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Abstract. This paper presents a formalization of a sequent presenta-
tion of intuitionisitic propositional logic and proof of decidability. The
proof is implemented in the Nuprl system and the resulting proof ob-
ject yields a “correct-by-construction” program for deciding intuition-
isitc propositional sequents. The extracted program turns out to be an
implementation of the tableau algorithm. If the argument to the result-
ing decision procedure is a valid sequent, a formal proof of that fact is
returned, otherwise a counter-example in the form of a Kripke Counter-
model is returned. The formalization roughly follows Aitken, Constable
and Underwood’s presentation in [1] but a number of adjustments and
corrections have been made to ensure the extracted program is clean (no
non-computational junk) and efficient.

1 Introduction

Confronted with the notion of automated verification the astute skeptic cor-
rectly asks, “Who verifies the verifier?” This paper, presenting a formally devel-
oped decision procedure for a sequent presentation of intuitionistic propositional
logic, addresses the skeptics question, even if only peripherally. We describe the
formalization and mechanical checking, in Nuprl, of a proof that intuitionistic
propositional logic is decidable. The program extracted from the formal proof is
a tableau decision procedure: invoked with a sequent as its argument, it returns
either a multi-succedent sequent proof or a Kripke counter-example depending
on whether the formula to be decided is valid or not. With the proof of decidabil-
ity as our focus, we describe the formal development of a sequent proof theory,
the tableau construction, and a formal theory of Kripke counter-examples which
are used here as evidence of unprovability. A principle goal of the work reported
here is the extraction of a reasonably readable and efficient program from the
formal proof via the “proof-as-programs” interpretation implemented in Nuprl.

1.1 Related Work

In a series of papers [19, 18, 20, 1], Underwood and her colleagues presented con-
structive completeness proofs for intuitionistic propositional logic having tableau
decision procedures as their computational content. The work reported on here
extends those efforts. Underwood worked out a type theoretic presentation of the



problem and presented informal proofs, including a new termination argument
for the tableau construction. The formalization and proof presented here follows
the proof presented in the paper by Aitken, Constable and Underwood [1] (here-
after referred to as ACU.) A fuller account of the formalization and proof can be
found in [6]. In this paper we describe the formal implementation in Nuprl and
adjustments made to the formalization that result in a readable and “efficient”1

extracted program.
The idea of verifying decision procedures is not new but actual verifications

are not common. One example that has published at least five times and in
a number of systems is Boyer and Moore’s (classical) propositional tautology
checker which takes the form of an IF-THEN-ELSE normalization procedure. Of
those efforts, Paulin-Mohring and Werner’s extraction of an ML program [14]
is closest in spirit to the presentation here. Both Shankar [16] and Hayashi [12]
have verified deciders for implicational fragments of classical propositional logic
presented in sequent forms. Caldwell [4, 6] extracted a tableau decision procedure
from a proof of the decidability of a sequent presentation of classical propositional
logic.

Weich [21] formalized a proof of decidability for the implicational fragment
of propositional intuitionistic logic in MINLOG. His work is also closely related
to the proof presented here; indeed, his effort was also inspired by Underwood’s
formulation of constructive decidability. Weich’s proof differs from the one re-
ported on here in that it is based on a contraction-free calculus. He reports [22]
that the extracted program is huge (about 60KB) and efforts are underway to
minimize its size.

1.2 Results

The program extracted from the proof of intuitionistic decidability presented
here is the first to include a full propositional logic, i.e. the logic formalized
here includes propositional variables, a constant denoting false, and operators
for conjunction, disjunction, and implication. The extracted program is readable
and efficient in the sense that it does not perform extraneous computation related
to the logical part of the specification, nor does it contain unreadable artifacts
of the proof in its text. These qualities will be most evident to those familiar
with the state of the art in program extraction.

In the course of the development presented here, a number of minor er-
rors in the ACU presentation were discovered, additionally a more serious error
was uncovered. Indeed, discovering errors like these is one point of formal ma-
chine checked proofs. The presentation here differs from that of ACU in two
significant ways. First, we have made modifications to the type theoretic for-
malization to guarantee the program extracted from the proof is free of the

1 Of course intuitionistic propositional logic is known to be PSPACE complete, what
we mean here by “efficient” is that the extracted program doesn’t do unnecessary
computation and that the program does not contain non-computational artifacts of
the proof.



non-computational junk that often clutters programs extracted from construc-
tive proofs. The methodology of using set types in place of existential quantifiers
to generate efficient extracts has been described elsewhere [5, 6]. The second dif-
ference between the formalization presented here and that of ACU is in the proof
type used as evidence of validity. We formalize a multi-succedent sequent cal-
culus while ACU attepted to push the argument through for a single succedent
calculus. Although the overall structure most of the details of the ACU proof
survive in the version presented here, the ACU proof is incorrect. We simply re-
mark that ACU failed to fully consider the case of reconstructing a proof object
after the application of the tableau rule for a negatively occurring disjunction.

2 Nuprl

The Nuprl type theory is a sequent presentation of a constructive type theory
via type assignment rules. The underlying programming language is untyped and
the objective of a proof is to either prove a type is inhabited, i.e. to show that
some term (program) is a member of the type, or to show that a term inhabits
a particular type. A complete presentation of the type theory can be found in
the Nuprl book [7].

The Nuprl system supports construction of proofs by top-down refinement.
The prover is implemented as a tactic based prover in the style of LCF. The
tactic language is ML. Nuprl differs from other LCF-style provers in that tactic
invocations define the structure of an explicitly represented proof tree which is
directly manipulated in the editor, stored in the Nuprl library, and retrieved
for later editing. The Nuprl system also supports a unique and powerful display
mechanism. Nuprl terms are edited using a structure editor; term structure is
independent of display which is user specified. All Nuprl terms occurring in this
paper are set in typewriter font and appear on the page as they do in the
Nuprl editor and library.

Complete documentation is included in the Nuprl V4.2 distribution. 2

2.1 Clean and Efficient Extracts

Methods of generating efficient and readable extracts by the use of the set type
(as opposed to the existential type) and by efficient general recursion combinators
have been presented by the author in [5, 4, 6]. We reiterate the main points here.

Inhabitants of the existential type ∃x:T.P[x] are pairs <a,b> where a∈T and
b∈P[a]. The term b inhabiting P[a] specifies, as far as the proofs-as-programs
interpretation goes, how to prove P[a]. When an existential type occurs as a
hypothesis it can be decomposed into two hypotheses, one of the form a:T and
another asserting b:P[a]. If v is the name of the variable denoting the existential
hypothesis, occurrences of a in the final extract appear as v.1, and occurrences
of b appear as v.2 (the first and second projections).

2 The Nuprl system is freely available on the Nuprl group web pages at Cornell,
http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html.



Alternatively, consider the Nuprl set type {y∈T|P[y]}. Its inhabitants are
elements of type T, say a, such that P[a] holds. Thus, a set type does not carry
the computational content associated with the logical part P[a]. Since the proof
that P[a] holds is not witnessed by inhabitants of the set type, the fact that
P[a] holds is not freely available in parts of a proof where it might find its way
into an extract. When a set type occurring as a hypothesis is decomposed it
results in two new hypotheses: one of the form a:T; and the other, a “hidden”
hypothesis, of the form b:P[a]. The Nuprl system prevents the variable of a
hidden hypothesis from appearing free in the extract of a proof by restrictions
on its use. Hidden hypotheses are unhidden by the system in parts of the proof
where no computational content is constructed.

Although these issues may appear to be Nuprl specific technicalities, they
arise in all constructive systems implementing the proofs-as-programs interpre-
tation.

2.2 Efficient Induction Schemes

We are interested in extracting efficient programs from proofs; to do so we care-
fully construct proofs of the induction principles to ensure their extracts are
efficient recursion combinators.

The Nuprl standard library includes the following type characterizing well-
founded binary relations:

WellFnd(A;x,y.R[x;y])
def
=

∀P:A → Prop.(∀j:A. (∀k:A. R[k; j] ⇒ P[k]) ⇒ P[j]) ⇒ ∀n:A. P[n]

Well-founded induction on the natural numbers over the ordinary less-than or-
dering is specified by a lemma of the form WellFnd(N;x,y. x < y).

The following recursion scheme inhabits this type.
λP,g. (letrec f(n) = g(n)(λk,p. f(k)))

Here P is a proposition (over type A), and g corresponds to the computational
content of the induction hypothesis. In this scheme, g takes two arguments, the
first being the principal argument on which the recursion is formed, while its sec-
ond argument is a function inhabiting the proposition ∀k:A. R[k;j]⇒ P[k],
i.e. a function which accepts some element k of type A along with evidence for
R[k;j] and which produces evidence for P[j]. In the scheme, the evidence that
R[k;j] holds takes the form of the argument p to the innermost λ-binding. The
variable p occurs nowhere else in the term and does not contribute to the ac-
tual computation of P[j]; instead it is a vestige of the typing. In the context
of any complete proof, this argument will be a term justifying R[k;j]. In any
program extracted from a proof using this scheme, the useless argument p must
be supplied. This term is non-computational junk.

As an alternative, we give the following definition of well-founded binary
relations that hides the ordering in a set type; this type, simply called WF is
defined as follows:
WF(A;x,y.R[x; y])

def
=

∀P:A → Prop.(∀j:A. (∀k:{k:A| R[k; j]} . P[k]) ⇒ P[j]) ⇒ ∀n:A. P[n]



Since the ordering relation is now hidden in the right side of a set type, it
does not contribute to the computational content of the extracted programs.
The recursion scheme extracted from a proof of this type is nearly identical to
the previous one, but the extra (useless) lambda-abstraction is gone.

λP,g. (letrec f(n) = g(n)(λk. f(k)))

For an arbitrary type T and a measure function ρ:T→N, following lemma
defines an efficient measure induction principle.

∀T:Type. ∀ρ:T → N. WF(T;x,y.ρ(x) < ρ(y))
Extraction:

λT,ρ,P,g.(letrec f(n) = g(n)(λk.f (k)))

Note that the measure function ρ does not occur in the body of the extract,
logically it belongs to the termination argument which is not part of the com-
putational content.

The proof of intuitionistic decidability presented below is by induction on the
lexicographic ordering of a pair of inverse images (measures functions mapping
systems onto the natural numbers.) This induction principle is established by
the following lemma.

∀T:Type. ∀ρ,ρ’:T → N.
WF(T;k,j.ρ(k) < ρ(j) ∨ (ρ(k) = ρ(j) ∧ ρ’(k) < ρ’(j)))

Extraction:

λT,ρ,ρ’,P,g.(letrec f(n) = g(n)(λj.f j))

Note that the recursion combinator does not mention the measure functions.

3 The Tableau Algorithm

Our goal is to extract a tableau decision procedure from the formal proof.
Tableau methods for proof search in intuitionistic logic go back to Beth [3]
and are analyzed in detail by Fitting [11]. Roughly, tableau methods are search
procedures that work by systematically exploring all consequences of an assump-
tion in the search for a counter-example. For example, if a formula of the form
P ∧ Q is assumed to be false, then one of P or Q must also be false; the step
of tableau development for this formula will split into two paths, one with the
added assumption that P is false and the other with the added assumption that
Q is false. The tableau is the tree-like structure that records the development of
the search, keeping track in each node of those formulas assumed to true and
those formulas assumed to be false.

If, in the process of developing a path of the tableau, it occurs that a formula
is assumed to be both true and false, then that path is contradictory and we say
it is closed. If a path is developed to the point where further application of the
tableau rules can only result in redundant nodes being added to the path, then
we stop development and say the path is open. If all the paths developed in this
process are closed then the initial assumption must be false and the formula is
provable; i.e. if the initial assumption that the formula is false always leads to a
contradiction, then the formula must be true. Using the tableau so constructed
we construct a proof of the formula. If on the other hand some path in the



tableau is open, that path is interpreted as a Kripke counter-example to the
initial formula.

It is easy to check whether a path is closed. The complexity of the decidability
argument arises in determining whether further development of an open path is
redundant. Underwood [18] provided a new termination argument based on a
lexicographic ordering of tableau systems based on two measures:

i1: bounding the number of nodes that can be added to a tableau system, and
i2: bounding the number of formulas that can be added to any node.

Ultimately, these measures depend on the fact that tableau construction has
the subformula property, i.e. in the tableau development, only subformulas of
formulas already occurring in the tableau are ever added.

Measures i1 and i2 are calculated by computing conservative upper bounds
on the sizes of the respective structures they measure and then by taking the dif-
ference between these bounds and the actual sizes of the objects in the tableau
being constructed. Since nodes and systems grow during each step of tableau
development, the difference decreases. Thus, at each step of the tableau con-
struction process, one or the other measure decreases, which is enough to show
termination. The bounds are never achievable in an actual tableau development
and so we terminate the process when all nodes are completely developed and
when the system is completely developed.

4 Intuitionistic Proof Systems, Kripke Counter-Examples
and Tableau Systems

The final output of the algorithm we are interested in will either be a proof
that the initial system is valid or a Kripke model serving as a counter-example,
we formalize these structures now.
4.1 Formulas and Sequents

Propositional formulas are formalized by the following Nuprl recursive type:
Formula

def
= rec(F.Var | Unit | F × F | F × F | F × F)

Reading left to right, a formula is either: a variable (which is displayed as dxe);
the constant inhabiting the type Unit which is interpreted as false and displayed
dfalsee; a pair of formulas representing a conjunction displayed as pd∧eq; a pair
of formulas, representing a disjunction displayed pd∨eq); or a pair of formulas,
representing an implication and displayed (pd⇒eq). Negation (¬P) is defined as
(Pd⇒edfalsee) and we do not include it explicitly in our formula type; neither
do we include an operator for equivalence. Formula is a discrete type, i.e. it is
decidable whether two formulas are equal.

We model the type of variables using the Nuprl Atom type; however, any dis-
crete type may be substituted. other than this constraint, Var may be considered
an uninterpreted type.

The sequent type (Sequent) consists of pairs of formula lists. If S is a se-
quent, Hyps(S) denotes the list of formulas that are in the antecedent of S (the



hypotheses) and Concl(S) denotes the list of formulas in the succedent of S (the
conclusions.) Sequent is a discrete type since Formula is.

A sequent is deemed true whenever the conjunction of the antecedents implies
the disjunction of the succedents (by convention, an empty disjunction is true
and an empty conjunction is false.)

4.2 Multi-Succedent Proofs

Our proof type is based on the sequent calculus MJ presented in Figure 1. MJ
is essentially the propositional fragment of Dragalin’s [8, pg.11] multi-succedent
calculus. The form of our rules differs from Dragalin’s in logically insignificant
ways that support the use of lists instead of sets.

M, false, N ` C
(falsel)

M, q, N ` M ′, q, N ′ (Ax)

q, M, q∨r, N ` C r, M, q∨r, N ` C

M, q∨r, N ` C
(∨l)

H ` q, M, q∨r, N

H ` M, q∨r, N
(∨r1)

H ` r, M, q∨r, N

H ` M, q∨r, N
(∨r2)

q, M, q∧r, N ` C

M, q∧r, N ` C
(∧l1)

r, M, q∧r, N ` C

M, q∧r, N ` C
(∧l2)

H ` q, M, q∧r, N H ` r, M, q∧r, N

H ` M, q∧r, N
(∧r)

M, q⇒r, N ` q, C r, M, q⇒r, N ` C

M, q⇒r, N ` C
(⇒ l)

q, H ` r

H ` M, q⇒r, N
(⇒r)

Fig. 1. System MJ

To read these rule schemas, M , N , C and H denote (possibly empty) formula
lists and q and r denote individual formulas. Consider the figure for the rule
labelled (⇒r), this rule characterizes the multi-conclusion intuitionistic sequent
calculus. To derive the sequent H ` M, q ⇒ r, N it is enough to show the
sequent q, H ` r. Note that, in distinction to the other rules, the formulas in
the succedent of the conclusion of (⇒r) (formulas in the list M, q⇒ r, N) have
been replaced by the single formula r.

MJ proofs are formally modeled in the Nuprl implementation in two stages.
In the first, a recursive type of pre-proofs is defined to represent the shape (tree
structure) of a proof. In the second stage, the type of pre-proofs is narrowed to
include only those trees representing actual proofs.

pre proof
def
= rec(P. Sequent

| Sequent × Sequent × P

| Sequent × Sequent × P × Sequent × P)



We display the three classes of pre proofs as C\, C\<H,p>, and C\<H,p>,<H’,p’>
respectively where C, H, and H’ are sequents and p and p’ are pre-proofs.

For a pre-proof P let Concl(P) be the sequent that is the root of the pre-proof.
Excluding axioms, the rules of system MJ have either one or two hypotheses.

These rule classes are characterized by two definitions, one for rules having a
single hypothesis (proof rule1: ∨r1 , ∨r2 , ⇒r , ∧l1 , and ∧l2 ) and another
for rules having two hypotheses (proof rule2: ∨l, ∧r, and ⇒ r). We give the
definition of proof rule1 here.

c\h is a rule instance
def
=

∃a,b:Formula.
((ad∨eb)∈ Concl(c) ∧ h = <Hyps(c),a::Concl(c)>)

∨ ((ad∨eb)∈ Concl(c) ∧ h = <Hyps(c),b::Concl(c)>)

∨ ((ad⇒eb)∈ Concl(c) ∧ h = <a::Hyps(c), b::[]>)

∨ ((ad∧eb)∈ Hyps(c) ∧ h = <a::Hyps(c), Concl(c)>)

∨ ((ad∧eb)∈ Hyps(c) ∧ h = <b::Hyps(c), Concl(c)>)

The equality used here is the type equality for sequents (defined as pairs of
formula lists) and so order counts; this is not the semantic (permutation) equality
on sequents. The reader can verify by inspection that these clauses match the
appropriate rules of system MJ.

In the second stage of modeling MJ proofs. A well-formedness predicate is
defined to narrow the class of pre-proofs to those structures that actually model
proofs of system MJ. For a pre-proof P we write P is a Proof if:

i.) its leaves are all instances of the falsel rule or the Ax rule, and
ii.) every non-leaf node matches a conclusion of some rule instance and its chil-

dren match the premises of that rule.

This characterization is formalized by a recursive function we omit for lack of
space. Thus proofs are characterized by the subtype of pre-proofs that are well
formed.

Proof
def
= {p:pre proof| p is a Proof}

A proof P proves a sequent S if Concl(P) = S.

4.3 Kripke Counter-examples as Evidence of Unprovability

It is a well known negative result that no finite valuation captures intuitionis-
tic propositional logic. Thus, models for intuitionistic logic are necessarily more
complex than models for classical logics. Following the account given by Under-
wood in [18], we use Kripke models to witness the unprovability of a formula. This
interpretation is not without some subtlety as Kripke models provide for classi-
cal analyses of intuitionistic logic but are not faithful to intuitionistic semantics.
Smorynski [17] and Dummett [9] discuss this in some detail. Never-the-less, fol-
lowing Underwood [18, pg.11–15], Kripke models are used here as evidence of
unprovability. Failed tableau searches yield Kripke counter-examples. This use
of Kripke models as counter-examples to intuitionistic provability has received
attention elsewhere [15, 13].



The type of Kripke models is a dependent triple consisting of a type (of
states), a reflexive and transitive relation on the states, and an atomic forcing
function.

Kripke
def
= T:Type

×R:{R:(T × T) → Prop | Reflexive(R) ∧ Transitive(R)}
×{af:T → Var → Prop |

∀a:T. ∀v:Var. af(a)(v) ⇒ (∀b:T. R(<a, b>) ⇒ af(b)(v))}

The selectors for the three components of a Kripke model K are displayed as
Σ(K), ≤{K}, and K.af respectively. For states s and s’ we display s≤{K}s’ for
≤{K}(<s,s’>).

Truth in a Kripke model is defined by the forcing relation. The statement
of the main theorem requires definitions of both forces, and its complement not
forces. The reader may realize that we cannot simply define the complemen-
tary notion by taking the constructive negation of the definition of forcing. To
avoid this problem, following a suggestion of Underwood, we define the forces
and not-forces relations simultaneously by mutual recursion. Definition by mu-
tual recursion is not directly supported by Nuprl tactics (although there is no
technical reason it cannot be) and we use the pairing trick to implement it.

<forces,not forces>{K} def
=

(letrec f nf(s)(f) =

case f:
dxe → <K.af(s)(x), ¬(K.af(s)(x))>;
dfalsee → <False, True>;

ad∧eb → <(f nf(s)(a)).1 ∧ (f nf(s)(b)).1,

(f nf(s)(a)).2 ∨ (f nf(s)(b)).2>;

ad∨eb → <(f nf(s)(a)).1 ∨ (f nf(s)(b)).1,

(f nf(s)(a)).2 ∧ (f nf(s)(b)).2>;

ad⇒eb → <∀s’:Σ(K). s ≤{K} s’ ⇒
(f nf(s’)(a)).2 ∨ (f nf(s’)(b)).1,

∃s’:Σ(K). s ≤{K} s’ ∧
(f nf(s’)(a)).1 ∧ (f nf(s’)(b)).2>;

)

Using this definition we further define forces(K,S,f) and not forces(K,S,f)

to be the first and second projections of the term <forces,not forces>{K}(S)(f).

4.4 Tableau Systems

The tree structure representing an actual tableau is never explicitly constructed
by the program extracted from the proof presented here. Rather, the paths
in the tableau are represented by lists of tableau nodes, these lists are called
Systems and the overall structure of the tableau is implicit in the unfolding of
the recursion.

Like sequents, tableau nodes (type Node) are represented by pairs of formula
lists. The elements in the first component of a node are those formulas assumed
to be true, the elements in the second component are those elements assumed
to be false. We refer to these components by writing T(N) for the true part and



F(N) for the false part. Of course, Node is a discrete type. asSequent(N) casts the
node N to the type Sequent.

A System is a non-empty list of nodes.
There is a close correspondence between the steps of tableau construction

and the proof rules of system MJ. For each proof rule there is a corresponding
step of tableau development. For proof rules having a single premise there is a
corresponding tableau development step in which an existing node is extended
or, in the case of ⇒ r, the tableau system itself is extended by the addition
of a new node. For proof rules having two premises, the corresponding tableau
step extends an existing node in the tableau in two different ways, invoking the
induction hypothesis (unfolding a step of recursion) on these extended systems.
This bifurcation of systems corresponds to a branching in the tableau structure.
We call the tableau steps corresponding to rules other than the ⇒r rule local
rules, as they only extend existing nodes.

When a node has been developed as far as possible under the local rules we
say it is node complete (we write nComplete(N).) The type of eligible systems
(ESystem) are those systems restricted to contain at most one member that is
not node complete. Tableau systems containing all possible node extensions in-
duced by occurrences of ⇒r are called system complete; for a system S we write
sComplete(S) to indicate S is system complete.

In the case of a failed tableau search, culminating in a system S, the corre-
sponding Kripke structure K(S) will serve as the counter-example. Eventually,
we are interested in viewing tableau systems as Kripke structures. The following
function serves to map systems into a triple which is a Kripke model.

K(S)
def
= <{N:Node| N∈S} , λ<n,m>.T(n)⊆T(m), λN,x.dxe∈T(N)>

Thus, under the interpretation, states of the corresponding Kripke model consist
of the type whose members are those nodes in the system. The ordering on pairs
of nodes is defined by sublist inclusion on the formulas assumed to be true in
the nodes. The atomic forcing function for a state N and a variable x is defined
by membership of the atomic formula dxe among formulas assumed true at N.
That systems do indeed map to Kripke models under K is established by a well-
formedness theorem for K.

5 Intuitionistic Decidability

A proof of a constructive disjunction (P ∨ Q) must indicate which of P or
Q was proved and also must give evidence for its truth. Thus, if intuitionistic
decidability is stated as follows:
∀S:Sequent. (∃p:Proof. p proves S) ∨ (∃c:counter example. c refutes S)

the resulting computational content is a function that takes a sequent as input
and which either returns evidence for its validity or returns a counter-example.

We do not prove this theorem directly, but instead prove a more general
theorem having the structure to support an inductive proof. The more general
theorem does not apply directly to formulas, but applies to systems (lists of
tableau nodes) satisfying the eligibility condition of being members of the type



ESystem. Evidence for the provability of an ESystem takes the form of a formal
proof in the sequent calculus MJ. Evidence for its absurdity takes the form of a
Kripke counter-example. Formally stated, the theorem we eventually prove here
is the following:

∀S:ESystem
(∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)} )

∨ {K:Kripke| ∃f:Node → Σ(K)

∀N:{N:Node| N∈S}
∀F:Formula. (F∈(T(N)) ⇒ forces(K,f N,F))

∧ (F∈(F(N)) ⇒ not forces(K,f N,F))}

To decide a formula φ, we will apply the computational content of this more
general theorem to an eligible system containing a single node in which φ is
assumed to be false. Should φ turn out to be provable, the result is a pair
consisting of a tableau node and a proof of that node regarded as a sequent.
Since the computational content of the theorem is intended to be applied to
systems consisting of single nodes which contain a single formula, this evidently
corresponds to a proof of the sequent <[],[φ]>. Should φ turn out not to be
provable, the result is a Kripke counter-example. Kripke counter-examples here
take the form of Kripke models defined over tableau nodes N∈S such that every
formula in the true portion of the node (T(N)) is forced and every element in
the false portion of the node (F(N)) is not forced. Since we will be applying the
extracted program to initial systems consisting of a single nodes containing a
single formula assumed to be false, the formula is not forced in the resulting
Kripke model and so it serves as a counter-example.

5.1 The Proof

The proof of the theorem stated above is by induction on eligible systems, i.e.
on systems having at most one node that is not node complete. The induction
principle is the lexicographic measure induction presented above in Section 2.2.
We apply it here using the measure functions i1 and i2 defined above in Sec-
tion 3. Recall that the first measure decreases with every node added to the
system while the second decreases as formulas are added to the eligible node.

After inducting on the eligible system S we are left with the following Nuprl
state.

1. S: ESystem

2. ∀k:{k:ESystem| k < S}
(∃N:{N:Node| N∈k} . {p:Proof| p proves asSequent(N)})
∨ {K:Kripke| ∃g:Node → Σ(K)

∀N:{N:Node| N∈k}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}
` (∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})

∨ {K:Kripke| ∃g:Node → Σ(K)

∀N:{N:Node| N∈S}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}



Thus, we may assume (by hypothesis 2) that there is either a proof or a Kripke
counter example for eligible systems lexicographically below S. The recursive
structure (the outermost letrec) of the extracted program (see Fig. 2) arises
from this step of induction.

Consider the eligible system S decalred in hypothesis 1 above; either all nodes
in S are node complete or not. This property is decidable and appears in the
extracted program as the first if-then-else clause.

Consider the else case first, i.e. there exists some node N in S that is not
node complete (¬nComplete(N)). Since eligible nodes are expanded in place by
adding subformulas of formulas already occurring in S, the tableau expansion
steps for these rules reduce the measure i2. The proof rules ∨r1, ∨r2, ∧l1, and
∧l2 correspond to local tableau steps and all have one premise. In these cases,
the induction hypothesis is instantiated with the system constructed from S by
extending the eligible node with subformulas as specified by the corresponding
proof rule. The proof rules ∨l, ∧r, and ⇒ l all have two premises and so we
instantiate two copies of the induction hypothesis; one with the system con-
structed by expanding the eligible node with the subformulas specified in the
left premise of the corresponding proof rule; and the other with a system cre-
ated by expanding the eligible node by adding subformulas as specified by the
right premise of the corresponding rule. In each case, the result of instantiating
the induction hypothesis is a new hypothesis asserting the existence of a node-
proof pair system or a Kripke counter-example for the extended (and therefore
lexicographically smaller) system. Whenever a Kripke counter-example exists,
it serves to refute the S as well. In the case a node-proof pair results from the
instantiated induction hypotheses, they are used to identify a node in S and
to construct a proof for it. Instantiations of the induction hyptothesis in the
proof generates a recursive call to the tableau procedure in the extract (Fig. 2).
The computations corresponding to the seven local rules can be identified in the
extract.

Suppose instead that there is no eligible node in S (this is the then-clause
of the outermost if-then-else in the extracted program.) Either the system is
system complete (sComplete(S)) or not. If it is not system complete then there
is some node containing an occurrence of ⇒r (say of the form Pd⇒eQ) which
has not been accounted for in S, call this node N. In this case, decompose the
induction hypothesis with the system constructed by extending S with a new
node constructed from N which accounts for the application of the ⇒r rule.
This new node is constructed by replacing F(N) with the single formula Q and
by adding the formula P to the formulas in T(N) . This extended system is
lower in the lexicographic ordering of systems since the measure i1 is reduced
whenever a node is added to S. As above, the instantiation of the induction
hypothesis results in a recursive call to the tableau procedure in the extracted
program, which returns either a node-proof pair or a Kripke counter-example
for the expanded system.

Finally, if all nodes are complete and the system is complete, then we are in
the base case where one of a node-proof pair or a Kripke counter example is con-



structed directly without reference to the induction hypothesis. This is accounted
for in the extract by a call to the extract of the lemma (decidability base):

∀S:ESystem
sComplete(S)

⇒ ∀N∈S.nComplete(N)

⇒ (∃N:{N:Node| N∈S} . {p:Proof| p proves asSequent(N)})
∨ {K:Kripke| ∃g:Node → Σ(K)

∀N:{N:Node| N∈S}
∀f:Formula. (f∈(T(N)) ⇒ forces(K,g(N),f))

∧ (f∈(F(N)) ⇒ not forces(K,g(N),f))}

If the system contains a node that, viewed as a sequent, is an instance of an
axiom, then that node is returned paired with the instance of the axiom rule. If
not, then a Kripke counter-model is constructed by applying the function K to
the system (defined above in Section 4.4.)

This completes the proof of decidability in the intuitionistic case.

5.2 Remarks on the Extract

Figure 2 exhibits the extracted decision procedure. The program shown there
has been symbolically transformed within Nuprl using the direct computation
system to eliminate some unnecessary steps of computation. This mostly entails
β-reducing occurrences of applications of the identity function. These transfor-
mations are entirely formal and since, by the semantics of Nuprl, direct compu-
tation is allowed anywhere within a term, they do not change the meaning of the
program. The program has further been hand edited to format it and to rename
unreadable system generated variable names. This is only for display.

6 Future Work

Study of the extracted program reveals that there is room for the introduction
of abstractions which would both make the extracted program clearer and would
result in a shorter proof. This process of tuning a proof by examination of the
extract and of tuning the extract by studying the proof is an interesting part of
the methodology of using a constructive system like Nuprl.

Integrating of the extracted decider for intuitionistic propositions into Nuprl
is an immediate goal. However, if we are to preserve Nuprl’s program extraction
capabilities, this poses some problems. Nuprl’s proof system is a single succedent
sequent calculus. To repair the error in the ACU proof we have resorted to a
multi-succedent calculus. Egly and Schmidtt [10] give cut-free translations of
multi-succedent proofs into single succedent proofs which preserve reasonable
extracts.

The program extracted here can easily be translated into ML and used as
part of a tactic to decide propositional fragments of Nuprl’s type theory. The
resulting tactic would fail, returning the Kripke model as evidence against the
validity of a formula should it turn out not to be valid; alternatively, it would use
the formal proof returned by the decision procedure, in concert with the Egly



letrec tableau(S) =

if ∀N∈S.nComplete(N) then

if sComplete(S) then

ext{decidability base}(S)(·)(·)
else let <N,a,b,mp, > = (ext{not system complete}(S)(·)) in

case tableau(<a::T(N), b::[]>::S)

of inl(<N1,p1>) =>

inl(if (N1 = <a::T(N), b::[]>)

then <N, let <p’, > =

(ext{imp right proof}
(N)(a)(b)(mp)(p1)(Ax)) in p’>

else <N1, p1>)

| inr(K) => inr(K)

else

let <N,t> = (∃N:{N:Node | N∈S}. ¬nComplete(N))

let <a,b,op type> = (ext{not node complete}(N)(t)) in

case op type of inl(< ,V14>) => case V14

of inl( ) =>

case tableau(<a::T(N), F(N)>::remove(N;S))

of inl(<N1,p1>) =>

inl(if (N1 = <a::T(N), F(N)>)

then <N, mk proof(N,<N1,p1>)>

else <N1, p1>)

| inr(K) => inr(K)

| inr( ) =>

case tableau(<b::T(N), F(N)>::remove(N;S))

of inl(<N1,p1>) =>

inl(if (N1 = <b::T(N), F(N)>)

then <N, mk proof(N,<N1,p1>)>

else <N1, p1>)

| inr(K) => inr K

| inr(V13) => case V13

of inl( ) =>

case tableau(<a::T(N), F(N)>::remove(N;S))

of inl(<N1,p1>) =>

if (N1 = <a::T(N), F(N)>) then

case tableau(<b::T(N), F(N)>::remove(N;S))

of inl(<N2,p2>) =>

inl(if (N2 = <b::T(N), F(N)>)

then <N, mk proof(N,<N1,p1>,<N2,p2>)>

else <N2, p2>)

| inr(K) => inr(K)

else inl(<N1, p1>)

| inr(K) => inr(K)

| inr(V15) => case V15

of inl( ) =>

case tableau(<b::T(N),F(N)>::remove(N;S))

of inl(<N1,p1>) =>

if (N1 = <b::T(N), F(N)>) then

case tableau(<T(N), a::F(N)>::remove(N;S))

of inl(<N2,p2>) =>

inl(if (N2 = <T(N), a::F(N)>)

then <N, mk proof(N,<N1,p1>,<N2,p2>)>

else <N2, p2>)

| inr(K) => inr(K)

else inl(<N1, N2>)

| inr(K) => inr(K)

| inr(V17) => case V17

of inl( ) =>

case tableau(<T(N), b::F(N)>::remove(N;S))

of inl(<N1,p1>) =>

if (N1 = <T(N), b::F(N)>) then

case tableau(<T(N), a::F(N)>::remove(N;S))

of inl(<N2,p2>) =>

inl(if (N2 = <T(N), a::F(N)>)

then <N, mk proof(N,<N2,p2>,<N1,p1>)>

else <N2, p2>)

| inr(K) => inr(K)

else inl(<N1, p1>)

| inr(K) => inr(K)

| inr(V19) => let < ,V21> = V19 in

case V21

of inl( ) =>

case

tableau(<T(N), a::F(N)>::remove(N;S))

of inl(<N1,p1>) =>

inl(if (N1 = <T(N), a::F(N)>)

then <N, mk proof(N,<N1,p1>)>

else <N1, p1>)

| inr(K) => inr(K)

| inr( ) =>

case tableau(<T(N), b::F(N)>::remove(N;S))

of inl(<N1,p1>) =>

inl(if (N1 = <T(N), b::F(N)>)

then <N, mk proof(N,<N1,p1>)>

else <N1, p1>)

| inr(K) => inr(K)

Fig. 2. The extract of the decidiability proof

and Schmidtt procedure, to construct a Nuprl tactic, which it could then apply
to discharge the goal.

Another line of development that needs to be explored is the reflection of
this decision procedure into Nuprl. Reflection [2, 1] was the motivation for the
proof outlined in [1].
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