COSC 3015: Lecture 7

Lecture given by Prof. Caldwell and scribed by Sunil Kothari
September 16, 2008

1 Inductive Datatype

data Nat = Zero | Succ Nat

There is recursion in the datatype equation. We are defining the datatype Nat
- and in doing so, use the data type Nat.
Zero and Succ are constructors for the data type.
Zero::Nat - is a constant of the type nat.
Succ:: Nat — Nat - is a constant that maps Nats to Nats

Main> :t Zero

Zero :: Nat

Main> :t Succ Zero
Succ Zero :: Nat
Main>

To apply the constructor Succ - we must have a previously constructed Nat to

apply to it. What objects have type Nat ?? Nat = {Zero, SuccZero, Succ(SuccZero), - - -

This representation goes back to Peano, an Italian logician and mathemati-
cian. In Haskell, we have the most refined form of equality.

instance Eq Nat where

Zero == Zero = True

Zero == Succ n = False

Succ n == Zero = False

Succ n == Succ m = m ==
Main> :t (==)
(==) :: Eqa =>a ->a ->Bool

By default, we also get not equal to

it (/=)
(/=) :: Eq a=>a->a ->Bool
Main>

If we had said data Nat = Zero |Succ Nat deriving Eq

Haskell would have derived an equivalent == function to one we have writ-
ten.
Succ Zero == Succ (Succ Zero)
~» Zero == Succ Zero
~ False

Nat terms have a tree structure.
We can define our own +++ as :
(+++) :: Nat — Nat — Nat
m +-++ zero=m
m +++ (Suce n) = Suce (n +++ m)

Theorem 1. Vm : Nat.m +++ (succ 0) = succ m

Proof. Choose an arbitrary m and show m +++ (succ 0) = succ m. Starting
with LHS

m 44—+ (suce 0) <<defn o£+++>>

suce (m +++ zero) O
= suce m

Similarly, we can check if zero is same as our notion of 0 in mathematics
Theorem 2. Vm : Nat.zero +++m =m

Proof by induction on m. . O

1.1 Induction Principle

Consider again inductively defined data type.
data Nat = Zero | Succ Nat deriving Eq
The induction principle for Nat. (as is in the book)

Case (Zero): P(Zero) holds
Case (succ n): Assuming P(n) holds, show P(succ n) holds.
What is P?? P :: Nat — Bool - P is a property of natural numbers.
Another way of thinking this is :
(P(0O) AVm : Nat.P(m) = P(m+ 1)) = Vm : Nat.P(m)

Theorem 3. Vm,n : Natn +++m=m +++n

By induction on m. What is P(m) ? we can look at the statement as Vm,Vn :

Nat.n +4++ m = m +++ n So the property is P(m) ©f i . Nat.ntm = m+n.
So we have to show:

case (P(zero) : ¥n: Nat.n +++ zero = zero+++n. Choose an arbitrary n.
L.HS. n+++ zero =n (by definition of +)
zero +++mn = n (by Lemma 1)

case P(Succ n) : Assume P(k), i.e. Vn: Natn+k=k+n
Show P(Succ k) - Vn : Nat.n+++ (Suce k) = (Succ k) +++ n
Choose arb. n and show that
n +++ (succ k) = (succ k) +++n

On the left,
n+++(Succ k) = succ (n +++ k)(by defnition of plus)
= succ(k+++n) (by P(k))
= k+ (succn)

On the right, since Vn : Nat,n+k=k+n
we know (succ n) +++ k = k +++ (succ n)

Lemma 1. Vn: Nat.zero +++n=mn

Proof. By induction on n. What is P(n)? P(n) ©f ero +++n=n

Base case : show zero +++ zero = zero. But zero +++ zero = zero so the
base case holds.

Induction case show P(succ k): assume P(k) and show P(succ k).
P(k) © ero+++k=k
P(succ k) 4 ero +++ (succ k) = succ k

Start on the left P(succ k) e ero +++ (succ k)
= succ (zero+ k)
= succ k

So the induction principle holds.
O

We are trying to prove properties of our recursive program. We are proving
properties of our haskell function

