
Ph.D. Qualifying Examination

Principles of Programming Languages

Department of Computer Science
University of Wyoming

11 April 2005

Name:

Instructions: There are three questions, if you choose to answer any of the three, be sure to
answer all parts to that question. You may use Schmidt as a reference.

1

2

11 April 2005 Ph.D. Quaifying Exam
Principles of Programming Langauges

1. [Untyped λ-calculus and Fixed-point Combinators (2 parts)]

1a.) Consider the fixedpoint combinator Y where

Y = λf.(λx.f(xx))(λx.f(xx))

Prove1 that Y has the fixedpoint property, i.e. show that for all lambda terms M the following
holds:

Y M =β M(Y M)

1You will need to use β-conversion; e.g. use the equality (λx.M)N = M [x := N], possibly in both directions, to
show that Y M = M(Y M).

3

4

11 April 2005 Ph.D. Quaifying Exam
Principles of Programming Langauges

1b.) Consider the untyped lambda terms (Λ) extended to include Booleans (B = {true, false}),
constants for each integer (Z), an if-then-else operation, addition and subtraction on integers,
and an equality test on integers.

Λ ::= x|λx.M |(MN)|B|Z|if B then M else N |M + N |M −N |I ≤ J

where M,N ∈ Λ are lambda terms,
x ∈ Var is a variable,
M + N denotes ordinary addition on the integers, and
M −N denotes ordinary subtraction on the integers, and
I ≤ J denotes the ordinary ordering in Z when I, J ∈ Z.

The rules for evaluating if-then-else are

if true then M else N → M
if false then M else N → N

Note that Y ∈ Λ.

Use the fix-point property of Y (defined above in part a) to define a closed term in Λ implementing
the following recursive description of the a summation operator:

sum n
def= if n ≤ 0 then 0 else n + sum (n - 1)

5

6

11 April 2005 Ph.D. Quaifying Exam
Principles of Programming Langauges

2. [Simply Typed λ-calculus (2 parts)] Consider a simply typed lambda calculus defined as follows.

Λ ::= X | λX : θ.M | (MN)

where X ∈ V ar is a variable, and M,N ∈ Λ are lambda terms.
Types are defined by the following grammar:

θ ::= B | Z | θ1 → θ2

A type assignment π is a set of pairs {Xj : θj}0≤j<k where Xj is a variable and θj is a type. We
define a special union operator on type assignments as follows:

π1 ∪−π2 = π2 ∪ (π1 − {(X : θ) ∈ π1|∃θ1.(X : θ1) ∈ π2})

The following are the typing rules for this system.

π ` X ∈ θ
if (X :θ) ∈ π

π ` M ∈θ1 → θ2 π ` N ∈θ1

π ` M(N)∈θ2

π ∪−{x :θ1} ` M ∈θ2

π ` (λx :θ1.M)∈θ1 → θ2

7

8

11 April 2005 Ph.D. Quaifying Exam
Principles of Programming Langauges

2a.) Use the typing rules to dervive a type for the following term

(λf : (Z → B) → Z. (λg :Z → B.(λh : B. f(g))))

2b.) Use the typing rules to dervive a type for the following term

(λy :Z → Z → B. (λx :Z.(λz : Z. (yx)z)))

9

10

11 April 2005 Ph.D. Quaifying Exam
Principles of Programming Langauges

3. [Denotational Semantics (2 Parts)] Use the semantic equations from Schmidt (pg. 13,14) to
prove2 the following phrases are equivalent for all stores.

3a.) [[if E then C1 else C2 fi;C3]] = [[if E then C1;C3 else C2;C3 fi]]

2You should realize that both expressions denote functions of type Store→ Store⊥ and so should use extension-
ality.

11

12

11 April 2005 Ph.D. Quaifying Exam
Principles of Programming Langauges

3b.) The following identities hold for all stores and all commands C.

i.) [[while (0 = 0)do skip od : comm]](s) = ⊥
ii.) [[C : comm]](⊥) = ⊥

Use these two facts to show the following equivalence holds.

[[while (0 = 0)do skip od;C1 : comm]] = [[C1;while (0 = 0)do skip od : comm]]

13

