
COSC 3015: Lecture 11

Lecture given by Prof. Caldwell and scribed by Sunil Kothari

September 30, 2008

1 cons vs. append

cons is the list constructor, whereas append glues two lists

Hugs> :t (:)
(:) :: a -> [a] -> [a]
Hugs

A slightly pathological case is x:⊥.

Hugs> :t (++)
(++) :: [a] -> [a] -> [a]
Hugs>

append glues lists on the right. cons can only add things to the left.
[1, 2, 3] + +[4] ; [1, 2, 3, 4]

Remeber, append is defined as:

[] + +xs = xs

(y : ys) + +xs = y : (ys + +xs)

[x] + +xs ; x : ([] + +xs)
; x : xs

Cons can be implemented using append but is less efficient.
(x : xs) = [x] + +xs

2 More list functions

We talked about the map function earlier

map f [] = []
map f (x : xs) = f x : (map f xs)

1

The following will not work as a definition since ”++” is not a constructor
for lists.
map f (xs + +ys) = (map f xs) + +(map f ys).

Note ::Pattern-matching works on patterns specified using data-type con-
structors.
snd (x:y:m) = y

sum [] = 0
sum (x : xs) = x + sum xs

prod [] = 0
prod (x : xs) = x ∗ prod xs

concat1 [] = []concat1 (xs + +xss) = xs + +concat xss

All these functions follow the following general pattern

f [] = e

f (x : xs) = x ‘op‘ fxs

sum [1, 2, 3] = 1 + sum [2, 3]
= 1 + (2 + sum [3])
= 1 + (2 + (3 + sum []))
= 1 + (2 + (3 + 0))

prod[1, 2, 3] = 1 ∗ (2 ∗ (3 ∗ 1))

concat[[1], [], [2, 3]] = [1] + +([] + +([2, 3] + +[]))

The pattern associates the ”‘op”’ to the right.

foldr op e [] = e

foldr op e (x : xs) = x ‘op‘ (foldr op x xs)

So if we had macros, we could just plug the functions and identity element in
th macros to get the above definition.

2

Now, we can define the above functions using foldr
sum = foldr (+) 0
prod = foldr (∗) 1
concat = foldr (++) []

What about the operators that don’t associate to the right ?
For example, a− (b− c) 6= (a− b)− c

What if you want a left associative pattern ?
sum′ [1, 2, 3] = ((0 + 1) + 2) + 3

We need foldl

foldl op e [] = []
foldl op e (x : xs) = foldl op (e ‘op‘ x)xs

The idea is carry the results completed so fat in e - starting with e being the
identity. sum′ = foldl (+) 0 sum′ [1, 2, 3]
= foldl (1) 0 [1, 2, 3]
= foldl (1) (0 + 1) [2, 3]
= foldl (1) ((0 + 1) + 2) [3]
= foldl (1) (((0 + 1) + 2) + 3) []
= (((0 + 1) + 2) + 3)

Note: for associative operators ⊕ with identity e, foldr op e = foldl op e.
In general foldl is more efficient than foldr. We can do a foldr computation
as:

sum[1, 2, 3] = foldr (+) 0 [1, 2, 3]
= 1 + (foldr (+) 0 [2, 3])
= 1 + (2 + foldr (+) 0 [3])
= 1 + (2 + (3 + foldr (+) 0 []))
= 1 + (2 + (3 + 0))
= 1 + (2 + 3)
= 1 + 5
= 6

3 List Comprehensions

In Haskell, strings are just list of chars.

Main> [(x,y)| x <- [1..3], y <- "abc"]
[(1,’a’),(1,’b’),(1,’c’),(2,’a’),(2,’b’),(2,’c’),(3,’a’),(3,’b’),(3,’c’)]

3

If we want to do this in the normal way we have

all_pairs [] ys = []
all_pairs (x:xs) ys = (map (y -> (x,y)) ys) ++ all_pairs xs ys

(map (\y → (1, y)) [′a′,′ b′])
= ((\y → (1, y)) ′a′) : ((\y → (1, y)) ′b′) : []
= (1,′ a′) : ((1,′ b′) : [])
= [(1,′ a′), (1,′ b′)]

all pairs1 (x : xs) ys = map p ys + +all pairs1 xs ys

where p y = (x, y)

Main> [x*x| x <- [1..5], odd x]
[1,9,25]

• [1..5] - generators

• odd x - guard

So what is list comprehension ? {x ∈ S | P (x)}
In set theory, this is definition by comprehension.
In general, [e | Q] is a list comprehension

where e −is a Haskell expression
Q −is a comma separated list of generations and guards

Generators look like x ← xs where x is a variable and xs is a list valued
expression and a guard is a boolean valued expression.

List comprehensions are very expressive but add no computational power.
What is the semnatics ? There are two rules :

[e | x← xs, Q] = concat (map f x)where f x = [e | Q]

Note:: I had to leave early and so I missed last 5-7 mins. of lecture material.

4

