Ph.D. Qualifying Examination Principles of Programming Languages

Department of Computer Science
University of Wyoming
11 April 2005

Name: \qquad
Instructions: There are three questions, if you choose to answer any of the three, be sure to answer all parts to that question. You may use Schmidt as a reference.

1. [Untyped λ-calculus and Fixed-point Combinators (2 parts)]

1a.) Consider the fixedpoint combinator Y where

$$
Y=\lambda f .(\lambda x \cdot f(x x))(\lambda x . f(x x))
$$

Prove ${ }^{1}$ that Y has the fixedpoint property, i.e. show that for all lambda terms M the following holds:

$$
Y M={ }_{\beta} M(Y M)
$$

[^0]1b.) Consider the untyped lambda terms (Λ) extended to include Booleans ($\mathbb{B}=\{$ true, false $\}$), constants for each integer (\mathbb{Z}), an if-then-else operation, addition and subtraction on integers, and an equality test on integers.

$$
\Lambda::=x|\lambda x \cdot M|(M N)|\mathbb{B}| \mathbb{Z} \mid \text { if } B \text { then } M \text { else } N|M+N| M-N \mid I \leq J
$$

where $M, N \in \Lambda$ are lambda terms,
$x \in \operatorname{Var}$ is a variable,
$M+N$ denotes ordinary addition on the integers, and
$M-N$ denotes ordinary subtraction on the integers, and
$I \leq J$ denotes the ordinary ordering in \mathbb{Z} when $I, J \in \mathbb{Z}$.
The rules for evaluating if-then-else are

$$
\begin{aligned}
& \text { if true then } M \text { else } N \rightarrow M \\
& \text { if false then } M \text { else } N \rightarrow N
\end{aligned}
$$

Note that $Y \in \Lambda$.
Use the fix-point property of Y (defined above in part a) to define a closed term in Λ implementing the following recursive description of the a summation operator:

```
sum n \stackrel{def if n < 0 then 0 else n + sum ( n - 1)}{=}\mathrm{ if}
```

2. [Simply Typed λ-calculus (2 parts)] Consider a simply typed lambda calculus defined as follows.

$$
\Lambda::=X|\lambda X: \theta \cdot M|(M N)
$$

where $X \in V a r$ is a variable, and $M, N \in \Lambda$ are lambda terms.
Types are defined by the following grammar:

$$
\theta::=\mathbb{B}|\mathbb{Z}| \theta_{1} \rightarrow \theta_{2}
$$

A type assignment π is a set of pairs $\left\{X_{j}: \theta_{j}\right\}_{0 \leq j<k}$ where X_{j} is a variable and θ_{j} is a type. We define a special union operator on type assignments as follows:

$$
\pi_{1} \forall \pi_{2}=\pi_{2} \cup\left(\pi_{1}-\left\{(X: \theta) \in \pi_{1} \mid \exists \theta_{1} \cdot\left(X: \theta_{1}\right) \in \pi_{2}\right\}\right)
$$

The following are the typing rules for this system.

$$
\begin{aligned}
& \overline{\pi \quad \vdash \quad X \in \theta} \text { if }(X: \theta) \in \pi \\
& \frac{\pi \vdash M \in \theta_{1} \rightarrow \theta_{2} \quad \pi \vdash N \in \theta_{1}}{\pi \vdash M(N) \in \theta_{2}} \\
& \begin{array}{rll}
\pi \forall\left\{x: \theta_{1}\right\} & \vdash & M \in \theta_{2} \\
\hline \pi & \vdash & \left(\lambda x: \theta_{1} \cdot M\right) \in \theta_{1} \rightarrow \theta_{2}
\end{array}
\end{aligned}
$$

2a.) Use the typing rules to dervive a type for the following term

$$
(\lambda f:(\mathbb{Z} \rightarrow \mathbb{B}) \rightarrow \mathbb{Z} .(\lambda g: \mathbb{Z} \rightarrow \mathbb{B} \cdot(\lambda h: \mathbb{B} \cdot f(g))))
$$

2b.) Use the typing rules to dervive a type for the following term

$$
(\lambda y: \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{B} .(\lambda x: \mathbb{Z} .(\lambda z: \mathbb{Z} .(y x) z)))
$$

3. [Denotational Semantics (2 Parts)] Use the semantic equations from Schmidt (pg. 13,14) to prove ${ }^{2}$ the following phrases are equivalent for all stores.

3a.) $\llbracket i f E$ then C_{1} else $C_{2} \mathbf{f i} ; C_{3} \rrbracket=\llbracket i f E$ then $C_{1} ; C_{3}$ else $C_{2} ; C_{3} \mathbf{f i} \rrbracket$

[^1]3b.) The following identities hold for all stores and all commands C.
i.) \llbracket while $(0=0)$ do skip od : $\operatorname{comm} \rrbracket(s)=\perp$
ii.) $\llbracket C: \operatorname{comm} \rrbracket(\perp)=\perp$

Use these two facts to show the following equivalence holds.
\llbracket while $(0=0)$ do skip od $; C_{1}:$ comm $\rrbracket=\llbracket C_{1} ;$ while $(0=0)$ do skip od :comm \rrbracket

[^0]: ${ }^{1}$ You will need to use β-conversion; e.g. use the equality $(\lambda x . M) N=M[x:=N]$, possibly in both directions, to show that $Y M=M(Y M)$.

[^1]: ${ }^{2}$ You should realize that both expressions denote functions of type Store \rightarrow Store \perp_{\perp} and so should use extensionality.

