For example,

The usage is as follows:

• 1 : [] ↪→ [1]

• 1 : (2 : []) ↪→ [1, 2]

• 2 : (1 : []) ↪→ [2, 1]

• ”xy” : (”zzy”′ : []) ↪→ [”xy”, ”zzy”]

2

2.3.2 Append

Append (++)
[1, 2] + +[3, 4] ↪→ [1, 2, 3, 4]

2.4 Quick Sort

qsort [] = []
qsort (h:hs) = qsort smaller ++ [h] ++ qsort larger

where smaller = [a | a<- hs| a <= h]
larger = [b | b <- hs | b > h]

qsort[2, 1] = qsort(2 : [1])
↪→ (qsort[1] + +[2] + +qsort[])
↪→ (qsort[] + +[1] + +qsort[]) + +[2] + +[])
↪→ (qsort[] + +[1] + +[]) + +[2])
↪→ [1] + +[2]
↪→ [1, 2]

Note that List comprehensions are Haskell macros.

2.5 Typed vs. untyped

Functional programming languages can be categorized as:

• Typed - Haskell, OCaml, ML, F# (Supports type inference).

• Untyped - Lisp, Scheme

2.6 Type Inference

(\x− > x + 5) is a Haskell expression for the function that adds 5 to the
argument x. It can also be written as add5x = x + 5. The compiler figures out
the type of the expression if it has a type.

>:t add 5
> (Num a) => a -> a

The Num above is a type class.
The type for qsort is

>:t qsort
>(Ord a) => [a] -> [a].

Here Ord is a type class.

3

