
Lecture 27

Lectured and scribed by Sunil Kothari

December 12, 2008

1 Overview

Our goal today is to have parsers which transform types in one language to
another language. Specifically, we want ”(a → (b → c))” to be converted into
”(Arrow (TyV ar a)(Arrow (TyV ar b)(TyV ar c)))”.

We plan to do the following:

1. We will start with a simple type language which requires parens for unique
parse trees.

2. We will look at an efficient version of the above parser.

3. Next, we look at how to parse without parens.

4. Finally, we make the parens optional in our language.

2 Review

Recall that parser type is defined as:

newType Parser a = MkP (String → [(a, String)])

In the previous lecture, we looked at the different ways of defining a type. Look
at the notes or in the book, if you want more information.
For all the parsers that we define in this lecture, most of them can be made
from only two operators. return is defined as:

return :: a -> Parser a
return v = MkP(i -> [(v,i)])

Parser1> apply (return 1) "abc"
[(1,"abc")] :: [(Integer,String)]

The other operator is (>>=), called ”then” in Hutton’s book.

1

p >>= f MkP (\i -> case (apply p i) of
[] -> []
[(v,out)] -> apply (f v) out

In general, parsers are built in the following fashion
p1 >>= λv1→
p2 >>= λv2→
...
pn >>= λvn→
return (f v1 v2 . . . vn)

This notation is normally not used. Instead Haskell provides the do notation

do v1← p1
v2← p2
...
v3← pn

return f v1 v2 . . . vn

Let’s briefly review some of the parsers that Prof. Caldwell introduced last time.

item, which parses a string character by character

item:: Parser Char
item = MkP(ı -> case i of

[] -> []
(x:xs) -> [(x,xs)])

Next, we define a parser which reads the first three characters of a string
and returns a pair of the first and the third character, and also returns the
remaining string.

p :: Parser (Char,Char)

p = do x <- item
item
y <- item
return (x,y)

Parser> apply p "xyzzy"
[((’x’,’z’),"zy")] :: [((Char,Char),String)]

The two parsers can also be combined using the +++ (choice) operator.

2

p ‘plus‘ q = Mkp f
where f x = apply p s ++ apply q s

Hutton’s choice operator

p +++ q = MkP (\i -> case apply p i of
[] -> apply q i
m -> m)

A standard thing is to tokenize i.e. eat as many space as possible.

space :: Parser ()
space = do many (char ’ ’)

return ()

token :: Parser a -> Parser a
token p = do space

v <- p
space
return v

3 Parsing types

This is what was covered in last lecture. Today, we will build on that and
convert types in one language to another language. In compilers, we often do
that. We write programs in one language (normally called the source language)
and convert it into another language (often called the target language). For
example, transforming C++ programs to Java programs.
Each of these languages has a grammar, which dictates what terms (programs)
are syntactically valid in a given language. In our case, the source grammar is
given as:

type ::= string
| ”(” type ”− > ” type ”)”
| ”(” type ”× ” type ”)”

We need parenthesis in this language, since some strings can be parsed into
more than one parse trees. For example, the string ”a→ b→ c ” can be parsed
as (a→ b)→ c or as a→ (b→ c).
The target language is given as:

type ::= TyV ar string
| Arrow type type
| Prod type type

Let’s write a parser now:

3

typ::Parser Type
typ = tyvar +++ arrow +++ prod

The typ parser is a ”choice” in the sense that we can either have a type
variable or an arrow type or a product type. The tyvar, arrow, and prod parsers
are defined as:

tyvar:: Parser Type
tyvar = do n <- identifier

return (TyVar n)

arrow::Parser Type
arrow = do symbol "("

a <- typ
symbol "-"
symbol ">"
b <- typ
symbol ")"
return (Arrow a b)

prod:: Parser Type
prod = do symbol "("

a <- typ
symbol "x"
b <- typ
symbol ")"
return (Prod a b)

We can load this and check.

Parser1> apply typ "(a -> (b -> c))"
[(Arrow (TyVar "a") (Arrow (TyVar "b") (TyVar "c")),[])] :: [(Type,String)]
Parser1> apply typ "(a -> b -> c))"
[] :: [(Type,String)]
Parser1> apply typ "(a -> b -> c)"
[] :: [(Type,String)]
Parser1> apply typ "(a -> b) -> c"
[(Arrow (TyVar "a") (TyVar "b"),"-> c")] :: [(Type,String)]

Note that we the parser takes care of extra spaces as shown below:

Parser1> apply typ "((a -> b) -> c)"
[(Arrow (Arrow (TyVar "a") (TyVar "b")) (TyVar "c"),[])] :: [(Type,String)]
Parser1>

The parser so created is not an efficient parser. The inefficiency comes from the
following code:

4

typ::Parser Type
typ = tyvar +++ arrow +++ prod

To have an efficient parser, we change the code slightly. The new parser is:

typ::Parser Type
typ = tyvar +++ comptype

comptype ::Parser Type
comptype = do symbol "("

a <- typ
constructor <- op
c <- typ
symbol ")"
return (constructor a c)

op:: Parser (Type -> Type -> Type)
op = arrow +++ prod

arrow ::Parser (Type -> Type -> Type)
arrow = do symbol "->"

return Arrow

prod::Parser (Type -> Type -> Type)
prod = do symbol "x"

return Prod

This doesn’t change the final output. For example,

Parser2> apply typ "((a -> b) -> c)"
[(Arrow (Arrow (TyVar "a") (TyVar "b")) (TyVar "c"),[])] :: [(Type,String)]
Parser2>

Now we switch to a type language, where the compound types always asso-
ciate to the right. So we can do away with the parens in our source language.
The new grammar is given as:

type ::= string
| type ”→ ” type
| type ”× ” type

The parser undergoes a slight modification.

5

typ::Parser Type
typ = comptype

comptype ::Parser Type
comptype = do a <- tyvar

do constructor <- op
c <- comptype
return (constructor a c)

+++ return a

op:: Parser (Type -> Type -> Type)
op = arrow +++ prod

We can load this in the interpreter and the results are as expected.

Parser3> apply typ "a -> b -> c"
[(Arrow (TyVar "a") (Arrow (TyVar "b") (TyVar "c")),[])] :: [(Type,String)]
Parser3> apply typ "a -> b -> c-> d -> e"
[(Arrow (TyVar "a") (Arrow (TyVar "b") (Arrow (TyVar "c") (Arrow (TyVar "d") (TyVar "e")))),[])] :: [(Type,String)]
Parser3> apply typ "a -> b x c"
[(Arrow (TyVar "a") (Prod (TyVar "b") (TyVar "c")),[])] :: [(Type,String)]
Parser3>

Finally, we make the parenthesis optional in the sense that if they are not
specified then the compound types will associate to the right. Again, the mod-
ified code is given below:

typ::Parser Type
typ = comptype +++ parencomptype

parencomptype :: Parser Type
parencomptype = do symbol "("

a <- typ
symbol ")"
return a

comptype ::Parser Type
comptype = do a <- tyvar +++ parencomptype

do constructor <- op
c <- typ
return (constructor a c)

+++ return a

Again, the results are as we expect.

Parser4> apply typ "a -> (b -> c) -> d -> e"

6

[(Arrow (TyVar "a") (Arrow (Arrow (TyVar "b") (TyVar "c")) (Arrow (TyVar "d") (TyVar "e"))),[])] :: [(Type,String)]
Parser4> apply typ "a -> (b -> c -> d) -> e"
[(Arrow (TyVar "a") (Arrow (Arrow (TyVar "b") (Arrow (TyVar "c") (TyVar "d"))) (TyVar "e")),[])] :: [(Type,String)]
Parser4>

7

