COSC 3015: Midterm Review

Lecture given by Prof. Caldwell and scribed by Sunil Kothari
October 14, 2008

1 Review

We will have a midterm exam on Thursday. The exam will be closed book.
HW1 was a warm up and we looked at Qsort and had you analyze some
code. Something like that might not be a bad question.
HW3 was like beginning of the real functional programming.

1.1 Lambda terms - Higher Order functions

\z— > e where e is a haskell expression
fay=e

is same as
\fz—\y—e

is same as
f=\z—=\y—e

For example, fry=x +y
fe=\y—z+y

is same as

f=\z—=\y—az+y
Given,
pluscxy=x+y

>:t plusc 5
Num a => a -> a
1.2 HWS3 - curry and uncurry

curry :: ((a,b) — ¢) = (a — (b — ¢))
curry fxy = f (2,y)



uncurry :: (a — b — ¢) — ((a,b) — ¢)
uncurry f (z,y)=fay

1.3 HW4- Extensionality

Extensionality - equality between functions. There is no general algorithm to
decide when two functions are equal. It’s equivalent to halting problem but you
can look at individual programs and see if it halts. So same is the case with
equality on functions.

If f,g:a — bthen

f:gdéfVm:a.fx:gm

Function composition

fog=/f(gux)

So what is the type of function composition
(0):(b—¢)—=(a—b)—a—c

In the HW, we had to prove that curry plus = plusc

curryplus :: Int — (Int — Int)
plusc :: Int — (Int — Int)

Q: How do we show that the two are equal ?
A: Use extensionality.

Proof. Choose arb. x € Int and show
curry plus x = plusc x

Choose an arb. y € Int and show
curry plus x y = plusc 'y

On the left, curry plusc x y = plus (z,y) =z +y
On the right, plusc x y = plus (x,y) =z +y

O

Note that we had to apply extensionality twice since we have a function
of two arguments. If we apply extensionality once, we are still showing two
functions are equal. Note that we cannot choose arbitrarily any y but something
different from x.

And in the HW I asked you to write flip.
flipz(a—b—c¢c)—>b—a—c
flipry=fyx



We can also think this as operation on function
flipf=\z —=\y—fyzx

Sometimes you will see an example when you asked Haskell about a type flip
would show up.

1.4 HW5

Remember, toEnum and fromEnum are consistently wrong in the book.

class Enum a where
toEnum:: Int -> a
fromEnum:: a -> int

We have this property toEnum o fromEnum = \z — x
This is an expectation whenever you instantiate Enum class.

And then the HW asked you to write Enum for booleans

data MyBool = TT | FF deriving Show

instance Enum MyBool where
toEnum 0 = FF
toEnum 1 = TT
fromEnum TT = 1
fromEnum FF = 0

1.5 HWG6 - Show functions and instantiating a type class

It had to do with show functions. Given the date data type, write a a show
function to display dates in a fancy form. So we had

data Date = DMY (Int, Int, Int)

The show function was supposed to do something like this:

>DMY(2,1,2008)
2nd January 2008

The whole point was that you can overload the show function in the way you
like. This is a powerful thing. The type class is an elegant implementation of
ad-hoc polymorphism. The interpreter/compiler figures at compile-time which
function to call based on the types. Java generics is designed by the same person
and works similarly.



1.6 HWT - Induction (on Nat)

data Nat = Zero | Succ Nat
(4+) :: Nat — Nat — Nat

m+ zero=m

m + (Succ k) = Succ (m + k)

To show that some property P holds for all finite nats (i.e. not involving _L):
e Show P is true for Zero
e Assuming P is true for K, show P is true for (Succ k)

To show for all Nats
e Show P(1)

Q: What type of induction is that ?
A: Tt is really ordinarily mathematical induction but in fact is structural induc-
tion - more general in the same way.

There will be probably a question on induction principle.

1.7 HWS
In Haskell, lists are defined as

data [a] =[] | () a [d]

Or alternatively,
data List a = Nil | Cons a (List a)

In the HW the lists are defined as :
data Liste a = Nil | Snoc (Liste a) a

It might be interesting to see what is induction principle for Lists formed from
snoc ?
convert :: (Listea) — [a]

1.8 HW9 - Writing list functions

Given type and desired behavior, define the function.

1.9 HW 10 - Modeling finite functions as lists

Implement finite functions using lists and instantiate the Eq type class for this
data type so that f == g returns true iff f and g are functional, and they really
are equal.



For finite functions, we can do this kind of thing but not for infinite functions.
If we use equality on Lists, then the finite function equality would be slightly
different.

FinFunl(1,2)(2,1)] == FinFun[(2,1), (1,2)]

1.10 HW 11

Lists are defined as:
data List a = Nil | Cons a (List a)

Structural Induction on lists
(P(Nil) N Yz :a,Vm: List a. P(m) = P(Cons a m))
= VI : List a. P(l)

This can also be written as:

1. P(Nil).

2. Assuming P(m) show P(x :: m) for arb. x and m.

A binary tree is defined as:
data Btree a = Leaf a | Fork (Btree a) (Btree a)

1.11 HW 12

data Btree a = Leaf a | Fork (Btree a) (Btree a)

(Vx : a, P(Leaf x) AVt1,t2 : (Btree a), P(t1) A P(t2) = P(Fork t1 t2))
= Vi : (Btree a), P(t)

1.12 HW13
data (Ord a) => Stree a = Null|Fork (Stree a) a (Stree a)

So what does the induction principle look like ?
(P(Null) AVx : a,Vt1,t2 : (Stree a),P(t1) A P(t2) = P(Fork t1 z t2))
=Vt : Stree a, P(t).

So what about map ?
map f Null = Null
map f (fork tl x t2) = Fork (map f t1) (f ) (map f t2)



fold is given as:
fold f g Null =g
fold f g (foldtl x t2) = g (fold f g t1)(fold f g t2)

For Stree the fold function is
fold f g (Leaf x) = f x
fold f g (Fork t1t2) =g (fold f g t1) (fold f g t2)



