
Moving Proofs-As-Programs Into Practice

James L. Caldwell
NASA Ames Research Center

Computational Sciences Division
Mail Stop 269-1

Moffett Field, CA, 94035-1000
caldwell@cs.cornell.edu∗

Abstract

Proofs in the Nuprl system, an implementation of a con-
structive type theory, yield “correct-by-construction” pro-
grams. In this paper a new methodology is presented for
extracting efficient and readable programs from inductive
proofs. The resulting extracted programs are in a form suit-
able for use in hierarchical verifications in that they are
amenable to clean partial evaluation via extensions to the
Nuprl rewrite system. The method is based on two ele-
ments: specifications written with careful use of the Nuprl
set-type to restrict the extracts to strictly computational con-
tent; and on proofs that use induction tactics that generate
extracts using familiar fixed-point combinators of the un-
typed lambda calculus. In this paper the methodology is
described and its application is illustrated by example.

1. Introduction

The ability to extract “correct-by-construction” pro-
grams directly from proofs is the most notable feature of
constructive type theories as implemented in Nuprl [1] and
related systems [8, 2, 10]. However, there still is no es-
tablished software engineering practice based on the ex-
traction of programs from constructive proofs in any of
the constructive systems. A key obstacle to the transition
of program extraction methods into practice is the lack of
a methodology for extracting clear and readable programs
from formal proofs. Often, the extracted programs contain
unnecessary structure, artifacts of the constructive proof,
that do not contribute to the computational content of the
extracted term. Researchers have addressed this problem in
various constructive systems in an attempt to improve the

∗This work was performed by the author while a member of the formal
methods group at NASA Langley Research Center. The author is currently
visiting Cornell University, and can be contacted at 4116 Upson Hall, Cor-
nell University, Ithaca, NY, 14850.

efficiency, readability, and understanding of extracted pro-
grams [11, 5, 12].

This paper presents a methodology for specification and
proof in the Nuprl system that yields clean recursive pro-
grams as extracts. The methodology for directly defining re-
cursive functions and proving properties about them is well
established in Nuprl practice. Indeed many of the pieces
for the new methodology described here are already present
in [5]. The approach described here makes it possible to
extract programs from proofs that can be uniformly manip-
ulated by the Nuprl system using current methodology. Al-
though it has always been possible in Nuprl to approach
program development from either side,i.e. via verifica-
tion or extraction, the methodology reported on here allows
seamless integration of the two. In some cases the explicit
program is already known and then verification is the best
approach. In other cases, the complexity of detail in the
program makes extraction from a proof the more convenient
approach.

A cornerstone of existing Nuprl verification methodol-
ogy is the happy fact that recursive programs can be defined
in the untyped computation system of Nuprl using standard
fixed-point combinators1. Once a definition is defined by
a general recursive program (a lambda term of Nuprl’s un-
typed programming language) the Nuprl rewrite system is
extended to include selective unfolding of the definition to
allow for partial evaluation of the function when it is applied
to certain well-behaved non-ground terms. For each such
abstraction a well-formedness lemma is proved which as-
serts the abstraction inhabits the appropriate type thus show-
ing termination. Typically, to be of most utility, any num-
ber of lemmas characterizing the abstraction with respect to
other functions and operators are required. For large verifi-
cations the main theorems of a verification are proved using
many lemmas, functions and operators defined and verified
as just described.

1The possibility of such definitions was first noticed by Stuart Allen
and was subsequently put into practice by Doug Howe and Paul Jackson.

1

Current Nuprl methodology is one of program verifica-
tion in type theory; program extraction mechanisms are only
applied at the topmost levels of a verification if at all. Al-
though Nuprl offers a powerful environment for program
synthesis, its application as a program synthesis tool has
been relatively unexplored If the proofs-as-programs inter-
pretation is to be accepted into practice the method must be
uniformly applicable at all levels of proof development.

In following sections of the paper the Nuprl type system
is introduced, the current methodology for defining func-
tions via general recursion is outlined, and a new methodol-
ogy is presented that builds on existing methods to allow the
proofs-as-programs interpretation to be applied all levels of
verification.

2. An Overview of the Nuprl System

The Nuprl type theory is a sequent presentation of a con-
structive type theory via type assignment rules. The under-
lying programming language is untyped and the objective
of a proof is to either prove a type is inhabited,i.e. to show
that some term (program) is a member of the type, or to
show that a term inhabits a particular type. A complete pre-
sentation of the type theory can be found in the Nuprl book
[1].

The Nuprl system, as distinguished from the type theory,
implements a rich environment to support reasoning about
and computing with the Nuprl type theory. The system im-
plementing the type theory has evolved since publication of
the book but (with a few extensions) the type theory pre-
sented there is faithfully implemented by the Nuprl system.
Complete documentation is included in the Nuprl V4.2 dis-
tribution. 2

2.1. The computation system

Nuprl termsinclude the constructs of its untyped func-
tional programming language with additional constructs for
denoting types and propositions. Terms are printed here in
typewriter font. The Nuprl computation system pro-
vides reduction rules for a left-most outermost (lazy) evalu-
ation strategy. The rules are implemented by the evaluator.

For termst and t’ we will write t � t’ to indicate
that t evaluates tot’ under the reduction rules. In later
sections we apply an extended version of the basic compu-
tation system via the rewrite facility. For termst and t’
we will write t �R t‘ to indicate thatt reduces tot’ in the
extended system.

As usual, the notationt[t’/x] denotes the term result-
ing from the substitution oft’ for free occurrences ofx in

2The Nuprl system is available from
Cornell at http://www.cs.cornell.edu/Info/Projects/Nuprl/nuprl.html or by
anonymous ftp from ftp.cs.cornell.edu.

t . Similarly, t[t 1, · · ·,t n/x 1, · · ·,x n] denotes the si-
multaneous substitution of eacht i for eachx i in t . We
will sometimes writēt to denote a vector of terms or vari-
ables.

2.2. The type theory

A Nuprl type is a termT of the computation system with
an associated transitive and symmetric relation denoted by
the termx=y ∈T. This relation is known astype membership
equality and it respects evaluation in termsx and y (it is
an equivalence relation when restricted to members ofT).
A point of confusion to the tyro is that, unlike set theory,
type membership equality is well-formed (is a proposition)
only whenT is a type andx and y are both elements of
type T; if T is not a type or either ofx or y (or both) are
not elements ofT then the termx=y ∈T denotes nothing,
it is nonsense. The termx∈T is an encoding ofx=x ∈T
Interpreting the type membership equality relation and type
membership as types is made sensible via the propositions-
as-types interpretation [1, pg.29–31].

In addition to the type membership equality provided
with each type, there is an equality on types. Equality of
types is intensionali.e. type equality in Nuprl is a structural
equality modulo the direct computation rules. This means
that, unlike sets which enjoy extensional equality, two types
may contain the same elements and share an equality rela-
tion but not be equal types. For example, althoughT and
{x:T | True } have the same members and equality re-
lations, they are not equal types in Nuprl.

Like the related type theory of Martin-Löf [8] or the type
theory of Whitehead and Russell’sPrincipia Mathematica,
Nuprl’s type theory is predicative, supporting an unbounded
cumulative hierarchy of type universes. Every universe is
itself a type and every type is an element of some universe.
U{i} denotes the typeuniversewherei is a polymorphic

specification of universe level.The property of being a
type is formally writtenT∈U .

P {i } is a synonym forU{i } and is sometimes used to
emphasize the propositional side of the propositions-
as-types interpretation.

An incomplete list of other Nuprl types and their members
include the following:
Void is theemptytype.
Z is theintegertype.

Atom is the type whose elements arestrings.
T list is the type oflists over typeT.
y:A → B[y] is the dependent functiontype containing

functions with domain of typeA and range typeB[y]
wherey is a variable possibly occurring free inB.

x:A ×B[x] is the dependent producttype consisting of
pairs<a,b> wherea∈A andb∈B[a/x] .

A|B denotes thedisjoint unionof A andB.

rec(x.T) is the Nuprlinductive typeconstructor where
x is a variable bound in termT, free occurrences ofx
in T denote inductively smaller elements of the type.

{y:T|P[y] } denotes aset typewhen T is a type and
P[y] is a proposition possibly containing free occur-
rences ofy .

2.3. Logic via propositions-as-types

A constructive logic is encoded within the Nuprl type
theory. The following definitions in the Nuprl V4core 1
system library encode the logic.

True == 0 ∈ Z
False == Void
P ∧ Q == P × Q
P ∨ Q == P | Q
P ⇒ Q == P → Q
¬A == A ⇒ False
∃x:A. B[x] == x:A × B[x]
∀x:A. B[x] == x:A → B[x]

The Nuprl tactics have been built to manipulate both the
propositions and types formulation uniformly.

2.4. Judgements

Nuprl judgements are the assertions one proves in the
system. They are of the following form. Nuprl judgements
take one of two forms3:

x1:T1,· · ·,xn :Tn ` S [ext s]
or

x1:T1,· · ·,xn :Tn ` s∈ S [extAx]

wherex1, · · ·,x n are distinct variables andT1, · · ·,T n ,
S, ands are terms (n may be 0), every free variable ofTi

is one ofx1, · · ·,x i−1 and every free variable ofS or of s
is one ofx1, · · ·,x n . The listx1:T 1, · · ·,x n :T n is called
the hypothesis list, eachx i:T i a declaration (ofx i), each
Ti is ahypothesis, S (s∈S) is theconsequentor conclusion,
the term following the keywordext is theextract, and the
entire form is a Nuprlsequent. Judgements of the second
form are also calledwell-formedness goals. The computa-
tional content of well-formedness goals is trivial.

Stating the conditions under which a Nuprl sequent is
deemed true are technically complicated by functionality
constraints; the reader is referred to the Nuprl book [1,
pg.141] for a fuller account. Somewhat informally, a judge-
ment asserts that, assuming the hypotheses are well-formed
types, and the hypotheses, conclusion and extract terms are
functional in those types, then the termS is an inhabited
type and the extracts is an inhabitant. The fact that the
extract terms inhabitsS is an artifact of the proof thatS

3The first form subsumes the second; there is really only one form but
it is useful to make the distinction as if there were two so we do.

is inhabited. IfS is inhabited there may be more than one
inhabitant and different proofs may yield different inhabi-
tants.

A Nuprl goal is a judgement having no hypotheses.
A Nuprl proof is a decorated tree structure having a goal

as its root and where the children of each node are instances
of sequents justified by the rules of the type theory. A proof
of a sequent shows that the goal is both well-formed and in-
habited. Given terms inhabiting the hypotheses of a rule, a
proof specifies how to construct a term inhabiting the type
in the conclusion of the rule; thus, proofs contain instruc-
tions for the construction of witness terms.Extraction is
the process of constructing a witness term as specified by
a proof. The extract of a completed proof of a sequent is
a closed term; the extract of an incomplete proof is a term
possibly containing free variables.

2.5. The Nuprl system

The Nuprl system supports construction of top-down
proofs by refinement. The prover is implemented as a tactic
based prover in the style of LCF [3] and is built on a base
of ML. In Nuprl the proposition-as-types interpretation al-
lows for presentations to be cloaked in either logical or more
purely type-theoretic terms.

The system supports a library mechanism which pro-
vides for grouping of Nuprl objects. The status and class
of an object is indicated in the library by a two character
sequence preceding the name of the entry in the library. For
the purposes of this paper we are concerned with display
form objects, definition objects (or abstractions), theorem
objects, and ML objects.

3. Recursive Function Definitions In Nuprl

In current Nuprl methodology recursive functions are
directly defined by applying Curry’sY combinator [5, 7].
The Y combinator is defined in the Nuprl system library
core 2 as follows:

*A ycomb Y == λf.(λx.f(x x))(λx.f(x x))

The methodology for effective use of definitions incorporat-
ing Y depend on the rewriting system. The rewrite conver-
sion encapsulates the fixed-point property of theY combi-
nator:

Y F �R F (Y F)

whereF is any term. While theY itself can not be assigned a
type in Nuprl (i.e. it is not well-formed); well-formedness
theorems for functions defined usingY show they inhabit
the appropriate type. This approach is possible because the
fixed-point behavior is justified via Nuprl’s direct computa-
tion rules which implicitly preserve typing [1]. Because the

direct computation rules preserve typing, well-formedness
goals are not generated when the conversion to unfoldY is
applied and one is never required to assign a type toY itself.

Tactic support for the methodology is described in [6, 7]
In this paper, and in Nuprl libraries developed by the

author, theY combinator is hidden by the more familiar
letrec form. It is defined as follows:

(letrec f x̄ = b[f; x̄]) == Y(λf.(λx̄. b[f; x̄]))

The computational behavior of an application of aletrec
term is as follows:

(letrec f x̄ = b[f; x̄]) t̄ �R

b[(letrec f x̄ = b[f; x̄]), t̄/f, x̄]

i.e. the recursive call is substituted forf in the term
b[f;t] and the arguments̄t are substituted for the vari-
ablesx̄.

3.1. An example recursive definition

In this section a list quantification operator is developed
illustrating the established methodology.

A display form object in the library provides a template
for display of instances of the new operator as shown on the
left side of the definition. A second library entry contains
the definition or abstraction.

*A list all
∀x∈L.P[x] ==

(letrec list all (L) =
if null(L) then True
else h::t = L in P[h] ∧ list all(t)
fi)(L)

An ML object defines the rewrite conversions used to se-
lectively unroll occurrences of thelist all operator. The
conversion extends the reduction system to include the fol-
lowing behavior:

∀x∈[].P[x] �R True
∀x∈h::t.P[x] �R P[h] ∧∀x∈t.P[x]

When L is a non-canonical list form, occurrences of
∀x∈L.P[x] are not evaluated. The code implementing
the conversion is uniform (modulo function names and term
instances) for all recursive functions defined using letrec.
The uniformity of the mechanism for clean unfolding terms
is perhaps the main advantage of using ordinary recursive
definitions.

The third library entry related to this operator definition
is a well-formedness theorem characterizing its type.

*T list all wf
∀T: U . ∀P:T → P . ∀L:T List. ∀x∈L. P[x] ∈P

The theorem is named following the convention used by the
well-formedness tactics which search for it by name and
automatically apply it when well-formedness goals are in-
duced during proofs. It says that for appropriately typed
arguments, thelist all operator denotes a proposition.
The theorem is proved by induction onL and then reduc-
tion under theReduce tactic extended by the conversion
for unfolding occurrences oflist all .

The following lemma characterizes thelist all oper-
ator in terms of those elements ofT that are members of the
list L.

*T list all all lemma
∀T: U . ∀P:T → P . ∀L:T List. ∀eq: {T=2}. ∀x∈L.

P[x] ⇔ (∀x: {x:T| ↑(x(∈eq) L) }.P[x]) }

The type of boolean equalities respecting the built-in type
equality forT is denoted{T=2}. Types having such equal-
ities are said to be discrete. The list membership oper-
ator used here is a boolean function parameterized by a
boolean equality. Theassert operator, denoted↑(b) ,
lifts a boolean to a proposition.

In this lemma, the set type is being used as a subtyping
mechanism to restrict attention to elements ofT that hap-
pen to occur in the listL. We shall see a distinctly different
application for the set type in the next section.

4. Extraction of general recursive content

The definition and lemma just given forlist all does
not apply the proofs-as-types interpretation. It is essen-
tially classical program verification performed in the Nuprl
type theory. In this section we specify and prove a theo-
rem whose extract is the function used above to define the
list all operator.

4.1. A first specification

First, we state a theorem whose inhabitants are of the
correct type. The type we are interested in is given by the
well-formedness theorem for thelist all operator,i.e.

U → P:(T → P) → L:T List → P

We use the characterization given by the
lemma list all all as a basis for the specification of
the behavior of the function.

*T list all exists lemma
∀T: U . ∀P:T → P . ∀L:T List.
∃p: P . ∀eq: {T=2}.

p ⇔ (∀x: {x:T| ↑(x(∈eq) L) }.P[x])

Under the propositions-as-types interpretation we can un-
derstand the theorem as a specification for functions of type

T: U → P:(T → P) → L:T List → p: P × T [p]

whereT [p] is the proposition

∀eq: {T=2}.p ⇔ (∀x: {x:T| ↑(x(∈eq)L) }.P[x])

The elements of the type are the terms inhabiting (proving)
the proposition. In this specification,p is a proposition (an
element of typeP) that is true wheneverT [p] is inhabited.

Using the extract of this theorem we can easily define a
function that is extensionally equivalent to the one we are
after by taking the first projection of the result of applying
it to the appropriate arguments. Thus iff is the extract of
the theorem, we can easily prove

∀T: U . ∀P:T → P . ∀L:T List.
(f(T)(P)(L)).1 ∈ P

Where for any pair〈x,y 〉, 〈x,y 〉.1 = x .
This is precisely the approach described in the Nuprl

book [1, section 4.4] and elsewhere [10, section 21.1]. But
the approach fails if we are interested in using the extract in
proofs where we need efficient selective unfolding of terms
and partial evaluations. The following term, shown after
one step of reduction, was extracted from a natural proof of
the list all exists lemma.

λT,P,L.
(letrec f (L) =

if null(L)
then <True, λeq.< λ%,x.any Ax, λ%.Ax>>
else h::t = L in

let <p,%1> = (f(t)) in
<P[h] ∧ p,
λeq.< λ%1@0.let <%2,%3> = %1@0 in
λx.let <%4,%5> = (%1(eq)) in

let <%9,%10> =
(ext {discrete eq props }(T)(eq)) in

case
ext {decidable assert }(eq(x)(h))

of inl(%14) ⇒
let <%18,%19> = (%9(x)(h))in %2

| inr(%15) ⇒%4(%3)(x),
λ%1@0.<%1@0(h),let <%3,%4> =

(%1(eq)) in %4(λx.%1@0(x))>>>
fi)(L)

There is no obvious way to evaluate the application of this
term to a non-ground list without blowing up the term size
with every unfolding. This is a serious problem in practice.

One approach is to minimize the logical content by hid-
ing most of it in a set type.

*T list all exists lemma 1
∀T: U . ∀P:T → P . ∀L:T List.
∃p: {p: P | ∀eq: {T=2}.

p ⇔ (∀x: {x:T| ↑(x(∈eq)L) }.P[x]) }.True

Proofs of this theorem still compute pairs but the right ele-
ment of the pair is the termAx.

4.2. A Refined Specification

The Nuprl set type was used above to define a subtype,
now we use it to discard the unwanted computational con-
tent carried by proofs of specifications based on the existen-
tial quantifier. The following theorem justifies the replace-
ment of the existential quantifier with a set type.

*T exists iff set
∀T: U . ∀P:T → P .
∃{x:T|P[x] }. True ⇔ {x:T|P[x] }

This leads to the following specification.

*T list all ext
∀T: U . ∀P:T → P . ∀L:T List.

{p: P | ∀eq: {T=2}.
p ⇔ (∀x: {x:T| ↑(x(∈eq)L) }.P[x]) }

The proof rules for the set type are noticeably similar to
those for dependent product, but the extract of the set type
does not include the proof thatT [p] holds. The type of
this specification is the one we want.

T: U → P:(T → P) → L:T List → P

Having a statement of the theorem with the correct type
and with the intended meaning we must prove it in a way
that generated the extract we are most interested in. Specif-
ically, we want to prove the theorem so that extract is a re-
cursive function defined byletrec . We will return to the
proof of the theoremlist all ext after developing the
necessary mechanism.

4.3. List Induction Extracting letrec

Induction on lists is defined by the Nuprl inference rule
listElimination . The application of the rule gener-
ates the extract using thelist ind term whose computa-
tional behavior is as follows:

list ind([]; b; x, y, z. u) � b
list ind(h:: t; b; x, y, z. u) �

u[h, t,list ind(t; b; x, y, z. u)/ x, y, z]

TheListInd tactic applies the rule. The goal in this sec-
tion is to develop a new list induction tactic whose behavior
mimics theListInd tactic but having a recursion combi-
nator defined usingletrec as its extract.

The following theorem captures the familiar list induc-
tion principle.

*T list ind with y
∀T: U . ∀P:T List → P ’.

P[[]] ⇒(∀u:T. ∀v:T List.P[v] ⇒P[u::v])
⇒ (∀M:T List. P[M])

Since our goal is a specific extract, to prove the induction
principle we explicitly provide the witness term we are in-
terested in.

λT,P,b,g.
letrec f (L) =

if null(L) then b
else h::t = L in g(h)(t)(f(t))
fi

Given the witness, the remainder of the proof is a verifi-
cation that the witness term does indeed inhabit the type
specified by the theorem. The proof is surprisingly intri-
cate although it is modeled on a similar induction principle
developed by Howe [5] for natural numbers and having a
recursion combinator defined usingY as its extract.

A new tactic,ListIndY , facilitates the application of
the induction principle. ListIndY duplicates the be-
havior of the ordinaryListInd tactic in most contexts.
Taking as argument the hypothesis number of the induc-
tion variable, the tactic constructs the induction proposi-
tion (the functionP of typeT → P) and then instantiates
the list ind with y lemma. The instantiation of the
lemma generates a number of well-formedness goals which
are, in most contexts, easily discharged by theAuto tac-
tic. Of the three remaining goals, one corresponds to the
base case, the other to the induction step, and the third to
the original sequent with the induction principle fully in-
stantiated as a hypothesis. This third subgoal is discharged
by an application ofHypBackchain THEN Auto leav-
ing only two subgoals which match those produced by the
ListInd tactic.

Extracts of theorems proved with theListIndY tactic
refer indirectly to the computational content of this theorem
by including the termdext {list ind with y}{i:l }e.
An ML object extends the reduction system to automatically
unfold the extract when it is encountered byReduce .

The context in whichListIndY does not behave as
its counterpartListInd is when proving well-formedness
goals. TheListIndY tactic can not be used to show
well-formedness. This is because the instantiation of
the list ind with y lemma generates well-formedness
subgoals for the induction proposition, these will essentially
be identical to the original well-formedness lemma. How-
ever, this is not a limitation to the methodology since well-
formedness goals for extract terms are easily discharged by
appeal to the proof the term is extracted from.

Application of the tactic is shown in the next section.

4.4. A proof and extract

In this
section we step through the proof oflist all ext un-
til we’ve completed as much as is required to generate the
desired extract.

Recall the statement of the theorem (displayed here as a
sequent with no hypotheses.)

` ∀T: U . ∀P:T → P . ∀L:T List.
{p: P | ∀eq: {T=2}.

p ⇔ (∀x: {x:T| ↑(x(∈eq)L) }.P[x]) }

Stripping off the quantified variables results in the following
sequent.

1. T: U
2. P: T → P
3. L: T List
` {p: P | ∀eq: {T=2}.

p ⇔ (∀x: {x:T| ↑(x(∈eq)L) }.P[x]) }

The proof is by induction on the listL so we apply the tactic
ListIndY (-1) which results in two subgoals.

The first is the base case whereL has been replaced by
the empty list[] in the conclusion.

` {p: P | ∀eq: {T=2}.
p ⇔ (∀x: {x:T| ↑(x(∈eq)[]) }.P[x]) }

To complete the proof we must choose a witness forp.
Noticing that↑x(∈eq)[] is false, we see that the right
side of the iff is vacuously true and so we supplyTrue as
the witness forp. At this point the computational content on
this branch of the proof is complete. The resulting subgoal
is to verify the logical property that the proposition defining
the set is indeed true whenTrue substituted forp.

The subgoal for the inductive case is the following.

3. u: T
4. v: T List
5. {p: P | ∀eq: {T=2}.

p ⇔ (∀x: {x:T| ↑(x(∈eq) v) }.P[x]) }
` {p: P | ∀eq: {T=2}.

p ⇔ (∀x: {x:T| ↑(x(∈eq) (u::v)) }.P[x]) }

Decomposing the induction hypothesis results in the fol-
lowing.

5. p: P
[6]. ∀eq: {T=2}.

p ⇔ (∀x: {x:T| ↑(x(∈eq) v) }.P[x])
` {p: P | ∀eq: {T=2}.

p ⇔ (∀x: {x:T| ↑(x(∈eq)(u::v)) }.P[x]) }

Hypothesis6 is a hidden hypothesis (denoted by the brack-
ets) that can not be used to build computational content. But
we construct the witness for the set type in the conclusion
without relying on6. The variablep of hypothesis5 corre-
sponds the proposition that is true iff the specification holds
for the listv . Thus, the propositionP[u] ∧ p is the wit-
ness for the set type in the conclusion.

Once the witness is provided, the computational content
is completed and the hidden hypotheses can be used in the
verification of the resulting logical property. The soundness

of thedependent setFormation proof rule is the jus-
tification for unhiding hidden hypotheses when the witness
is provided. A key to making this and other proofs like it
succeed is the decomposition of hypotheses declaring set
types whose logical content will be needed in the verifica-
tion of the logical part of the conclusion.

Applying the Reduce tactic (in the system extended
to unfold occurrences oflist ind with y as defined
above) to the extract of the proof just given results in the
following term.

λT,P,L.
(letrec f (L) =

if null(L) then True
else h::t = L in P[h] ∧ f(t)
fi)(L)

To use this term in the same way the originallist all
operator is used, a display form, a definition (having the ex-
tracted term as the right hand side of the definition), and
a well-formedness theorem are defined. The ML function
add extract abs , accepts a display-form template and
the name of a theorem and constructs a display form object,
a definition, and a well-formedness goal, which it tries to
prove. All arguments outside the scope of the application
of letrec that occur within the scope of the body of the
letrec are made parameters of the abstraction. In prac-
tice this approach seems to work. Note that the first argu-
mentT in the extract above does not occur in the body of
the letrec and so is not included as an argument of the
generated abstraction.

4.5. Some list examples

The following two list theorems have interesting extracts.
The first theorem declares the existence of a list containing
all sublists of its list argument.

*T all sublists ext
∀T: U . ∀L:T List.
{M:T List List|
∀eq: {T=2}. ∀eq1: {(T List)= 2}. ∀N:T List.

N(⊆eq)L ⇒(∃N’: {N’:T List|N(∼eq)N’ }.
↑N’(∈eq1)M) }

The following two definitions make the statement compre-
hensible.

N(⊆eq)L == ∀x∈N. ↑(x(∈eq) L)
N(∼eq)L == N(⊆eq)L ∧ L(⊆eq)N

The term extracted from a straight forward induction proof
provides an obvious and elegant solution.

λL. (letrec f L =
if null(L) then []::[]

else h::t = L in
append(map(λz.(h::z);f(t)),f(t))

fi)(L)

The second theorem asserts that for every two listsL and
L’ , there is a list of pairs containing all pairings of elements
from L andL’ .

*T all pairs ext
∀T: U . ∀L,L’:T List.
{M:(T × T) List|
∀eq: {T=2}. ∀eq2: {(T × T)= 2}.
∀x: {p:T ×T| ↑(p.1(∈eq)L) ∧

↑(p.2(∈eq)L’) }. ↑x(∈eq2)M }
The following term, extracted from the inductive proof is an
elegant, if somewhat intricate, recursive solution.

λL,L’.
(letrec f L =

if null(L) then []
else h::t = L in

if null(L’) then f(t)
else

append(map(λz.<h, z>;L’),f(t))
fi

fi)(L)

5. Related Work

The methodology in this paper owes much to [5]. In that
paper, Howe described verification and extraction method-
ologies applied to Boyer-Moore’s fast majority algorithm in
Nuprl 3. He developed a natural number induction theo-
rem having as its extract the recursion combinator defined
by Y. Surprisingly, although Howe mentions the possibility
of using the set type to clean-up the extracts, he did not do
it there.

Certainly it is well known in the Nuprl community how
the set type can be used to hide unwanted computational
content. However, the approach is rarely applied in practice.
Indeed, even in examples where the goal of the exercise is to
extract computational content [1, pg.86–93] they prefer the
existential quantifier to the set type and choose to project
the first element of the pair.

The problem of extracting clear programs from proofs in
the Calculus of Constructions has been addressed by Paulin-
Mohring [9, 11]. The approach separates “computationally
informative” and “non-informative” propositions by syntac-
tic means. This provides a means of eliminating the parts of
the program corresponding to the logical specification. A
similar idea of separating non-computational content from
computationally interesting content is implemented in the
system PX [4]. But neither system can define functions by
ordinary recursion and neither provides a means for proving
new induction principles as we have above.

6. Conclusions and Future Work

The work reported on here was motivated by need. In
large proofs, it often happens that the form of a program is
well known. In that case, the existing verification method-
ology works well. However, when development is driven
from the proof side, often, the logical specification is known
but the implementation is not. In the methodology reported
on here, extracted programs obtain the same status as veri-
fied programs with respect to later use in other contexts of
definition and proof.

We have shown by example how to massage the state-
ment of the theorem
list all exists lemma into a form of the correct
type. The methodology has been applied to define a num-
ber of abstractions being applied in a proof of propositional
intuitionistic decidability. We have developed tactics which
generate proofs havingletrec forms as their extracts.

Perhaps most surprisingly, the proof of the example the-
oremlist all ext is identical to the proof for the exis-
tential versionlist all exis<ts lemma. This seems
to be generally true, the natural proof of the existential form
is identical to the natural proof of the reformulated theorem
with the set type replacing the existential quantifier. The
identity of the proofs suggests that in many contexts, the
existential quantifier, although it is the natural form, is the
wrong one.

A number of other induction tactics have been defined
which generate recursive functions as extracts. This in-
cludes an ordinary induction principle for the natural num-
bers, Complete Induction on the naturals, and induction
principles over types defined using the Nuprl rec-type. The
proofs of the induction principles are schematic to the one
developed for list induction here. It is not inconceivable that
these proofs could be automated to allow automatic genera-
tion of induction principles for new types defined using the
Nuprl rec-type.

References

[1] R. L. Constable, et al.Implementing Mathematics with the
Nuprl Proof Development System. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[2] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Par-
ent, C. Paulin-Mohring, and B. Werner. The Coq proof as-
sistant user’s guide. Rapport Techniques 154, INRIA, Roc-
quencourt, France, 1993. Version 5.8.

[3] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF:
a mechanized logic of computation.Lecture Notes in Com-
puter Science, 78, 1979.

[4] S. Hayashi and H. Nakano.PX: A Computational Logic.
Foundations of Computing. MIT Press, Cambridge, MA,
1988.

[5] D. J. Howe. Reasoning about functional programs in Nuprl.
In Functional Programming, Concurrency, Simulation and
Automated Reasoning, volume 693 ofLecture Notes in Com-
puter Science, Berlin, 1993. Springer Verlag.

[6] P. Jackson. The Nuprl proof developemnt system, version
4.2 reference manual and user’s guide. Computer Science
Department, Cornell University, Ithaca, N.Y. Manuscript
available at
http://www.cs.cornell.edu/Info/Projects/NuPrl/manual/it.html,
July 1995.

[7] P. B. Jackson.Enhancing the Nuprl proof development sys-
tem and applying it to computational abstract algebra. PhD
thesis, Cornell University, 1995.

[8] P. Martin–Löf. Constructive mathematics and computer
programming. InSixth International Congress for Logic,
Methodology, and Philosophy of Science, pages 153–75.
Amsterdam:North Holland, 1982.

[9] C. Mohring. Algorithm development in the Calculus of Con-
structions. InProceedings of the First Annual Symposium on
Logic in Computer Science, pages 84–91. IEEE, 1986.

[10] B. Nordstrom, K. Petersson, and J. M. Smith.Programming
in Martin-Löf ’s type theory: an introduction. Oxford Uni-
versity Press, 1990.

[11] C. Paulin-Mohring. Extracting Fω ’s programs from proofs
in the Calculus of Constructions. InConference Record of
the Sixteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 89–104. ACM, 1989.

[12] C. Paulin-Mohring and B. Werner. Synthesis of ML pro-
grams in the system Coq.Journal of Symbolic Computation,
15(5-6):607–640, 1993.

