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1 Overview

We will build a little language and make an interpreter for it (using inductive
datatypes). There’s a famous paper by Kerninghan and Ritchie, who were at
Bell Labs, would create small languages for chemists and physicists. It happens
to be really easy in functional languages.

We will give meaning to the syntax by giving meaning to the constructs using
Haskell on the abstract syntax.

We have to worry about parsing and we will look at functional parsers, which
map strings into abstract syntax.

The langauges we would look in this lecture are:
1. Calculator + variables + local binding construct + evaluator
2. Logic language + evaluator

3. Lambda calculus - build an evaluator

1.1 A simple calculator

What could be the expressions ?

Main> :t Add

Add :: Exp -> Exp -> Exp
Main> N 10

N 10

Main> Add (N 10) (N 20)
Add (N 10) (N 20)

Main>



So what is in the Exp type ?
{NO,N1,N (—1), Add NO N1, Add (Add NO N1),...}
The point is that we have a tree structure. Every piece of syntax has a tree
structure underneath. This is an alternate view of inductive data structures. A
user of little calculator won’t like to type this kind of form.

Main> (N 0) ‘Add¢ (N 1)
Add (N 0) (N 1)
Main>

We want to write 0+1”. But that’s a problem for the later. We will be
building parsers. That is what is happening in programming languages. Our
parser should be able to build a tree or give an indication what is wrong with
the string that you typed in.

eval (N k) =k
eval (Add el e2)
eval (Mul el e2)

(eval el) + (eval e2)
(eval el ) * (eval e2)

Main> eval (N 0)
0
Main> eval (N 4) ‘Add‘ (N 2)

Main> eval ((N 4) ‘Add¢ (N 2))
6

But this is boring and we want to add variables.

data Exp = N Int |V String | Add Exp Exp | Mul Exp Exp deriving (Eq,Show)

eval (N k) =k

eval (Add el e2) = (eval el) + (eval e2)
eval (Mul el e2) (eval el ) * (eval e2)
eval (V x)

But what is the meaning of a variable ?
We can include meaning (call here m) in our eval function as

eval m (N k) = k

eval m (Add el e2) = (eval m el) + (eval m e2)
eval m (Mul el e2) (eval m el ) * (eval m e2)
eval m (V x) = m x

What is this m argument gonna do ? What is the type of m ?
Look at m on a variable so m has the type



Main> :t eval
eval :: ([Char] -> Int) -> Exp -> Int

One way to define m is using a let in Haskell as:

Main> let m x = 10 in eval m (V "z")
10
Main> let m x
11

11 in eval m (N 11)

Main> let m x if x == "zzzz" then (-10) else 10 in eval m ((N 11)

1

So we add let to our expression language, and what we want is that
eval m (let & = el in ez) ~ eval m’ ez
where m' z = if z == x then (eval m el) else m z

Main> Let "x" (N 1) (Vv "x"
Let "x" (N 1) (V "x")
Main> eval (
z => 0)(Let "x" (N 1) (V "x"))
1
Main> eval (
z —> 0)(Let "x" (N 1) (Let "x" (N 2) (V "x")))
2
Main> eval (
z => 0)(Let "x" (N 1) (Let "x" (N 2) (V "z")))
0
Main> eval (
z —> 0) (Let "x" ((V "x") ‘Add‘ (N 1)) (V "x"))
1
Main> eval (
-> O) (Let “X" ((V "X") ‘Add‘ (N 1)) (V "X"))

Haskell has lexical scoping - the binding is closest to the nearest binder in the
expression tree.

Main> let x = 1 in let x = x+ 1 in x
ERROR - C stack overflow

The example above shows that let by default in Haskell is recursive unlike in
other functional languages like OCaml, ML.
In our little language we can do something as follows:

‘Add¢

(V "zzzz"))



Main> eval (- -> 0) (Let "x" (N 1) (Let "x" (Add (V "x") (N 1)) (V "x")))

2

Main> let x = 1 in let x = x+ 1 in 10

10

Main> let x = [] in let x = 1: x in take 12
take 12

Main> let x = [] in let x 1: x in take 12 x
[1’1,1’1’1,1’1,1’1’1}1’1]
Main> take 12 [1..]

[1,2,3,4,5,6,7,8,9,10,11,12]

1.2 Logic language

The terms in this language are given as:

data Prop = FF | Neg Prop | Implies Prop Prop
Below are some examples:

Main> :t FF

FF :: Prop

Main> (Neg FF)

Neg FF

Main> (Neg FF) ‘Implies‘ FF
Implies (Neg FF) FF

Main> :t (Neg FF) ‘Implies‘ FF
Implies (Neg FF) FF :: Prop
Main>

We can define valuations for propositions as:

val FF = False
val (Neg p) = not (val p)
val (Implies pl p2) = mnot (val pl) || val p2

deriving (Show, Eq)

Recall that the truth table for P1 = P2 is same as that of =P1 A P2

P1 P2 -P1 -P1VvP2 Pl=P2

CRCRE RS
RS
3
B3

B A

Table 1: Truth table

val behaves as:



Main> :t val

val :: Prop -> Bool

Main> val ((Neg FF) ‘Implies‘ FF)

False

Main> val ((Neg FF) ‘Implies‘ (Neg FF))
True

We can add a function that counts falses in a proposition

falses FF = 1
falses (Neg p) = (falses p)
falses (Implies pl p2) = (falses pl) + (falses p2)

Main> :t val

val :: Prop —-> Bool

Main> val ((Neg FF) ‘Implies‘ FF)

False

Main> val ((Neg FF) ‘Implies‘ (Neg FF))
True

1.3 Lambda calculus

data Lam = X String | Apply Lam Lam | Lambda String Lam deriving (Eq, Show)

The reduce function uses capture avoiding substitution but we don’t worry about
it in our definition of reduce. Recall that reduce works as :
(\z— > 2)5 ~ z[x := 5]
\e—>2x+ 15~ (x+ 1)z := 5
So the function reduce is defined as follows:

reduce (X s) = (X s)

reduce (Apply (Lambda x m) n) = subst (x,n) m
reduce (Apply m n) = Apply (reduce m) (reduce n)
reduce (Lambda x m) = (Lambda x m)

Here’s an example of using reduce:

Main> reduce (Apply (Lambda "x" (X "x")) (Apply (X "y") (X "y")))
Apply (X llyll) (X uyn)



