
COSC 3015: Lecture 10

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 25, 2008

1 HW recap

unique stable preserves the order and keeps the earlier elements whereas unique
keeps the last occurrences of elements.

2 More functions

2.1 member

member1 :: a → [a]→ Bool

member1 y [] = False

member1 y (x : xs) = y == x || member1 y xs

The ”||” has short-circuit evaluation.i.e. if the first argument evaluates to true
then it doesn’t check for the value of second argument.

We can also write member as.

member′ y [] = False

member′ y (x : xs) = y == x||member′ y xs

member’ evaluates as follows:

member′ 1 [1, 1] ; member′ 1 [1]||1 == 1
; member′ 1 []||1 == 1||1 == 1
; False||True||True

; True|True

; True

1

On the other hand, member1 evaluates as follows:

member1 1 [1, 1] ; 1 == 1||member1 1 [1]
; True||member1 1 [1]
; True

member is elem in the Haskell prelude elem x m is written ‘elem‘ m to
simulate x ∈ m

2.2 zip

The zip (in our case zip1) function is defined as:

zip1 [] m = []
zip1 m [] = []

zip1 (x : xs) (y : ys) = (x, y) : zip1 xs ys

and has the type

zip1:: [a] -> [b] -> [(a,b)]

What is the design decision for zip1 ? For example, zip1 [1, 2, 3] [a, b] =
[(1, a), (2, b)]

Let’s do a shorter one. zip1 [3] []→ []
Note: The zip in the theorem below refers to the Haskell prelude’s zip.

Theorem 1. ∀m : [a],∀n : [b].length (zip m n) == min (length m)(length n)

Theorem 2. ∀m : [a],∀n : [b].length (zip′ m n) == max (length m)(length n)

Since the arguments to zip1 are lists of arbitrary types, what will you do
when you run out of values.

1. Pass a special value for type a and type b. These special values must be
unique.

2. Define a value called Nothing.

Consider the Maybe data type:

data Maybe a = Just a | Nothing

Nothing is like a special value that means null - but works for any type.

2

So let’s define zip1 now:

zip1[][] = []
zip1 [] (x : xs) = (Nothing, x) : zip1 [] xs

zip1 (x : xs) [] = (x, Nothing) : zip1 xs []
zip1 (x : xs) (y : ys) = (x, y) : zip1 xs ys

Main> :t zip1
zip1 :: [Maybe a] -> [Maybe b] -> [(Maybe a,Maybe b)]

But if we define zip1 slightly differently as:

zip1 [] [] = []
zip1 [] (x : xs) = (Nothing, Just x) : zip1 [] xs

zip1 (x : xs) [] = (Just x, Nothing) : zip1 xs []
zip1 (x : xs) (y : ys) = (Just x, Just y) : zip1 xs ys

Main> :t zip1
zip1 :: [a] -> [b] -> [(Maybe a,Maybe b)]

zip1 [] [1] ; (Nothing, Just 1) : Zip1 [] []
; (Nothing, Just 1) : []
; [(Nothing, Just 1)]

We can use type class to give the following expressions a meaningful semantics:
Just 5 + 7
Nothing + 7
But we can also use case statement

case m of
Nothing -> error "..."
Just k -> k

But this definition has an error.

2.3 Either

The data type Either can be defined as: data Either a b = Left a|Right bderivingShow
The either type is also called disjoint union

3

> Left 5
Left 5 :: Num a => Either a b

> :t Right "xyxxy"
Either a [char]

It helps us put together two different types. The constructors are like tags on
data values -

Either Int [char] - Taking the union of Int and [char] So what are the inhab-
itants of this type ?
{Left 0, Left − 1, Right ”a”, Right ”ab”, . . .}

We can deconstruct the disjoint union by the case statement.

case m of
left x -> ...x...
right y -> ...y...

where,
x - an integer
y - string

case (Left 5) of
Left x -> x + 1
Right y -> length y

would evaluate to 6.
What about the following expression ?

case (Left 5) of
Right y -> length y
Left x -> x + 1

would evaluate to 6.

2.4 filter

In Haskell, filter is defined as:

Hugs> :t filter
filter :: (a -> Bool) -> [a] -> [a]

And so we can define our filter1 is defined as

filter1 p [] = []
filter1 p (x : xs) = if p x then x:filter p xs else filter p xs

4

filter1(/= 5) [1,5,2,5,3,4,5,5]
[1,2,3,4]

where (/ = 5)\x→ x + 1.
Recall, in HW we have remove all:
remove all x m = filter (/ = x) m
can also be written as :
removeall x = filter (/ = x)

Main> :t remove_all
remove_all :: Eq a => a -> [a] -> [a]

What about filter (== (+)) [(+), (∗), (−)]?
Compiler will give an error since functions cannot be compared.

2.5 Finite functions as lists of pairs

[(1, ”xy”), (1, ”zw”)] - It is not a function since one domain element is getting
mapped to different range values.

But, [(1, ”xy”), (1, ”xy”)] is functional - since the element in domain are
mapped to the same values in the co-domain.

What does it mean for two sets to be equal ?
S = T

def= ∀x.x ∈ S ↔ x ∈ T
So, what’s the difference between a list and a set ?

As lists,[1, 1] 6= [1]
As sets, {1, 1} = {1}
Also,
As lists, [1, 2] 6= [2, 1]
As sets, {1, 2} = {2, 1}

So for lists order and multiplicity of elements is significant.
For sets- the only significant factor is membership.

2.6 Implementing sets as lists

Sets are defined as:
data Set a = S [a]

Main> :t S []
S [] :: Set a
Main> :t S
S :: [a] -> Set a
Main> :t S [1,2,3,4]
S [1,2,3,4] :: Num a => Set a

5

What if we change the datatype to

data Set a = S [a] deriving Eq

Main> :t S[]== S []
S [] == S [] :: Eq (Set a) => Bool

seteq [] [] = True
seteq [] (x:xs) = False
seteq (x:xs) [] = False
seteq (x:xs) m = x ‘elem‘ m && seteq (remove_all x xs) (remove_all x m)

instance Eq a => Eq (Set a) where
m == n = seteq m n

Main> S[] == S[1]
False
Main> S[1,1,2] == S[2,2,2,1]
False

map f [] = []
map f (x : xs) = f x : map f xs

and domain can be defined as:

domain f = map fst f

6

