
On Extending Wand’s Type Reconstruction

Algorithm to Handle Polymorphic Let⋆

Sunil Kothari and James L. Caldwell

Department of Computer Science
University of Wyoming

Laramie, WY 82071-3315, USA
{skothari,jlc}@cs.uwyo.edu

Abstract. We have extended Wand’s type reconstruction algorithm to
polymorphic let by extending the constraint language and by using a
multi-phase unification algorithm in the constraint solving phase. We
show the correctness of our approach by extending the Wand’s sound-
ness and completeness results. We have validated our approach against
other popular type reconstruction algorithms by implementing OCaml
prototypes and running them on non-trivial examples.

1 Introduction

The general type reconstruction problem can be formulated as:

Given a well-formed term M without any types, does there exist a
type τ and a type environment1 Γ such that a judgment Γ ⊢ M : τ is
valid ?

Type reconstruction is a popular feature in modern functional programming
languages. Underlying any type reconstruction algorithm is a set of rules encod-
ing a type system. One of the most widely used type systems is the Hindley-
Milner (HM) type system, first mentioned in [Mil78] by Milner, but discov-
ered independently by Hindley [Hin69]. Various type reconstruction algorithms
[Mil78, DM82, LY98] have been proposed to implement the HM type system.
Many of these algorithms are characterized by intermittent constraint genera-
tion and constraint solving. But over the years, focus has shifted to algorithms
having a clear separation of constraint generation and constraint solving phases
[Hee05, PR05, Wan87]. This separation leads to better error messages [Hee05]
when the constraint set is unsatisfiable (since a larger set of constraints is avail-
able to reason about the error). Moreover, the separation provides a clean ab-

⋆ This material is based upon work supported by the National Science Foundation
under Grant No. NSF CNS-0613919.

1 We assume the initial type environment is empty since we are dealing with closed
terms.

straction of the various substitution-based algorithms2 since most well known
algorithms are specific instances of various constraint solving strategies.

The type inference involving polymorphic let construct is a non-trivial prob-
lem. In fact, in the worst case, it is a DEXPTIME3-complete and PSPACE-
hard problem [PJ89, Mai89] in the level of nested lets. Moreover, the litera-
ture on constraint-based type reconstruction is sparse and uneven. For example,
Pierce’s book [Pie02] has no references on how to handle ML-Let construct in
constraint-based algorithms, HM(X) [SOW97, PR05] requires specialized knowl-
edge, whereas Aiken and Wimmers [AW93] use subtyping constraints. Further-
more, none of the literature, in our view, describes it as a direct extension to
well known Wand’s algorithm [Wan87].

The Helium compiler [HLI03] is known for giving good quality error mes-
sages and a very simple constraint representation is used for handling the let
construct4. This paper describes an approach where Helium’s constraint repre-
sentation is used to handle let polymorphism. Our approach builds upon Wand’s
algorithm, and our proofs rely on the soundness and completeness of Wand’s
algorithm. We have validated our approach with some of the known type recon-
struction algorithms [Kot07]. In summary, our contributions are:

1. A new algorithm extending Wand’s algorithm [Wan87] to include polymor-
phic let.

2. New soundness and completeness proofs for Wand’s system and the extended
system using a novel desugaring of polymorphic lets.

The rest of this paper is organized as follows: Section 2 reviews the previous
methods for inferring the type of the let construct. Section 3 introduces the
concepts and terminologies needed for this paper. Section 4 gives an overview
of Wand’s algorithm and states soundness and completeness theorems. Section
5 describes the changes needed for the extension. Section 6 gives an overview of
the correctness proofs. Section 7 summarizes our current work.

2 Literature Review

We review some of the constraint-based algorithms in their handling of the
let construct. A detailed survey of substitution-based algorithms is available in
[Kot07]. Wand [Wan87] looked at the type inference problem as a type-erasure:
whether it is decidable that a term of the untyped lambda calculus is the image
under type-erasing of a term of the simply typed lambda calculus, and presented
a type reconstruction algorithm. This was the first successful attempt at sepa-
rating constraint generation from constraint solving phase. However, extending
the algorithm to handle the let construct remained a future work5. Heeren

2 Throughout this paper we term substitution-based algorithms as those algorithms
which intermix constraint generation and constraint solving, whereas algorithms
with a clear separation are termed constraint-based algorithms.

3 DTIME(2n
O(1)

)
4 Personal communication from Bastiaan Heeren.
5 Personal communication from Mitchell Wand.

2

[Hee05] suggested three constraint representations to handle the let construct;
each equally expressive but differing in constraint solving.
Approach 1. Qualification of type constraints: Type schemes contain a
constraint component as part of its type as shown by the following grammar:

σ ::= ∀−→α .σ | C ⇒ τ

For example, an expression λx.x can be assigned a type τ1 → τ2 under the
constraint τ1 ≡ τ2. So the type of the expression is ∀τ1, τ2.τ1 ≡ τ2 ⇒ τ1 → τ2.
In many ways, this approach is similar to HM(X)[SOW97], Pottier and Rémy’s
account of ML type inference [PR05], and Jones’s qualified types [Jon95].
Approach 2. Type scheme variables as placeholders: The type constraint
language is extended to take into account generalization and instantiation of
type schemes by means of type scheme variables. The constraint language is
given by the following grammar:

C ::= τ1 ≡ τ2 | σ := GEN(Γ, τ) | τ := INST (σ)

Our approach uses a slightly modified version of the above constraint represen-
tation. We know of no published account of the constraint solving phase for
this representation, although Heeren does mention in his thesis that a special
substitution that maps type scheme variables to type schemes is needed for this
representation. Our algorithm does not require any such substitution.
Approach 3. Using implicit instance constraints: This approach merges
the generalization and instantiation constraints in the above approach. The con-
straint language is given by the following grammar:

C ::= τ1 ≡ τ2 | τ1 ≤M τ2

This representation is described, in detail, in Heeren’s thesis [Hee05].

3 Preliminaries

In this paper, we assume familiarity with the notion of types, functional pro-
gramming and the lambda calculus. The terms considered here are pure untyped
lambda terms given by the following grammar:

Λ ::= x | MN | λx.M

We follow the usual conventions for lambda calculus: arrow types associate to
the right, function applications associate to the left and application binds more
tightly than abstraction. The types for untyped lambda terms is given by the
following grammar:

τ ::= α | τ1 → τ2

The type is either a type variable or a function type. We call any expression
formed by following the above grammar as a type expression. We follow the
convention that α, β denote type variables, whereas τ denotes a type expression.
A type environment, denoted by Γ , maps type variables to type expressions. The
set of free type variables of a type expression τ is denoted by FTV(τ) and those
of a type environment Γ is denoted by FTV(Γ). A term and its type is related
by an assertion, denoted by Γ ⊢ M : τ , where M is a term, τ is a type and Γ is
a type environment. We denote type environment where x is not in the domain
of Γ by Γ\x. A derivation of an assertion Γ ⊢ M : τ is a finite tree of assertions,

3

where the root is Γ ⊢ M : τ . Every interior node in the tree is related to its
parent by an instance of one of the non-axiom type rules and every leaf node is
an instance of an axiom type rule. In this paper, we consider three different type
systems: the Hindley-Milner type system illustrated in Fig. 1, Wand’s system
illustrated in Fig. 2, and the extended Wand system illustrated later in Section
5. We denote a judgment in a particular system by a subscript. For example,
Γ ⊢HM M : τ is a HM judgment.

Γ ⊢HM x : τ
where x : τ ∈ Γ (HM-Var)

Γ\x ∪ {x : τ1} ⊢HM M : τ0

Γ ⊢HM λx.M : τ1 → τ0

(HM-Abs)

Γ ⊢HM M : τ1 → τ Γ ⊢HM N : τ1

Γ ⊢HM MN : τ
(HM-App)

Fig. 1. Hindley-Milner type system

Γ, {α
e
= τ} ⊢W x : α

where x : τ ∈ Γ and α is fresh (W-Var)

(Γ\x) ∪ {x : α}, E ⊢W M : β

Γ, E ∪ {τ
e
= α → β} ⊢W λx.M : τ

where α, β are fresh (W-Abs)

Γ, E1 ⊢W M : α → τ Γ, E2 ⊢W N : α

Γ, E1 ∪ E2 ⊢W MN : τ
where α is fresh (W-App)

Fig. 2. Wand’s type system

A substitution is a mapping from type variables to type expressions. Let ρ1, ρ2

be two substitutions then substitution composition ρ1◦ρ2 is defined extensionally

as ∀α.(ρ1 ◦ ρ2)α
def
= ρ1(ρ2α), where α is a type variable. Substitution composition

is associative but non-commutative. A substitution ρ is idempotent if ρ ◦ ρ =
ρ. We treat all the substitutions as idempotent substitutions. A type τ ′ is a
substitution instance of a type τ if and only if τ ′ = ρτ , for some substitution ρ.
Substitution application to a type environment Γ , denoted by ρΓ , is defined as
{x : ρτ | x : τ ∈ Γ}.

In Wand’s system, constraints plays a central role. Specifically, Wand’s algo-
rithm generates equality constraints, referred to as e-constraints, and are denoted
by τ1

e
= τ2, where τ1, τ2 are type expressions. An e-constraint τ1

e
= τ2 is solvable

if there exists a substitution ρ such that ρτ1 = ρτ2. More formally, we denote
solvability of a constraint by |= (read solve). We write ρ |= τ1

e
= τ2, if ρτ1 = ρτ2.

A type judgment in Wand’s system is given as Γ, E ⊢W M : α, where E denotes
a constraint set. Sometimes we elide the constraint component of the judgment
to simplify the presentation. In that case, we denote a judgment by Γ ⊢W M : τ ,
where E is implicit and so there is a substitution generated by solving E such
that ρα = τ .

4

4 Wand’s Algorithm

Next we briefly discuss Wand’s algorithm [Wan87] and state the soundness
and completeness theorems. Central to Wand’s algorithm is the notion of action
table, which takes as input a type system and a term and generates equational
constraints. For untyped lambda calculus, the type system is shown in Fig. 2.
Let G denote a set of assertions (also called goals) and E a set of equational
constraints. Then the algorithm sketch is given as:

Input. A term M0 of Λ.
Initialization. Set E = ∅ and G = {(Γ0, M0, α0)}, where α0 is a fresh type variable

and Γ0 is an empty environment.
Loop Step. If G = ∅ then return E else choose a sub-goal (Γ, M, τ) from G, delete

the sub-goal from G and add to E and G new verification conditions and subgoals
generated by the action table6.

Solve Constraints. Unify constraints in E.

We can now describe the soundness and completeness results as stated by Wand,
but before that we introduce some terminology. We denote a goal by a 3-tuple,
i.e. (Γ, M, τ), and we write ρ |= g i.e. ρ |= (Γ, M, τ) if and only if ρΓ ⊢HM M :
ρτ . We write ρ |= G if and only if ∀g ∈ G. ρ |= g. Similarly, if E is a set of
e-constraints, we write ρ |= E if and only if ∀e ∈ E. ρ |= e. Finally, we say ρ
solves (E, G), where (E,G) result from applying Wand’s algorithm, if and only
if ρ |= E and ρ |= G.

(Soundness) ∀ρ. ρ |= (E, G) ⇒ ρΓ0 ⊢HM M0 : ρτ0

(Completeness) Γ ⊢HM M0 : τ ⇒ (∃ρ. ρ |= (E,G) ∧ Γ = ρΓ0 ∧ τ = ρτ0)

We have reformulated Wand’s statement of completeness and soundness and
made them more abstract (by eliminating the goal set). The reformulated theo-
rems are used later in the proofs of soundness and completeness of the extended
proof system. Our statement of the soundness and completeness are given below:

Theorem 1 (Soundness). If there is a derivation of Γ0, E ⊢W M0 : τ0 gener-

ating constraint set E then, for any ρ such that ρ |= E, ρΓ0 ⊢HM M0 : ρτ0 is

derivable.

Theorem 2 (Completeness). If there is a derivation of Γ ⊢HM M0 : τ , then

for any ρ, τ0, Γ0, such that dom(ρ) = (FTV (Γ0) ∪ {τ0}), ρΓ0 = Γ , and ρτ0 = τ

then there exists a derivation of Γ0, E ⊢W M0 : τ0, and there exists a substitution

ρ′ such that ρ ⊆ ρ′ and ρ′ |= E.

Both these theorems are proved in [KC07].

5 Extended Wand’s Algorithm

In this section we describe the changes needed to incorporate the let con-
struct. First, we enrich our term and type language. We call the extended lan-
guage Core-ML [MH88], and it is defined as:

Core-ML ::= x | MN | λx.M | let x = M in N

6 See Section 5 for action table behavior for untyped lambda calculus.

5

The let expression let x = M in N is not merely a syntactic sugar for (λx.N)M .
For instance, the term let i = λx.x in i i is typable but the desugared term
(λi.i i)(λx.x) is not typable. This is true for both Haskell and ML type recon-
struction algorithms. To handle polymorphic types introduced by let-expressions,
the type syntax is extended with type scheme variable and type scheme as shown
below:

σ ::= α∗ | ∀−→α .τ

A type scheme, denoted by ∀−→α .τ , is a type where zero or more type variables
are universally quantified. We denote a type scheme variable by annotating a
type variable with a “*”. Generalizing a type τ with respect to a type environ-
ment Γ entails quantifying over the free variables of τ that are not free in Γ .

Thus gen(Γ, τ)
def
=∀−→α .τ , where −→α = FTV (τ)−FTV (Γ). On the other hand, in-

stantiation of a type scheme involves replacing the quantified variables by fresh

type variables and is given by inst(∀−→α .τ)
def
= τ [α1 := β1, . . . , αn := βn], where

β1, . . . , βn are fresh type variables.

Next, we extend the constraint language C to include two other kinds of
constraints as shown below:

C ::= τ
e
= τ | τ

s
=Γ α∗ | α∗ i

= τ

(e-constraint) (s-constraint) (i-constraint)

A s-constraint τ
s
=Γ α∗ expresses the fact that α∗ denotes a type scheme obtained

by generalizing a type τ with respect to the environment Γ . An i-constraint

α∗
i
= τ expresses the fact that τ is constrained to be an instantiated value of the

type scheme denoted by α∗. Wand’s type system is now extended with two rules
to account for i&s-constraints. The new type system is called extended Wand’s
system and a judgment in the extended system is denoted by the subscript W +.

(W-Var-i) where x : τ ∈ Γ

Γ, {α∗ i
= τ} ⊢W+ x : α∗

Γ, E1 ⊢W+ M : α1 (Γ\x) ∪ {x : α2
∗}, E2 ⊢W+ N : τ

(W-Let) where α1, α∗
2 are fresh

Γ, E1 ∪ E2 ∪ {α1
s
=Γ α2

∗} ⊢W+ let x = M in N : τ

Apart from extending the type rules, we also had to extend the notion of satisfia-
bility and substitution application to a constraint. First, we describe some nota-
tions used in the description of satisfiability. We use the notation Eα∗ to denote a
set of i-constraints related7 to a s-constraint τ0

s
=Γ α∗. From this point onwards,

we think of a s-constraint and related i-constraint as a pair (τ0

s
=Γ α∗, Eα∗); the

first component being the s-constraint and the second component being the list
of related i-constraint(s). We use the symbol ≤ to express the notion of an in-
stance. Specifically, τ ≤ σ expresses the fact that τ is an instance of σ in the
sense that τ is obtained by instantiating all the bound variables of σ. This no-
tion can then be used to express the satisfiability of i&s constraints. We say

7 A s-constraint is related to an i-constraint if they share the same type scheme vari-
able.

6

ρ satisfies (τ0

s
=Γ α∗, Eα∗) if ∀(α∗

i
= τ1) ∈ Eα∗ . ρ τ1 ≤ ρ(gen(Γ, τ0)). Substitu-

tion application to a pair of s-constraint and related i-constraints is defined as:

ρ(τ0

s
=Γ α∗, Eα∗)

def
=(ρτ0

s
=ρΓ α∗, {ρτ

i
= α∗ | (τ

i
= α∗) ∈ Eα∗}).

Next, we sketch the constraint generation phase8 for Core-ML. The algorithm
sketch remains the same except that E now is a list9 of equational constraints
instead of a set. The behavior of action table for Core-ML is same as that for
untyped lambda calculus except for the variable (a slight modification) and the
let case as shown below:

Case (Γ, x, τ0). If x is bound to a type scheme variable α∗ in Γ , i.e. x : α∗ ∈ Γ , then

add α∗ i
= τ0 to E else add τ0

e
= τ1 (where x : τ1 ∈ Γ) to E.

Case (Γ, MN, τ0). Let α be a fresh type variable. Generate subgoals (Γ , M, α → τ0)
and (Γ, N, α), and add to G.

Case (Γ, λx.M, τ0). Let α and β be two fresh type variables. Generate equation
τ0

e
= α → β and sub-goal ((Γ\x) ∪ {x : α}, M, β), and add to E & G respectively.

Case (Γ,let x = M in N, τ0). Let α1, α∗

2 be fresh type variables. Append10

El@[α1
s
=Γ α∗

2]@Er to list E, where El, Er are obtained by recursively calling the

extended algorithm on (Γ, M, α1) and ((Γ\x) ∪ {x : α∗

2}, N, τ0) respectively.

The next few paragraphs highlight the constraint solving phase. This phase
consists of two distinct unification phases: Phase I and Phase II. We first give an
informal description of both the phases and follow it with a formal description. In
the first phase, e-constraints are unified. Note that if there are no i&s-constraints,
i.e. the term is a pure lambda term, then our Phase I mirrors the constraint
solving phase for Wand’s algorithm. In the second phase, a s-constraint and
related i-constraints are chosen and transformed to e-constraints and unified
using the Phase I unification. Let E = Ee@Ei&s be the constraint list obtained
from the constraint generation phase, where Ee denotes a list containing e-
constraints, Ei&s denotes a list containing i&s-constraints. The constraint solving
algorithm, SOLVE, integrates the two unification phases as follows:

SOLVE(E) =
let ρ1 = unify1Ee in

ρ1 ◦ (unify2 ρ1(Ei&s))

The first phase, unify1 is defined as:

unify1(E) =

unify1 ((α
e
= β) :: E) = if α = β then unify1 E

unify1 ((α
e
= τ) :: E) = if α occurs in τ then raise Failure

unify1 ((α
e
= τ) :: E) = (α 7→ τ) ◦ unify1 (E[α := τ])

unify1 ((τ
e
= α) :: E) = unify1 ((α

e
= τ) :: E)

unify1 ((τ1 → τ2
e
= τ3 → τ4) :: E) = unify1 ((τ1

e
= τ3) :: ((τ2

e
= τ4) :: E))

8 We denote this constraint generation phase by Wand+ in Fig. 3.
9 This is needed to preserve the order of s-constraints.

10 This will ensure that we solve the leftmost innermost let first.

7

The second phase, unify2, is defined as:

unify2 (E′@E) = let ρ1 = unify1E
′′

in ρ1 ◦ unify2 (ρ1E)

where E′′ = {inst(gen(Γ, τ1))
e
= τ2 | (α∗ i

= τ2) ∈ Eα∗}

and E′ = [(τ0
s
=Γ α∗),Eα∗]

unify2 [] = Id

The first phase of our constraint solving algorithm is very similar to the
algorithm proposed by Martelli and Montanari [MM82], which is known to be
exponential11 in the size of the input in the worst case [BS01]. Therefore, the
first phase of the unification is linear while our implementation, which does not
use the efficient DAG representation, is exponential in the size of the input in the
worst case. The second phase of the algorithm involves calling Phase I algorithm
as many times as the number of s-constraints, i.e., the number of let-bound
variables and there can be only O(n) of those. Therefore, in the worst case, the
total time required by the algorithm is O(2n), where n is the size of the term.

6 Extension Correctness

For the correctness result, we need a function to transform polymorphic lets
to pure lambda terms since Wand’s type system has no notion of let. We call
this function ptol. Note that ptol is a type and value preserving transformation
[KC07]. We introduce two additional notations before formally describing ptol.
First, we use N [x] to denote one hole (denoted by []) in a context (denoted
by N) filled with the let-bound variable (x in this case). Second, we use the
notation |FV (N)|x to denote the count12 of free occurrence of x in N . Notice
that we transform only the body of the let since we assume the let-binding is
let-free. This assumption is strictly not necessary since there is a type and value
preserving transformation mentioned by Mairson[Mai89], which can make a let-
binding let-free. We use the assumption to simplify our proofs but its certainly
not a restriction on our algorithm. With the above notations, we describe ptol

below:
ptol(x) = x

ptol(λx.M) = λx. ptol(M)
ptol(MN) = (ptol(M) ptol(N))
ptol(let x = M in N [x]) = let N1 = ptol(N) in if |FV (N) |x ≤ 1

(λx. N1[x])M
ptol(let x = M in N [x]) = let N1 = ptol(N) in if |FV (N) |x > 1

ptol(let x1 = M in let x = M in N1[x1])
where x1 is a fresh variable.

11 Linear if the input and output are represented as directed acyclic graph (DAG)
[PW76].

12 We use the conservative notion of occurrence of a let-bound variable rather than the
actual types to differentiate between a monomorphic and polymorphic let.

8

The correctness is given by the proof sketch in Fig. 3. The most complicated
proof was showing that the extended type system was sound and complete with
respect to the Hindley-Milner type system via Wand’s type system. The detailed
arguments involved in the correctness, the proofs of various theorems and lem-
mas, and a detailed discussion on the novel desugaring of polymorphic lets to
pure lambda terms can be found in [KC07].

-�
�
�
�
�
�
�
���B

B
B
B
B
B
B
BBN

?
Extended Type System

Γ, E ⊢W+ M : α is derivable ⇔

Γ, E ⊢W ptol(M) : α is derivable ⇔

Γ ⊢HM ptol(M) : τ is derivable

Main Result

Wand+(Γ, M, α) infers the
principal type for M under Γ

Constraint Generation

Wand+(Γ, M, α) =
−→
E ⇔

Γ, E ⊢W+ M : α is derivable

Constraint Solving

Γ, E ⊢W+ M : α is derivable ⇒

SOLVE(
−→
E)Γ ⊢HM ptol(M) :SOLVE(

−→
E)α

is derivable

Fig. 3. Correctness proof overview

7 Conclusions and Future Work

The extension of Wand’s algorithm is a non-trivial extension and requires
careful handling of constraints. Our algorithm is a direct extension of Wand’s
algorithm and our soundness and completeness proofs rely on completeness and
soundness of Wand’s algorithm. The main idea behind our algorithm is to pre-
serve the order of generated s-constraints (as described in the action table for
Core-ML) and use a multi-phase unification, while preserving this order, in the
constraint solving phase. We have validated our approach by running the exam-
ples mentioned in this paper on Alg. W [Mil78, DM82], Alg. M [LY98] and Alg.
J [Mil78]. An implementation of our algorithm and other popular type recon-
struction algorithms in OCaml is available online at http://www.cs.uwyo.edu/
∼skothari. We are working on a formalization of the proofs in CoQ.

Acknowledgments

Thanks to Bastiaan Heeren for a detailed response to author’s query regard-
ing the constraint representations mentioned in his thesis. We also want to thank
anonymous referees for their detailed comments and suggestions (on an earlier
draft of this paper), which greatly improved the presentation of this paper.

9

References

[AW93] A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference.
In Functional Programming Languages and Computer Architecture, pages
31–41, 1993.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 8, pages 445–532. Elsevier Science, 2001.

[DM82] L. Damas and R. Milner. Principal type-schemes for functional programs.
In POPL ’82, pages 207–212, New York, 1982. ACM Press.

[Hee05] B. Heeren. Top Quality Type Error Messages. PhD thesis, Universitiet
Utrecht, 2005.

[Hin69] J. R. Hindley. The principal type-scheme of an object in combinatory logic.
Trans. American Math. Soc, 146:29–60, 1969.

[HLI03] B. Heeren, D. Leijen, and A. IJzendoorn. Helium, for learning haskell. In
Haskell ’03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell,
pages 62–71, New York, NY, USA, 2003. ACM Press.

[Jon95] M. P. Jones. Qualified types: theory and practice. Cambridge University
Press, New York, NY, USA, 1995.

[KC07] S. Kothari and J. L. Caldwell. Wand’s Algorithm Extended for the Poly-
morphic ML-Let. Technical report, University of Wyoming, 2007.

[Kot07] S. Kothari. Type Reconstruction Algorithms: A Survey. Technical report,
University of Wyoming, 2007.

[LY98] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type inference
algorithm. ACM Transactions on Programming Languages and Systems
(TOPLAS), 20(4):707–723, 1998.

[Mai89] H. G. Mairson. Deciding ML typability is complete for deterministic expo-
nential time. In Proc. of the 16th ACM Sym. Principles of Programming
Languages, pages 382–401, 1989.

[MH88] J. C. Mitchell and R. Harper. The essence of ML. In POPL ’88: Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 28–46, 1988.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of
computer and system sciences, pages 348–375, 1978.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Trans. Program. Lang. Syst., 4(2):258–282, 1982.

[Pie02] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[PJ89] P.C.Kanellakis and J.C.Mitchell. Polymorphic unification and ML typing.

In 6th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 105–115. ACM Press, 1989.

[PR05] F. Pottier and D. Rémy. The essence of ML type inference. In Benjamin C.
Pierce, editor, Advanced Topics in Types and Programming Languages, chap-
ter 10, pages 389–489. MIT Press, 2005.

[PW76] M. S. Paterson and M. N. Wegman. Linear unification. In STOC ’76:
Proceedings of the eighth annual ACM symposium on Theory of computing,
pages 181–186, New York, NY, USA, 1976. ACM.

[SOW97] M. Sulzmann, M. Odersky, and M. Wehr. Type inference with constrained
types. In Fourth International Workshop on Foundations of Object-Oriented
Programming (FOOL 4), 1997.

[Wan87] M. Wand. A simple algorithm and proof for type inference. Fundamenta
Informaticae, 10:115–122, 1987.

10

