COSC 3015: Lecture 11

Lecture given by Prof. Caldwell and scribed by Sunil Kothari
September 30, 2008

1 cons vs. append

cons is the list constructor, whereas append glues two lists

Hugs> :t (:)
(:) :: a-> [a] -> [a]
Hugs

A slightly pathological case is x: L.

Hugs> :t (++)
(++) :: [a] —> [a] —> [a]
Hugs>

append glues lists on the right. cons can only add things to the left.
[1,2,3] + +[4] ~ [1,2,3,4]
Remeber, append is defined as:

[+ +xs = as
(y:ys)++xs = y:(ys+ +xs)

[z] + +xs ~ x: (]| + +xs)

~ XIS

Cons can be implemented using append but is less efficient.
(z:xs) = [z] + 4as
2 More list functions

We talked about the map function earlier

map f] = ||
map f (x:xs) = fa:(map f xs)

The following will not work as a definition since ”++" is not a constructor
for lists.
map f (zs + +ys) = (map f xs) + +(map f ys).

Note::Pattern-matching works on patterns specified using data-type con-
structors.
snd (xiy:m) =y

sum|[] = 0
sum (x:x8) = x4 sumzs
prod[] = 0
prod (z:xs) = x*prodxs
concatl [| = [|econcatl (xs+ 4xss) = xs + +concat zss

All these functions follow the following general pattern

fll=e
f(x:xs)=x‘op* fas

sum [1,2,3] = 14 sum [2,3]

14 (2 + sum [3])
1+ 2+ B+ suml))
= 1+(2+(3+0)

prod|l,2,3]

1x(2%(3x1))

concat[[1],], [2, 3]] 1]+ +(]+ +(2,3] + +]]))

¢

The pattern associates the ”‘op”’ to the right.

foldr op e ||
foldrope (z:xzs) = x‘op' (foldr opx xs)

e

So if we had macros, we could just plug the functions and identity element in
th macros to get the above definition.

Now, we can define the above functions using foldr
sum = foldr (+) 0
prod = foldr (%) 1
concat = foldr (++) []

What about the operators that don’t associate to the right ?
For example, a — (b—¢) # (a—b) — ¢

What if you want a left associative pattern 7
sum/ [1,2,3] = ((0+1)+2)+3

We need foldl

foldiope[] = []
foldlope (x:xs) = foldl op (e ‘op* x)xs

The idea is carry the results completed so fat in e - starting with e being the
identity. sum’ = foldl (+) 0 sum’ [1,2, 3]
= foldl (1) 0 [1,2, 3]
= foldl (1) (0+1) [2, 3]
= foldl (1) (0+1)+2) [3]
= foldl (1) (0+1)+2)+3)]
=({((0+1)+2)+3)

Note: for associative operators @ with identity e, foldr op e = foldl op e.
In general foldl is more efficient than foldr. We can do a foldr computation
as:

AAAA

1
1
1

sum[1,2,3] = foldr (+)0[1,2,3]
= 1+(f01d7“() 0[2,3])
= 1+ (2+ foldr (+) 0 [3])

+ (24 (3 + foldr (+)0[]))
= 1+(2+3+0)
+(2+3)
145
6

3 List Comprehensions
In Haskell, strings are just list of chars.

Main> [(x,y)| x <= [1..3], y <= "abc"]
[(1,’a’),(1,’b?),(1,°c?),(2,’a’),(2,’p’),(2,’c?),(3,’a’),(3,’b?),(3,’c’)]

If we want to do this in the normal way we have

all_pairs [] ys = []

all_pairs (x:xs) ys = (map (y -> (x,y)) ys) ++ all_pairs xs ys
(map (\y — (1,)) [’/ V'])

= ((\y = (Ly)) 'a") : ((\y = (Ly) V) -]

= (1,"a") : (1,70 -)

= [(]wla/)v (13/b/)]

all_pairsl (x : xs) ys = map pys+ +all_pairsl zs ys
wherepy = (z,y)

Main> [x*x| x <- [1..5], odd x]
[1,9,25]

e [1..5] - generators
e odd x - guard

So what is list comprehension ? {x € S| P(z)}
In set theory, this is definition by comprehension.
In general, [e | Q)] is a list comprehension

where e —is a Haskell expression

Q —is a comma separated list of generations and guards

Generators look like © <+ xs where x is a variable and zs is a list valued
expression and a guard is a boolean valued expression.

List comprehensions are very expressive but add no computational power.

What is the semnatics 7 There are two rules :

le | x — xs,Q] = concat (map f x)where f x =[e| Q)]

Note:: I had to leave early and so I missed last 5-7 mins. of lecture material.

