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Abstract

In this paper, we take an abstract view of search by describing search
procedures via particular kinds of proofs in type theory. We rely on the
proofs-as-programs interpretation to extract programs from our proofs.
Using these techniques we explore, in depth, a large family of search prob-
lems by parameterizing the specification of the problem. A constructive
proof is presented which has as its computational content a correct search
procedure for these problems. We show how a classical extension to an
otherwise constructive system can be used to describe a typical use of the
nonlocal control operator call/cc. Using the classical typing of nonlocal
control we extend our purely constructive proof to incorporate a sophis-
ticated backtracking technique known as ‘conflict-directed backjumping’
(CBJ). A variant of this proof is formalized in Nuprl yielding a correct-
by-construction implementation of CBJ. The extracted program has been
translated into Scheme and serves as the basis for an implementation of
a new solution to the Hamiltonian circuit problem. This paper demon-
strates a non-trivial application of the proofs-as-programs paradigm by
applying the technique to the derivation of a sophisticated search algo-
rithm; also, it shows the generality of the resulting implementation by
demonstrating its application in a new problem domain for CBJ.
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1 Introduction

Search problems are ubiquitous in Computer Science and Artificial Intelligence.
For example, in Artificial Intelligence there has been extensive research into
search algorithms for problems such as propositional satisfiability and constraint
satisfaction problems. Powerful toolkits have been built, for example ILOG
Solver, which has been applied to problems such as airport gate scheduling,
timetabling, staff rostering, and manufacturing process scheduling [41]. Despite
this success, there has been little recognition of the generality of most search
techniques. Furthermore, many algorithms have been introduced without proof
and only proved correct later, and typically with respect to, at best, pseudo-
code. Some important algorithms have yet to be proved sound and complete.
We address both these problems by showing how type theory can be used to
prove search algorithms correct in a very general framework. As an example,
we use ‘Conflict-directed backjumping’ (CBJ), which has never been verified in
a formal framework. We outline a type-theoretic proof of this algorithm, report
on a formal proof in Nuprl, the extraction of code for CBJ from this proof, and
illustrate its use in the Hamiltonian Circuit problem, a domain in which CBJ
has never previously been used.

Our approach to the verification of search algorithms uses type theory to
connect the algorithm to a proof. We present a general description of theorems
which, if proved constructively, induce search procedures. To verify a partic-
ular algorithm, we use it to guide development of a proof of an appropriate
theorem. The computational content of that proof then constitutes a correct
search procedure. This approach has been used to develop verified decision pro-
cedures, namely tableau proof search algorithms for classical and constructive
propositional logic [10, 47]. In this paper, we extend the idea to a large class
of problems involving search, to produce a general template for development of
search procedures.

There are three main motivations of this work. First, we wished to create a
framework which separates the search algorithm from domain specific informa-
tion. This enables certain search techniques developed for specific problems to
be applied in many more situations. For example, conflict-directed backjump-
ing (CBJ) [40] was invented for solving scheduling problems, but can be applied
to reduce search in a very wide range of problems. The original presentation
of CBJ did not reflect its generality, which is revealed by our more abstract
approach to search. In our framework, we can apply such techniques to new
problems easily, producing implementations very quickly.

Second, we wished to reason about a typical use of nonlocal control, using a
classical typing. Since the original discovery that Felleisen’s control operator C
could be given a type corresponding to the law of double negation elimination,
a great deal of work has been done on the computational meaning of classical
proof [2, 3, 6, 24, 33, 36]. However, these ideas have not been exploited in the
context of program development or verification. To this end, we have shown how
a limited use of classical reasoning in a proof can produce a program extraction
which includes a nonlocal control operator. Furthermore, the control operator is
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used to return immediately from a (possibly deep) stack of recursive calls when
a result is found. It was for such purposes that nonlocal control operators were
added to purely functional languages, so this work demonstrates the practicality
of the classical typing of nonlocal control for program development.

Finally, we wished to use new techniques for developing practical programs
from proofs. This is the goal of much research in type theoretic theorem proving;
however, comparatively little effort has been made to connect proof terms with
programs recognizable to ordinary functional programmers. Recently, progress
has been made in obtaining general recursive program (as opposed to strictly
primitive recursive) as proof extracts [8]. Our work shows that these techniques
can be applied to the development of a more substantial program with little
difficulty.

The remainder of the paper is organized as follows:

• In section 2, we describe a general approach to search algorithms by con-
sidering how we may extract them from constructive proofs. We discuss
the form of the theorem to be proved and outline a basic proof correspond-
ing to a backtracking search procedure appropriate for many situations.

• In section 3, we consider the special case of a searching for an assignment
of values to variables which satisfies some property. This case includes
many search problems with significant practical applications. The theo-
rem, proof, and supporting data structures and lemmas required for this
situation are presented in some detail.

• In section 4, we present ideas which may be used to reduce search and
describe what we need to do to incorporate these ideas in the proof. In
particular, in section 4.2, we present conflict-directed backjumping from
a logical point of view.

• In section 5, we extend the proof of section 3 with the search reduction
techniques of section 4. In this proof, we use classical logic in a restricted
way in order to obtain an implementation of backjumping which uses
nonlocal control.

• In section 6, we describe the formalization in Nuprl, and the extraction of
the corresponding program. We consider how particular features of Nuprl
can be used to obtain an extract resembling a typical functional program.

• In section 7, we describe the use of this program to implement conflict-
directed backjumping for the Hamiltonian circuit problem, a domain in
which it has not been described before. We show that the technique is
able to reduce search significantly on many test instances.

• Finally, in section 8 we discuss some generalizations and future work.
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2 General description of search

In this section, we present a framework which describes many search problems
and algorithms for solving them. In general, a search problem is a search for
a structure satisfying some property P ; for example, searching for a proof of a
given formula is a search problem. An algorithm exists for this problem only
if it is decidable whether or not there exists a structure satisfying P . We show
that a constructive proof of this fact can have a natural search algorithm as its
computational content.

In our framework, the details of the structure are largely unimportant, as
long as only finitely many possible structures need to be searched. Similarly, as
long as it is decidable whether or not a structure has property P , we are not
concerned with the details of P . Hence, although a particular search problem
will only be an instance of a general class of problems, the algorithm will be
readily generalizable if P can be parametrized. For example, a search problem
might be to search for a proof of a particular formula; however, the specification
of what constitutes a proof of a formula can be parametrized by the formula, so
that the algorithm can be used for general proof search.

Given a definition of the structure involved, and given the decidable predicate
P on these structures, the general shape of the theorem we wish to prove is

(∃s : Structure. P (s)) ∨ (∀s : Structure.¬P (s)).

To guarantee correctness of the resulting algorithm, we must know that if the
search for a structure satisfying P fails, then there is in fact no structure satis-
fying P . In proof search, a concise way of proving that no proof of a formula
exists is to use model theory. Given a model theory for a logic and a constructive
soundness proof, then a model in which the formula does not hold suffices to
show that there is no proof of the formula. We thus extend the statement of the
theorem to make this kind of reasoning explicit, without relying on a particular
notion of a model theory:

(∃s : Structure. P (s)) ∨ (∃R : Reason. R → ∀s : Structure.¬P (s))

Note that in the context of proof search, if R is a model in some sound model
theory for the logic, then a proof of this theorem is, in fact, a completeness proof
for the logic [13, 46]. We will see (in section 4.2) that we may be able to exploit
R to prune the search space and thus generate more efficient search algorithms.

We now consider further the design of the proof and the algorithm we expect
to derive from it. The proof will be such that the computational content is a
backtracking search procedure. A structure is developed in stages, with each
stage consisting of an extension to a partial structure, until a complete structure
is built and can be tested for the property P . If no extension to a partial
structure satisfies P , then the last choice of extension is undone and another
choice tried until all choices are exhausted. Thus, for each partial structure
there must be finitely many choices for extension, and the process of extension
must be known to terminate. We capture these conditions in a requirement that
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there be a well-founded measure associated with the relation p extends ps. Such
measures may be quite complex; however, the proof relies only on the existence
of such a measure to ensure that induction is valid. The computational content
of the proof need not refer to the measure at all.

Using this induction measure, we prove the theorem by proving a more gen-
eral theorem in which we can exploit the inductive hypothesis. The statement
of this theorem is:

∀ps : Partial Structure.
(∃s : Structure. s extends ps ∧ P (s))
∨
(∃R : Reason. R → ∀s : Structure. s extends ps → ¬P (s))

Given a partial structure ps, we can extend it and then apply the inductive
hypothesis on the extended structure. This corresponds to a recursive call to
the function representing the computational content of the structure. If mul-
tiple extensions are possible, these must be accounted for in some way by the
inductive measure, though in the next section we will see how this can be done
without predetermining the choice of extension. The base case of the induction
occurs when no extension is possible; since we have assumed P is decidable, this
case is proved by reference to P .

As before, we must have evidence for the negative case, in the form of R
which implies that no extension of ps satisfies P . The evidence R will generally
depend on ps, and must cover all the possible structures which extend ps. Care-
ful choice of the type of R and analysis of a given R can lead to more efficient
search procedures. In particular, if we are given a partial structure ps and evi-
dence R that no extension of ps satisfies P , then it may happen that R is also
evidence that no extension of ps′ satisfies P , where ps is an extension of ps′.
Then, instead of backtracking one step from ps, we may wish to backjump to
the point where ps′ was constructed, which may be much earlier in the search.

Backjumping as a search reduction technique was first described by Gaschnig
[20], but his presentation was very limited in the amount of backjumping per-
formed. Conflict-directed backjumping (CBJ), a more extensive form of back-
jumping, was first described by Prosser in the context of a scheduling problem
[39]. Later, it was generalized to binary constraint satisfaction problems [40],
and arbitrary constraint satisfaction problems [22]. Here, we have generalized
it further and view it as a general search reduction technique rather than as an
algorithm for a particular problem. Indeed, in this paper we give a proof whose
computational content allows CBJ to be implemented for any problem which
can be formulated with a finite set of variables taking a finite set of values,
and where we search for an assignment which satisfies some decidable predi-
cate. Among examples of such problems are all NP-complete problems [19],
although we make no assumptions which limit us to NP problems. Informal
proofs of correctness of CBJ have been presented by Ginsberg [22] and Kondrak
and van Beek [29], but until now it has not been proved correct in a formal
framework. The value of CBJ as a search reduction technique has been shown
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experimentally [43, 23, 1, 5] and theoretically [29], and we show for the first
time that the technique can reduce search in the Hamiltonian circuit problem.

We have given a very general logical description of how some theorems can
be proved in such a way as to generate search procedures. To illustrate this
general pattern, in the next section we will see a more concrete example. This
example fixes the structure for which we are searching, but still describes a large
family of search problems.

3 Search for assignments of values to variables

In this section we consider the case in which the structure for which we are
searching is an assignment of values to variables. Specifically, we assume we
have a finite set Varset of variables, a finite set Valset of values, and a decidable
predicate P on assignments of values in Valset to the variables in Varset.

We explore this special case for many reasons. Although we have made the
structure explicit, we can express a large number of search problems as pred-
icates on assignments: constraint satisfaction, Boolean satisfiability, and other
NP-complete problems. Search algorithms for these problems have compelling
practical interest, and many techniques have been introduced in an effort to
improve efficiency of search in this area.

However, improvements to general search algorithms are rarely presented
as such in the literature; instead, a method is often introduced in one problem
area (e.g. constraint satisfaction) and later applied to other areas. For example,
conflict-directed backjumping was described for constraint satisfaction problems
[40, 22] some years before being applied successfully to propositional satisfia-
bility [4, 5] and it has not previously been presented as generally as we do so
here. Our approach separates the properties of the search algorithm from the
problem specific functions, permitting the core search algorithm to be applied
to many different domains by varying the predicate P . In developing the proof
of the theorem from which the search algorithm will be extracted, we will gen-
erate correctness conditions for the problem specific routines on which the final
program will depend.

In this case, the high level theorem we will prove is

Theorem 1 Given a finite set of variables, Varset, a finite set of values Valset,
and a predicate P on assignments of variables to values, then

(∃A : Assign(Varset,Valset ). P (A)) ∨ (∀A : Assign(Varset,Valset ).¬P (A))

In this formulation, the structure desired is an assignment, rather than a proof,
and the alternative is a proof that no assignment exists. While an assignment is a
proof that a given problem has a solution, this is not the normal interpretation of
proof. This might, then, appear to be a shift in interpretation of the framework
outlined in the previous section, if “structure” was interpreted as ‘proof’ and
“reason” interpreted as ‘counter-model’. Such an interpretation is valid in many
examples of proof search, say in resolution proof search where a full proof is often
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easily extracted when found. But there are many examples of proof search where
we are not interested in the proof object as such, merely that one exists and thus
that the given conjecture is a theorem. For example, proof systems based on
semantic tableaux [45] typically search for a counter-model: if a counter-model
is found, it is produced as evidence that the conjecture is false, while if none is
found the constructed tableau is often discarded. To do otherwise, even in the
case of propositional logic, would involve the storage of an exponentially large
proof. This is the point of view we use here. It is particularly appropriate in
the case of search in NP-complete problems where the satisfying assignment,
if it exists, might represent a valuable schedule, timetable, or plan, while the
details of the proof that no such structure exists may be of no interest to the
user. Nevertheless, the notion of a ‘reason’ for no structure existing plays a
vital part in our work, and we use it to provide evidence to skip over parts
of the search space in backjumping. Applying our methodology to reduce the
amount of search for explicit proof objects remains future work, as we discuss
in section 8.

The initial proof of Theorem 1 will result in a core search algorithm per-
forming a simple recursive backtracking search procedure. At each stage we
will have a partial assignment of values to variables. To advance the search,
an unassigned variable is chosen and given one of its possible values to create
a new assignment on which the search procedure is called recursively. If this
new assignment cannot be extended to an assignment with the desired prop-
erty, another value for the variable is chosen until all values have been tried. If
all values fail, then the procedure returns to try a new value for a previously
assigned variable. Thus, the procedure begins with an empty assignment and
builds an assignment in stages. An assignment can only be extended finitely
often, since we assume we begin with a finite set of variables, and only finitely
many values are possible.

This basic backtracking search algorithm will be later used as a base for
extension, but for now we will use it as a guide for the proof of Theorem 1.
To clarify both the proof and the resulting program, we treat separately the
extension of an assignment by the choice of a new variable to set, and the process
of trying a new value for a given variable. Thus, the proof of the theorem is
by induction on the set of variables yet to be assigned. After one such variable
is chosen, we have another induction on the set of values yet to be tried for
that variable. These could be packaged together in a single induction principle;
the separation is only for ease of understanding. After choosing a value for the
variable, we create an extended partial assignment and use the first inductive
hypothesis, since this new assignment has fewer unassigned variables. Then, if
necessary, we apply the second inductive hypothesis, since we have reduced the
number of values yet to be tried. The use of an inductive hypothesis in the
proof corresponds to a recursive call in the algorithm.

We now present the ideas used in the statement and proof of Theorem 1,
followed by an outline of the proof. We will then describe extensions to the proof
which permit the algorithm to include various heuristics and search pruning
techniques, and in section 5 we describe the extended proof in some detail. A
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discussion of the issues arising from the formalization of the proof in Nuprl can
be found in section 6.

3.1 Notation, definitions, and assumptions

We begin by describing in more detail the types involved in the statement of the
theorem and the lemmas which will be used in the proof. The description of the
data-types constitutes an informal specification of their intended behavior. The
program which results is thus correct if we are given a correct implementation of
the data-types. Similarly, the lemmas which we assume will have computational
meaning, and we describe how their proofs will affect the final algorithm. The
lemmas will be named, and occasionally we will refer to “calling” a lemma when
we wish to use the computational content of a lemma.

Finite sets. We assume we have a type of finite sets, and, in particular, a
finite set Varset of variables and a finite set Valset of values. We suppose that
all the standard set operations are defined, e.g. union, member, remove, and
subset relations. We also assume we have an induction principle on finite sets or-
dered by inclusion. The computational content of the induction principle should
be a mechanism for defining functions inductively; this is described further in
section 6 below.

Assignments. Given Varset and Valset, we assume we have a type of as-
signments, Assign(Varset,Valset ) from the variables in Varset to the values in
Valset. We consider that this type includes partial assignments defined only
on subsets of Varset. To emphasize that we are dealing with such a partial
assignment, we may write A : Assign(Vars,Valset ) to describe that A is de-
fined on at most the set of variables Vars. We also assume we have a type
Full-Assign(Varset,Valset ), a subtype of Assign(Varset,Valset ) describing total
assignments on Varset. We assume we have a strict and non-strict partial order
on assignments, denoted ⊂ and ⊆ respectively, which describe when one assign-
ment extends another by determining values for at least as many variables.

Predicates and conflict sets. We assume P is a decidable predicate on the
type Full-Assign(Varset,Valset ). To describe the case that no extension of a
partial assignment satisfies P , we introduce the notion of a conflict set. Given a
partial assignment A : Assign(Vars,Valset ), a conflict set for A is a subset CS
of Vars such that

∀A′ : Full-Assign(Varset,Valset ).
P (A′) →
∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

Such a set CS serves as evidence that A cannot be extended to an assignment
satisfying P , since any assignment satisfying P differs from A on the value of
some variable v0 in the conflict set. This idea will be exploited further in the
next section. In the base proof, we assume we have the following lemma:
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Lemma 2 (check-full)

∀A : Full-Assign(Varset,Valset ).
P (A)
∨
∃CS ⊂ Varset.
∀A′ : Full-Assign(Varset,Valset ).

P (A′) → ∃v0 ∈ CS.Val of (v0, A
′) 6= Val of (v0, A)

The computational content of this lemma extends the decision procedure for P
to produce either a proof of P (A) or a conflict set as evidence of ¬P (A). Note
that if A : Full-Assign(Varset,Valset ) does not satisfy P , then the set Varset
is always a conflict set. Conflict sets play an important role in the proof and
corresponding algorithm; this will be further explored in section 4.2.

Choosing an element of a set. In the course of the proof, we shall need to
choose elements of given nonempty sets of variable and values. To do this, we
assume the following lemmas:
Lemma 3 (choose-var)

∀V : {Vars ⊆ Varset|Vars 6= ∅}.∃v ∈ V

Lemma 4 (choose-val)

∀V : {Vals ⊆ Valset|Vals 6= ∅}.∃n ∈ V

The computational content of the proofs of these lemmas serve as functions
which choose the next variable to set, and the next value to try. Different
proofs for these lemmas will, in general, result in different algorithms, but since
the main theorem assumes nothing about the proofs of these lemmas, all of the
resulting algorithms will be correct.

3.2 Core proof outline

We prove the main theorem above as a corollary to the following more general
theorem.

Theorem 5 (test) Given a finite set of variables, Varset, a finite set of values
Valset, and a predicate P on full assignments of values to variables, then

∀Vars ⊆ Varset.
∀A : Assign(Vars,Valset ).
∃A′ : Full-Assign(Varset,Valset ). A ⊆ A′ ∧ P (A′)
∨
∃CS ⊆ Vars.∀A′ : Full-Assign(Varset,Valset ).

P (A′) → ∃v0 ∈ CS.Val of (v0, A
′) 6= Val of (v0, A)
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Theorem 1 follows from this theorem by taking Vars, the set of assigned vari-
ables, to be empty, and taking A to be the empty assignment. ¿From this we
have either A′ satisfying P or a conflict set showing that the empty assignment
cannot be extended to as assignment satisfying P . From such a conflict set, we
can show ∀A : Full-Assign(Varset,Valset ).¬P (A) as desired.

Before we begin the proof of Theorem 5, we define an abbreviation. If
A : Assign(Vars,Valset ), let Result(A ) be

(∃A′ : Full-Assign(Varset,Valset ). A ⊆ A′ ∧ P (A′))
∨ (∃CS ⊆ Vars.∀A′ : Full-Assign(Varset,Valset ).

P (A′) → ∃v0 ∈ CS.Val of (v0, A
′) 6= Val of (v0, A))

Result(A ) denotes both the formula above and the type of the result of apply-
ing the search procedure to the partial assignment A – it returns either a full
assignment extending A and satisfying P , or it returns a conflict set.

The proof of Theorem 5 is by induction on the size of the set Varset−Vars,
the set of variables which have not yet been assigned values. More precisely,
it is on the finite sets of unassigned values ordered by subset. We denote such
sets Varsleft, and so we will generally have Vars = Varset − Varsleft, i.e. the
set of assigned variables is the difference between the set of variables and the
set of unassigned variables. The base case is when Varsleft(= Varset−Vars) is
empty. Then the assignment A assigns a value to every variable. We can then
use Lemma check-full to prove the result.

For the inductive case of this first induction, we assume Varsleft is a nonempty
set of unset variables. We have the following as an inductive hypothesis:

IH1 : ∀s ⊂ Varsleft.∀A′ : Assign(Varset− s,Valset ).Result(A′ )

and we must prove

∀A : Assign(Varset−Varsleft,Valset ).Result(A )

In other words, given an assignment A : Assign(Varset−Varsleft,Valset ) we
need to construct either a satisfying assignment extending A or a conflict set
for A.

We construct Result(A ) by creating an extension of A and then using the
inductive hypothesis. First, we choose a variable in Varsleft, using Lemma
choose-var. Given this variable, we create a sequence of extensions by trying
all the possible values for it. We do this by using the following lemma:

Lemma 6 (enumerate-domain)
Given an assignment A : Assign(Varset−Varsleft,Valset ) and v ∈ Varsleft,

∀Vals ⊆ Valset.
∃A′ : Full-Assign(Varset,Valset ). A ⊆ A′ ∧ P (A′) ∧Val of (v,A′) ∈ Vals
∨
∃CS ⊆ Varset−Varsleft.∀A′ : Full-Assign(Varset,Valset ).
Val of (v,A′) ∈ Vals → P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)
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Note that the specification of CS here is slightly different from that described
above. There are really two kinds of conflict sets: one which serves as evidence
that a partial assignment A cannot be extended to one satisfying P , and one
which is evidence that a particular collection of partial assignments extending
A cannot be extended to assignments satisfying P . This distinction is discussed
in greater detail in section 5.

Lemma 6 is proved by induction on the size of the set Vals. Given the
lemma, we can prove Result(A ) (and hence complete the proof of Theorem 5)
by applying the lemma with Vals = Valset. It is important to note that this
lemma is proved in the context of the proof of test, as we will use IH1 in
the proof. Of course, the lemma could also be stated separately as long as its
hypotheses included IH1 and the other elements of the current context used.

The base case of the induction is when Vals is empty. There are no full
assignments giving v a value in the empty set, so in particular there is no full
assignment extending A which gives v a value in the empty set. Thus, we must
create a conflict set CS. However, the property which CS must satisfy is trivial,
since Val of (v,A′) ∈ Vals will always be false. Thus, any conflict set will do;
for example, the empty set.

In the inductive case, we have a second inductive hypothesis:

IH2(V als) : ∀vs ⊂ Vals.
∃A′ : Full-Assign(Varset,Valset ). A ⊆ A′ ∧ P (A′) ∧Val of (v,A′) ∈ vs
∨
∃CS ⊆ Varset−Varsleft.∀A′ : Full-Assign(Varset,Valset ).
Val of (v,A′) ∈ vs → P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

We then wish to prove

∃A′ : Full-Assign(Varset,Valset ). A ⊆ A′ ∧ P (A′) ∧Val of (v,A′) ∈ Vals
∨
∃CS ⊆ Varset−Varsleft.∀A′ : Full-Assign(Varset,Valset ).
Val of (v,A′) ∈ Vals → P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

Here, Vals represents the set of values which have yet to be tried as values of
the variable v. Thus, to apply the second inductive hypothesis, we must reduce
this set. So choose a value n in Vals, using Lemma choose-val. Let Av=n be
the assignment A extended with v equal to n.

Now we must try the partial assignments extending Av=n. Since A ⊂ Av=n,
we do this by applying the first inductive hypothesis. Computationally, this
corresponds to a recursive call to test. The inductive hypothesis provides
something of type Result(Av=n ); that is, it is either an assignment A′ extending
Av=n such that P (A′), or it is a conflict set for Av=n, as described above. If we
have a solution A′, we are done.

If not, then we have a conflict set (call it CS1) for Av=n. Now we remove
n from Vals and apply the second inductive hypothesis (computationally, a
recursive call to enumerate-domain) with the set Vals−{n}. If the result is an
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A′ : Full-Assign(Varset,Valset ) such that A ⊆ A′ and P (A′), then we are done.
Otherwise, we have a second conflict set CS2 ⊆ Varset−Varsleft satisfying

∀A′ : Full-Assign(Varset,Valset ). (Val of (v,A′) ∈ Vals− {n}) →
P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

Now let CS = (CS1− {v}) ∪ CS2. Then CS ⊆ Varset− Varsleft, and it is
easy to check that CS satisfies

∀A′ : Full-Assign(Varset,Valset ). (Val of (v,A′) ∈ Vals) →
P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

Thus we have finished the inductive case of the lemma, and hence we have
finished the proof. Next, we consider some modifications of the proof resulting
in more efficient algorithms.

4 Extending the search procedure

The computational content of the proof outlined in the preceding section is a
simple backtracking search procedure. The actual search performed depends on
the computational content of the proofs of Lemmas choose-var and choose-val.
Thus, it is easy to incorporate variable and value ordering heuristics in the proof,
simply by choosing appropriate proofs of these lemmas.

Other search optimization techniques can be incorporated by modifications
to the proof. In this section, we describe two of these optimization techniques
in detail. The first technique is a simple check on the consistency of a partial
assignment. Second, we describe conflict-directed backjumping [40] and how it
may be implemented by a modification to the proof. The approach we take
is particularly interesting since it permits the computational extract to use a
nonlocal control operator to perform backjumping.

4.1 Consistency checking

The simplest extension to the proof which we consider permits failure to occur
before a full assignment has been created. It is common that a partial assign-
ment will already contain enough information to determine the falsity of the
property P for any extension. For example, in clause form satisfiability prob-
lems, a partial assignment which falsifies one clause cannot be extended to a
satisfying assignment. Thus, we do not need to explore this part of the search
space further.

To add this consistency check to the proof (and hence to the algorithm), we
need only assume the following lemma:
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Lemma 7 (check)

∀A : Assign(Vars,Valset ).
unit
∨
∃CS ⊂ Varset.∀A′ : Full-Assign(Varset,Valset ).

P (A′) → ∃v0 ∈ CS.Val of (v0, A
′) 6= Val of (v0, A)

Given a partial assignment A, this lemma either provides evidence that
A cannot be extended to an assignment satisfying P , or it returns a token
(represented here as an element of unit, a type with one element) which signifies
that search should continue. Note that this lemma is always provable since we
may simply always return an element of unit, though such a proof of the lemma
would add nothing to the original algorithm. However, if the partial assignment
is inconsistent, evidence for this must be provided in the form of a conflict set.

This lemma is applied in the proof when the new assignment Av=n is created.
At that point in the proof above, we applied the first inductive hypothesis to
obtain a proof of Result(Av=n ). Computationally, this step corresponds to a
recursive call of the search algorithm on the new assignment, and involves a
search of all extensions of Av=n. In the modified proof, we first apply Lemma
check to see if we can find evidence for inconsistency immediately. If we produce
a conflict set CS for Av=n, then we can proceed without appealing to the
inductive hypothesis. We have that A ⊆ A′, and if the inclusion is strict there
is no need to check all the other full assignments extending A. This could save
a considerable amount of search in the resulting search algorithm.

4.2 Conflict-directed backjumping

The second technique we consider is more complex. Conflict-directed backjump-
ing is a means of using the information in a conflict set to reduce search. When
a conflict set CS for a partial assignment A is produced, it satisfies

∀A′ : Full-Assign(Varset,Valset ).
P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A).

Now, if CS is smaller than the set of variables assigned in A, it may be that CS
satisfies the same condition for a partial assignment A′′ such that A was created
by extending A′′, possibly many times. In other words, CS might be evidence
that some much smaller assignment A′′ cannot be extended to an assignment
satisfying P . Rather than continue to explore assignments which extend A′′, we
wish to return search to the point at which A′′ was created, using the conflict
set CS as evidence of failure. We now have that A′′ ⊆ A ⊆ A′, and if the
first inclusion is strict, there is no need to explore all the partial assignments
extending A′′. Just as with the use of check, this may save a lot of needless
search in the resulting algorithm.

13



To implement this idea, we need a means of returning a value to an earlier
point in the search tree without having explored the entire tree below that
point. This can be done by adding a test whenever a conflict set is returned,
and deciding whether to pass it back or to continue search below the given
assignment. However, in this development we use a different technique, that of
explicit management of the continuation through use of call/cc.

The call/cc (or call-with-current-continuation) operator was introduced to
the Scheme programming language [12] to permit direct manipulation of pro-
gram control. When call/cc(λ(k) . . .) is evaluated, k becomes bound to the
current continuation; in other words, k represents the rest of the computation,
apart from that remaining in the body of the call/cc. When k is applied to an
argument, the computation returns immediately to the context which existed
when k was created, and the argument passed to k is used in the place of the
call/cc(λ(k) . . .) term. Thus, call/cc is essentially a functional goto; it allows
control to jump immediately to another part of the program. Typical uses of
call/cc include error handling and implementation of coroutines [18, 17, 16].
We can view the use of call/cc to implement backjumping as a form of error
handling, allowing immediate return to the point at which a decision was made
to explore a branch now known not to contain a solution.

In the program extracted from the proof, we wish to use call/cc to cre-
ate continuations which represent points to which the search might backjump.
Backjumping occurs when a conflict set is found which eliminates more of the
search tree than its local situation requires. A continuation is created whenever
a variable is set to create a partial assignment. Should we discover, deep in the
search tree, that this partial assignment is inconsistent, we return immediately
to this point by applying the continuation to the evidence of inconsistency, in
the form of a conflict set.

We may be deep in the search tree when we discover that no assignment
with the current values of two early variables is possible. We wish to jump
back immediately and try another value for the second variable. For example,
suppose that we have a problem involving propositional Boolean variables a to z
and that the problem is to find an assignment of these variable to Boolean values
satisfying (¬a ∨ z) ∧ (¬c ∨ ¬z) If we consider variables in alphabetical order,
and T as a value before F , the first assignment checked would be a = T, b =
T, c = T, . . . y = T, z = T , but this would fail with conflict set {c, z} because of
the second clause. The next assignment considered would be a = T, b = T, c =
T, . . . y = T, z = F , but this would also fail, with conflict set {a, z} because of
the first clause. Therefore no solution is possible with the partial assignment
a = T, b = T, c = T, . . . y = T . But there is no point in backtracking through
other values of variables d, e . . . y; the value of either a or c must be changed.
The conflict set is {a, c}. Search may return immediately to try a new value for
c. We can do this by applying the continuation created at the time variable c
was being set to the evidence (in the form of a conflict set) that the assignment
is inconsistent. In this case we would try the value c = F and would succeed
with any assignment extending this. If however other clauses were present which
ruled out c = F without involving variable b, we could backjump over b to try
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a = F . The success of backjumping techniques is not limited to such contrived
examples, and has been shown in larger problems [40, 43, 1, 5].

To get this computational behavior from the proof, we use the fact that
call/cc can be given the type ((α → β) → α) → α for any types α and β
[24, 26]. This is a classical axiom which corresponds to a form of proof by
contradiction, particularly when we take β to be ⊥, or falsity. If, from the
assumption that α implies false, we can prove α, then we have a contradiction
so α must be true. This form of reasoning is not strictly constructive, but in
this case we still have a computational meaning for it. Although a constructive
formal system like Nuprl does not permit classical reasoning, we can add it by
adding to the theorem the assumption that call/cc has type

∀α∀β. ((α → β) → α) → α.

Of course, Nuprl does not describe the computational behavior of call/cc, so
we must justify this typing theoretically. The observation that nonlocal control
operators could be given classical types is due to Griffin [24]; Murthy [33, 34]
developed this idea to describe in more detail the connection between continu-
ation passing style program transformations and translations of classical logic
into constructive logic. There are limits of program extraction from classical
proof [33]; however, our use of this connection is justifiable using this work.

To accommodate these ideas, we must modify the statement and proof of
the theorem. In the statement of the theorem, we add an extra assumption of
the form ∀A0 ⊆ A. (Result(A0 ) → ⊥). This assumption is satisfied by a function
which uses continuations created by call/cc. When we produce a more general
conflict set than is required and wish to backjump, we apply the function, which
then uses the appropriate continuation to return immediately to the right stage
in the computation. Logically, this step is an unnecessarily roundabout proof of
Result(A ). If the conflict set CS is really a valid result for some previous partial
assignment A0, then we use the assumption ¬Result(A0 ) to get a contradiction
and hence to conclude anything, and in particular Result(A ). However, when
the continuation corresponding to the assumption ¬Result(A0 ) is applied, the
computation returns to the point where A0 has been created and is being tested.
The conflict set CS is now treated as a conflict set for A0, and computation
continues from that point.

This logical treatment of the nonlocal control ensures that backjumping is
sound; we can only backjump when we have evidence that there is no solution in
the part of the search tree we are pruning. Naturally, the proof corresponding
to a backjumping algorithm is more complex than the proof corresponding to a
simple backtracking algorithm; since the program is more complex as well this
should not be surprising. What is perhaps surprising is that the modifications
necessary are not even more complex.
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5 Details of the extended proof

In this section, we describe in some detail the proof including both consistency
checking and conflict-directed backjumping. Adding a consistency check is rel-
atively simple; logically, it corresponds to an appeal to a lemma which may or
may not prove the current goal. Adding conflict-directed backjumping requires
a modification of the statement of the main theorem, Theorem 5, and a few
extra steps in its proof.

To introduce the ideas used in the proof, we will take a closer look at conflict
sets and their use. In the base proof, conflict sets served only as evidence that
no extension of a partial assignment satisfied the property P . In the conflict-
directed backjumping algorithm, the elements of a conflict set are used to guide
the search directly. Given a conflict set, backjumping returns search as far as
possible while still preserving the property that the conflict set serves as evidence
that the partial assignment cannot be extended.

How far back the search goes depends on the variables in the conflict set.
In any conflict set, some variable is “most recently set”. The search algorithm
should return to the point at which this variable was set and try a new value
for it. In order to return using call/cc, we must have captured the continuation
at this point earlier in the computation. The desired point to which we expect
control to return will guide our use of classical logic (and thus call/cc) in the
proof.

The search algorithm does not simply return control; it returns a conflict
set which serves as evidence that no solution exists in part of the search tree.
In fact, the role of the conflict set changes subtly when backjumping occurs.
Before, it is evidence that a given partial assignment cannot be extended to
satisfy P . After, it is evidence that a partial assignment cannot be extended to
satisfy P in such a way that the current variable has one of a given set of values.

More precisely, suppose we have a partial assignment Ai defined on the vari-
ables {v1, . . . vi}. We attempt to find an assignment satisfying P by extending
this assignment with vi+1 = n1, creating an assignment Ai+1. Suppose that
further along this branch of the search tree, we have an extension Am of Ai

defined on {v1, . . . , vi, vi+1, . . . , vm}. Also, suppose we have discovered that Am

cannot be extended to an assignment satisfying P . The conflict set CSm which
serves as evidence for this statement must satisfy the following predicate:

∀A′ : Full-Assign(Varset,Valset ). P (A′) →
∃v0 ∈ CSm.Val of (v0, A

′) 6= Val of (v0, Am)

Now suppose that the most recently set variable in CSm is vi+1 – in other
words, CSm ⊆ {v1, . . . , vi+1} and vi+1 ∈ CSm. Then CSm serves as a conflict
set for the partial assignment Ai+1 as well, but not for any smaller partial
assignment. To use this fact, we now want search to return to the point at
which variable vi+1 was assigned the value n1, and try a new value for this
variable. Note that CSm is not a conflict set for Ai; it is evidence that setting
vi+1 = n1 failed, and may be used to build a conflict set for Ai if all other
attempts to extend Ai fail. However, a conflict set for Ai cannot contain the
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variable vi+1. So, consider the set CSi = CSm − vi+1. CSi is then a subset of
{v1, . . . , vi} and also satisfies

∀A′ : Full-Assign(Varset,Valset ).
Val of (vi+1, A

′) ∈ {n1} → P (A′) →
∃v0 ∈ CSi.Val of (v0, A

′) 6= Val of (v0, A)

As further extensions to Ai are explored by setting vi+1 to n2, . . . , nj in turn,
as long as no solution is found we keep a set CS′

i ⊆ {v1, . . . , vi} which satisfies

∀A′ : Full-Assign(Varset,Valset ).
Val of (vi+1, A

′) ∈ {n1, . . . , nj} → P (A′) →
∃v0 ∈ CS′

i.Val of (v0, A
′) 6= Val of (v0, A)

Thus, there are two ways of viewing a conflict set: as evidence that a partial
assignment cannot be extended to a solution, and as evidence that a partial
assignment cannot be extended to a solution if the next variable has a value
in a specified set. Another way of looking at this second kind of conflict set is
that it shows that a family of partial assignments cannot be extended. Before
backjumping, the conflict set built is evidence of the first kind. After, it is
evidence of the second kind, with respect to a smaller partial assignment. The
link between these two views of the conflict set is described in part by the
treatment of the continuation function, which, when backjumping, transforms
the type of the conflict set.

The backjumping algorithm must determine what the most recently set vari-
able in the conflict set actually is. This intended behavior determines how the
continuation created by call/cc is actually used in the proof, and hence in the
program. The control operator call/cc used to create a continuation which per-
forms the backjumping; the application of this continuation occurs inside what
we will call a continuation function, which determines the point to which the
algorithm backjumps, the conflict set it returns, and applies the appropriate
continuation.

With these ideas in mind, we reconsider the proof of Theorem test. The
revised statement of the theorem is:

Theorem 8 (classical test) Given a finite set of variables, Varset, a finite set
of values, Valset, and a predicate P on full assignments of values to variables,
then

∀Vars ⊆ Varset.
∀A : Assign(Vars,Valset ).

(∀A0 : Assign(Vars,Valset ). A0 ⊆ A → (Result(A0 ) → ⊥)) →
Result(A )

Before we prove this theorem, we show how it is used to prove the top level
theorem, Theorem 1. To prove Theorem 1, we prove instead Result(Aempty ),
the result for the empty assignment. With this as our goal, we use call/cc
with α = Result(Aempty ) and β = ⊥ to introduce the following assumption,
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Result(Aempty ) → ⊥. We then appeal to Theorem 8, taking Vars to be empty,
A to be the empty assignment, and using the assumption Result(Aempty ) → ⊥
to obtain Result(Aempty ) as desired.

We now prove Theorem 8 by extending the proof of Theorem 5. Again,
the proof is by induction on the set of unassigned variables, i.e. Varset− Vars.
If this set is empty, then the theorem is proved by appealing to the Lemma
check-full. However, if check-full returns a conflict set, we will wish to use
it to backjump instead of returning normally. Thus, we wish to pass the result
of check-full to the continuation represented by the assumption

k : ∀A0 : Assign(Vars,Valset ). A0 ⊆ A → (Result(A0 ) → ⊥)

To describe this computational behavior in the proof, we use the result of Lemma
check-full together with k to obtain a contradiction. From this contradiction
we conclude Result(A ) for full assignments A, so the base case is done.

In the inductive case, given a nonempty set of undefined variables Varsleft,
we will have the inductive hypothesis

IH1 : ∀s ⊂ Varsleft.
∀A′ : Assign(Varset− s,Valset ).

(∀A0 : Assign(Varset− s,Valset ). A0 ⊆ A′ → (Result(A0 ) → ⊥)) →
Result(A′ )

and we must prove

∀A : Assign(Varset−Varsleft,Valset )
(∀A0 : Assign(Varset−Varsleft,Valset ). A0 ⊆ A → (Result(A0 ) → ⊥)) →

Result(A )

This means that given A : Assign(Varset−Varsleft,Valset ) and the assumption

k : ∀A0 : Assign(Varset−Varsleft,Valset ). A0 ⊆ A → (Result(A0 ) → ⊥)

we need to prove Result(A ). Here, k is a continuation function which, when
given a conflict set, backjumps to the appropriate point in the search using the
appropriate continuation.

As before, we will eventually construct an extension to A and use the induc-
tive hypothesis. Note, however, that in order to apply the inductive hypothesis
to an assignment A′ which extends A by setting v = n, we must have a proof of

∀A0 : Assign((Varset−Vars) ∪ {v},Valset ). A0 ⊆ A′ → (Result(A0 ) → ⊥)

This is the type of a new continuation function which will be built from the
given function k and a continuation captured during the proof of Result(A ).

Again as before, we choose a variable v in Varsleft by applying the Lemma
choose-var, and we use another lemma which will extend A by trying the
possible values for v. The lemma in this case is
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Lemma 9 Given an assignment A : Assign(Varset−Varsleft,Valset ), a vari-
able v ∈ Varsleft, and

k : ∀A0 : Assign(Varset−Varsleft,Valset ). A0 ⊆ A → (Result(A0 ) → ⊥)

then

∀Vals ⊆ Valset.
∃A′ : Full-Assign(Varset,Valset ). A ⊆ A′ ∧ P (A′) ∧Val of (v,A′) ∈ Vals

∨
∃CS ⊆ Varset−Varsleft.∀A′ : Full-Assign(Varset,Valset ).
Val of (v,A′) ∈ Vals → P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

Lemma 9 is again proved by induction on the size of the set Vals. Given
Lemma 9, we can prove Result(A ) (and hence finish the proof of Theorem 8)
by applying the lemma with Vals = Valset.

The base case of the induction is when Vals is empty. The proof is the same
as that in the proof of Lemma 6. Since there is no full assignment extending A
which gives v a value in the empty set, we must produce a conflict set. However,
the property which CS must satisfy is trivial, so the empty set will suffice.

In the inductive case, we have a second inductive hypothesis:

IH2(Vals) : ∀vs ⊂ Vals.
∃A′ : Full-Assign(Varset,Valset ). A ⊆ A′ ∧ P (A′) ∧Val of (v,A′) ∈ vs

∨
∃CS ⊆ Varset−Varsleft.∀A′ : Full-Assign(Varset,Valset ).

Val of (v,A′) ∈ vs → P (A′) → ∃v0 ∈ CS.Val of (v0, A
′) 6= Val of (v0, A)

We then wish to prove:

∃A′ : Full-Assign(Varset,Valset ). A ⊆ A′ ∧ P (A′) ∧Val of (v,A′) ∈ Vals
∨
∃CS ⊆ Varset−Varsleft.∀A′ : Full-Assign(Varset,Valset ).
Val of (v,A′) ∈ Vals → P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

Vals represents the set of values which have yet to be tried as values of the
variable v. This goal describes a partial result – either we have an assignment
satisfying P or we have evidence that A cannot be extended by assigning v a
value in Vals.

To apply the second inductive hypothesis we must reduce the set of untried
values, Vals. So choose a value n in Vals, using Lemma choose-val, and let
Av=n be the assignment A extended with v equal to n.

At this point in the computation, we wish to check this new partial assign-
ment for consistency. Logically, we apply Lemma check. The result is either a
conflict set CS1 which guarantees that Av=n cannot be extended to a satisfying
assignment, or a token which signifies that search must continue.

If referring to check failed to produce a conflict set, we must try the partial
assignments extending Av=n. Since A ⊂ Av=n, we do this by applying the first
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inductive hypothesis, by calling test recursively. We will then do a case split
on the result of this call, which will be an element of Result(Av=n ). If a conflict
set is later found which serves as evidence that Av=n cannot be extended, then
it is to this point we expect the computation to return. So, we introduce a goal
Result(Av=n ) which we will eventually prove by appealing to IH1.

First, though, in order to apply IH1, we must we create something of the
type

∀A0 : Assign((Varset−Vars) ∪ {v},Valset ). A0 ⊆ A′ → (Result(A0 ) → ⊥)

To do this, we create a continuation k′ by using call/cc in the context of the
goal Result(Av=n ) to obtain an extra assumption

k′ : Result(Av=n ) → ⊥

Using k′ together with the assumption k, we can create a function of the
type desired. This function is intended to take an assignment and a result for
that assignment and, if the result is a conflict set, backjump to the appropriate
place in the search. If the result is an assignment satisfying P , then this is
simply returned. There are two cases. If the result is an assignment, or if it
is a conflict set which includes the variable v, then no significant backjumping
occurs. Control of the program returns to the point at which v was assigned
the value n, and the conflict set for the assignment A0 (which must define a
value for variable v) is returned and then modified to become a conflict set for
A extended by v with respect to the set of values Vals. However, if the result
is a conflict set not containing v, then it is in fact a conflict set for a smaller
assignment, and we can use the function k to do the backjumping.

Thus, the function we create is

λA0 : Assign((Varset−Vars) ∪ {v},Valset ).
λresult : Result(A0 ).

case(result,
λsuccess : {S : Full-Assign(Varset,Valset )|A0 ⊆ S ∧ P (S)}.

k′(inl(success)),
λcs : {CS ⊆ (Varset−Vars) ∪ {v}|∀A′ : Full-Assign(Varset,Valset ).

P (A′) → ∃v0 ∈ CS.Val of (v0, A
′) 6= Val of (v0, A0)}.

if (v ∈ cs)
then k′(inr(cs))
else kA(inr(cs))

This function represents only the computational content of the actual proof of

∀A0 : Assign((Varset−Vars) ∪ {v},Valset ). A0 ⊆ A′ → (Result(A0 ) → ⊥)

The subset type mechanism (described in section 6) is used to hide the purely
logical aspects of the proof. Thus, in introducing this function, we must prove
that if v is not in cs, then inr(cs) is a member of the type Result(A ), and other
similar goals. We use inl and inr to create elements of a disjoint union and
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case(d, λa.f, λb.g) to perform a case split on an element of the disjoint union
type and apply λa.f or λb.g accordingly.

Given this function, we can apply the induction hypothesis from the proof
of test and produce something of type Result(Av=n ). That is, we have either an
assignment A′ extending Av=n such that P (A′), or it is a conflict set for Av=n,
as described above. If we have a solution, we are done. If not, then we have a
conflict set (call it CS1) for Av=n.

Now, given CS1, either from check or as a result of the induction hypothesis
(or, computationally, from having backjumped to this point), we remove n from
Vals and apply the second inductive hypothesis with the set Vals− {n}. If the
result is an A′ : Full-Assign(Varset,Valset ) such that A ⊆ A′ and P (A′), then
we are done. Otherwise, we have a second conflict set CS2 ⊆ Varset−Varsleft
satisfying

∀A′ : Full-Assign(Varset,Valset ). (Val of (v,A′) ∈ Vals− {n}) →
P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

Now let CS = (CS1− {v}) ∪ CS2. Then CS ⊆ Varset− Varsleft, and it is
easy to check that CS satisfies

∀A′ : Full-Assign(Varset,Valset ). (Val of (v,A′) ∈ Vals) →
P (A′) → ∃v0 ∈ CS.Val of (v0, A

′) 6= Val of (v0, A)

Thus we have finished the inductive case of the lemma, and hence we have
finished the proof.

6 Formal proof and program extraction

The constructive proof we have just presented proves a classically trivial the-
orem: every property P of variable lists either does or does not admit a sat-
isfying assignment. The reason for presenting such a detailed proof lies in the
‘proofs-as-programs’ equivalence and our plan to use this equivalence to extract
a correct-by-construction program for CBJ from a formal proof. Unfortunately
there has been a considerable gap between the theory of proofs-as-programs and
the practice of extracting usable programs from proofs. Three particular prob-
lems face us in applying our proof as a program. The first is that extracts from
proofs done naively in many existing automated proof assistants are not usable
in practice because they contain huge amounts of non-computational material.
This problem is endemic to constructive proof systems. Next, in any case, the
computational facilities of these systems do not support reasoning or computing
with the classical control operator call/cc. Finally, while a proof in a formal
system ensures correctness of the extracted program (i.e. the extension of the
program is correct) , it is not clear with current methods how to guarantee that
the extracted program implements the intended algorithm. This is the problem
of intensional analysis and the methods for its solutions are less clear.

One approach to solving these problems is to base application code on an
informal proof such as the one presented above in Section 5. This is the approach
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taken by Gent and Underwood in [21]. However, the process of translation leaves
considerable room for errors. Nevertheless, profiling execution of concrete code
provides a means to determine whether the algorithm behaves as expected.

In this paper we tighten the link between the proof and the code by formal-
izing the proof in the Nuprl system [14]. We take advantage of recent advances
in the extraction of programs from Nuprl proofs [8, 9] to extract a program
that is virtually indistinguishable from a functional program written in an ordi-
nary programming language such as Scheme or Lisp. To take advantage of the
efficiencies offered by modern compiler technology, we translate the extracted
program into Scheme in a natural way. The Appendix includes a discussion of
the translation and the texts of both programs.

Nuprl is an implementation of an extended Martin-Löf type theory [32]. The
Nuprl type system is extremely rich. For the purposes of this paper we use it
with little explanation but hope interested readers will seek further information
elsewhere. The Nuprl book [14] offers a detailed description of the type theory.
Also see [28]. As in other constructive type theories, in Nuprl we can extract
a program (i.e. something which is meant to be interpreted computationally)
from proofs in the logic. Three aspects of Nuprl are of particular interest for
the purposes of this paper.

First, Nuprl includes a set type, that is, types of the form {y:T | P[y]}
where T is a type and P[y] is a proposition. The members of the type are
elements a of type T such that P[a] holds. It should be remarked that although
the notation suggests ordinary set comprehension, in Nuprl it denotes a type,
not a set. Set types are closely related to the constructive existential type (or
sigma type) but they are distinguished from them by the form of their inhabi-
tants. Inhabitants of ∃y:T.P[y] are pairs 〈a,t〉 where a is an element of type
T such that P[a] holds, and t is a term witnessing the proof of P[a]. Often,
the second component of an existential witness has no computational interest.
Indeed, these terms are often extremely large, obfuscating the structure of the
extracted program. Furthermore, they often add significantly to the computa-
tional complexity of the extracted program. However, it should be noted that
set types do not come for free; computationally, given an element x of {y:T |
P[y]}, we may use x freely but not the proof of P[x]. This constraint leads
to technical complications on the proof side which are addressed by methods
described in [8, 9, 10].

The second aspect of Nuprl that is of interest to our efforts is that its com-
putation system is untyped. The typing rules describe when a term inhabits
a type, and are expressive enough to permit typing judgements about terms
without always having to assign types to every subterm. In particular, gen-
eral recursive functions can be defined using Curry’s Y combinator [27]. This
method is useful for generating readable and efficient extracts. Additionally,
theorems stating induction principles can be proved so that the computational
content of their proofs are efficient recursion schemes. The typing ensures that
the recursion is well-founded. In [8] a letrec form is introduced in terms of
the Y combinator, so that extracts need not display the recursion mechanism
explicitly.
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The third aspect of Nuprl that makes it amenable to our purposes is our
ability to extend the system to allow for reasoning about call/cc. This was
accomplished by making a classical extension to the system. We added a rule
corresponding to double negation elimination and specified the extract of invo-
cations of the rule to be the term call/cc. The extension is semantically justified
by [33, 34]. As an example application of the rule we show the a form of Peirce’s
law and its extract.

* THM Peirces law
∀T:U. ((T ⇒ False) ⇒ T) ⇒ T
Extraction:

λT,%.call/cc(λk.% k)

We did not extend the Nuprl evaluator to include evaluation rules for call/cc,
this is future work.

These properties of Nuprl make it possible to extract terms from proofs that
are very nearly ordinary functional programs.

The Nuprl formalization differs from the informal proof presented above in
three ways. In order to exploit existing Nuprl libraries, we specify the problem
using lists as our concrete representation of finite sets. We also restrict ourselves
to two-valued assignments eliminating the second induction corresponding to
(Lemma enumerate-domain) and choose-val; instead, we enumerate the values
explicitly in the Nuprl proof. Finally, we have not included the check on partial
assignments.

This final restriction may seem to be a significant drawback because partial
assignments will often fail checks when many variables are unassigned. However,
when using backjumping, the absence of check need not increase the amount of
search. In the implementation of a solution to the directed Hamiltonian Circuit
problem described below, check-full is implemented to check assignments in
the order they were constructed. Thus, the conflict set reported on a branch
of the search tree is always the one that would have been reported by the first
failed check. Backjumping immediately jumps from the bottom of the branch
to this point and resets the value. Therefore, the number of branches searched
is the same as it would be with check in place. An inefficiency that does result
from this restricted version is that check-full duplicates computations across
branches, for example the empty partial assignment is checked on every branch
of the search tree.

In any case, the proof formalized in Nuprl includes as an instance the imple-
mentation of a solution to the Directed Hamiltonian Circuit problem described
below and encompasses a large class of search problems.

The Nuprl formalization ensures that we have precise logical characteriza-
tions of the problem specific functions corresponding to the lemmas choose-var
and check-full. An instance of the extracted program is guaranteed to be a
correct search procedure as long as these functions meet their specifications.

The computational content of choose-var (as applied in the Theorem 8) is
formalized here as a function which decomposes nonempty lists (our concrete
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representation of sets.) We defined its type as follows.

CHOOSE(T) == {f:T List+ →(T List × T × T List)|is decomp(T;f)}

where

is decomp(T;f) == ∀L:T List+. let M,u,N = (f L) in L = M @ (u::N)

Thus, CHOOSE(T) is the type of functions from non-empty T lists L to triples
〈M,u,N〉 such that L = append(M ,cons(u,N)). The Nuprl theorems are stated
so that a function of this type is a parameter to the extracted program.

We also develop the following induction machinery. The induction used in
the proof is on the list of variables which have not yet been assigned values. The
following theorem is a general induction principle on T lists that is parameterized
by a function of CHOOSE(T). This allows for list decomposition based on a user
defined selection criteria which may depend on properties of the entire list.

* THM sublist ind
∀T:U.
∀choose: CHOOSE(T) .
∀P:T List → P.
P[[]] ⇒
(∀L:T List+. let M,u,N = (choose(L)) in P[M @ N] ⇒ P[L]) ⇒

(∀L:T List. P[L])

The proof of the theorem yields the following extract term which is a recursion
scheme corresponding to list induction.

λT,choose,P,b,g.
(letrec f(L) =
if null(L) then b
else let M,u,N = choose(L) in g(L)(f(M @ N))
fi)

To read the extract notice that b corresponds to the base case, (i.e. the computa-
tional content of the assumption P[[]]) and g corresponds to the computational
content of the induction hypothesis. Together with this new induction principle
we have defined a tactic which automates the use of this theorem in proofs.

In the Nuprl proof, Assignments are defined to be functions from the type
of variables Var to a three element type N3 = {03,13,23}. These three values
are interpreted as “false”, “undefined”, and “true” respectively.

Recall from the discussion of predicates and conflict sets in Section 3.1
that the predicate P is assumed to be decidable on full assignments, i.e. on
Full-Assign(Varset,Valset ). Since we will represent the set of variables Varset
as a list we define full assignments as follows.

Full[L] == {a:assignment| ∀x∈L. defined(a x)}

Using this type we characterize predicates as functions of the following type,
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(Varset:Var List → Full[Varset] → B)

The fact that functions of this type are Boolean valued means they are decidable
and the restriction to assignments of type Full[Varset] guarantees that they
are defined on full assignments, but not on partial assignments.

We now define a type which corresponds to the lemma check-full as used
above.

CHECKFULL Type ==
P:(Varset:Var List → Full[Varset] → B) →
Varset:Var List → a:Full[Varset] → Result(P;Varset;a)

Thus CHECKFULL Type is the type of functions accepting a decidable predicate
P, a list of variables Varset, a full assignment a and returns something of type
Result(P;Varset;a). Result corresponds to the abbreviation Result(a ) de-
fined in the course of the proof of Theorem 5.

Its formalization in Nuprl appears as follows.

Result(P;L;a) == ASet(P;L;a) ∨ CSet(P;L;a)

where

ASet(P;L;a) == {a’:Full[L]| a⊆a’ ∧ P[L;a’]},
CSet(P;L;a) == {cs:MSet[L;a]|

∀a’:Full[L]. P[L;a’] ⇒ ∃v∈cs.(¬(a v = a’ v))},
and

MSet[L;a] == {M:Var List| M(⊆=v)L c∧ ∀x∈M. defined(a x)}

Note the use of set types in place of existentials, this eliminates logical content
from the extract. Thus, elements of Result(P;L;a) is either a term of the form
inl(a’) or inr(cs) where a’ is a full assignment inhabiting ASet(P;L;a) and
cs is a conflict set inhabiting CSet(P;L;a).

Given these definitions we have enough to state the Nuprl theorem roughly
corresponding to Theorem 8.

* THM find
∀choose: CHOOSE(Var).
∀checkfull: CHECKFULL Type.
∀P:L:Var List → Full[L] → B.
∀L:Var List.
∀a:assignment.
(∀a0:{a0:assignment| a0⊆a} . Result(P;L;a0) ⇒ False) ⇒
Result(P;L;a)

The formal proof of this theorem follows closely the proof of Theorem 8
presented above. We do not present it here, but instead turn the reader’s
attention to the Appendix which contains the program extracted from the proof.

Although an extract from a complete proof is guaranteed to be a correct
search algorithm, it is more difficult to determine if it is in fact the desired
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search algorithm. This is particularly true if the desired algorithm is described
informally or in a different setting. To check the theoretical development, we
used the extract as a basis for a concrete implementation. This work is described
in the next section.

7 Implementation Example:
Hamiltonian Circuit

We have constructed a proof that corresponds to conflict-directed backjumping,
and formalized this proof in Nuprl to yield an almost entirely computational
extract. To show the usefulness of this extract, we used it to implement a
novel algorithm, namely conflict-directed backjumping (CBJ) for the Hamilto-
nian Circuit problem. We do not know of any previous use of CBJ or any other
intelligent backtracking technique having been reported in this domain.

We chose to use the language Scheme [12]. We include the code correspond-
ing to the proof extract in an appendix, and brief notes on the correspondence
between the code and the Nuprl extract. There were two reasons for not using
the execution facilities in Nuprl. First, Nuprl does not have any computational
equivalent of the control operator call/cc, whereas it is available in Scheme.
Second, while we do not see fundamental difficulties in doing so, we have not
attempted to discharge the proof obligations imposed by our proof on the various
functions we have written for the Hamiltonian circuit problem. Instead, we view
this implementation example as a demonstration of using our general-purpose
Scheme code to develop a rapid prototype of CBJ in new problem classes. The
central idea of conflict-directed backjumping is sufficiently subtle that it is not
easy to see how to apply it to new domains. We have eliminated this difficulty.

We consider the directed Hamiltonian circuit problem, to find a permutation
of nodes in a directed graph such that there is an edge between each consecutive
pair of nodes in the permutation, and between the last and first nodes in the
permutation. A natural formulation is for Boolean variables to correspond to
edges in the graph. A true variable corresponds to an edge chosen to be in the
circuit, while a false variable corresponds to an edge not in the circuit. We did
not implement any intelligent variable selection heuristic, but merely pick edges
in lexicographic order – we numbered nodes arbitrarily and pick an edge from
the lowest remaining node in this order. As a value ordering heuristic we always
choose to set each variable false before true.

It remains to implement the functions that check assignments and to return
appropriate conflict sets. Fortunately, the Hamiltonian circuit problem can be
captured by three simple rules:

• Each node must have at least one edge coming into it. If this condition is
violated then all variables representing edges coming into the node must
have been set to false. The value of at least one such variable must be
reset to true, so this set of variables is a valid conflict set. A similar rule
applies to edges leaving a node.
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• Each node must have no more than one edge coming into it. If an assign-
ment breaks this condition, some pair of variables representing edges into
a given node must both be set true. The value of at least one of these two
variables must be reset to false, so the pair of variables is a valid conflict
set. The equivalent rule applies to edges leaving the node.

• The previous two conditions ensure that the edges chosen in a full assign-
ment must form a number of circuits comprising all edges. However it does
not ensure that there is only one global circuit: there may be a number
of sub-circuits. So the final rule is that no set of variables representing
a circuit of nodes may all be true, unless the circuit involves all nodes in
the graph. If this condition is violated we must reset one of the values to
false, so the set of variables in the sub-circuit is a valid conflict set.

Given these rules, it was straightforward to implement Scheme functions
that checked them given a particular graph and partial assignment, and either
indicated that the check was passed, or indicated failure and returned a conflict
set.

We tested our implementation on small Hamiltonian circuit problems on
directed graphs with 10 nodes and 36 edges. We generated 100 such graphs
randomly. This was done simply by picking an edge at random from the 90
possible directed edges, then a second edge at random from the 89 remaining,
and so on. Of our graphs, 78 had circuits while 22 did not. Such data sets from
a ‘phase transition region’, with a mixture of soluble and insoluble problems,
are often used for benchmarking algorithms [11].

It is interesting to compare the number of branches searched with and with-
out backjumping. Assuming Kondrak and van Beek’s results for binary con-
straint satisfaction problems [29] extend to the general case of CBJ, the use of
backjumping while using the same heuristics and checking mechanism should
never increase the number of branches searched, while possibly decreasing it,
compared to simple backtracking. To test this, we implemented the same heuris-
tic and checking functions for a backtracking algorithm. The mean number of
branches searched by backtracking was 123.81, with a worst case of 824 branches.
In contrast, the mean number of branches searched by CBJ was 38.18, with a
worst case of 197 branches. As expected, in no case did CBJ search more
branches than backtracking. Although there were a number of cases where no
reduction in search was achieved, these were all on problems solved quickly
by both algorithms: in every case where backtracking needed more than 20
branches, CBJ was able to search fewer branches. In some cases the reduc-
tion was particularly dramatic: for example one insoluble problem required 614
branches with backtracking but only 10 with conflict-directed backjumping. Our
results suggest that conflict-directed backjumping is a worthwhile technique for
the Hamiltonian circuit problem.

We tested the same graphs with an implementation of Martello’s algorithm
[31]: on each of the 100 problems this reported the same status as our imple-
mentation, suggesting correctness of our implementation of the functions for
Hamiltonian circuit. Martello’s algorithm includes two features not present in
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our implementation of CBJ: an effective dynamic variable ordering heuristic,
and propagation techniques. The heuristic is to pick constrained edges first, for
example edges going to nodes with small in-degree: this is normally more effec-
tive than an an arbitrary lexicographic order. The propagation techniques can,
for example, force an edge to be in the circuit if it the only edge coming out of a
certain node. The result is that on our problems Martello’s algorithm requires a
mean of only 2.82 branches with a worst case of only 7 branches. Incorporating
CBJ into algorithms such as Martello’s should bring additional reductions in
the amount of search. While we have not yet developed code formally to test
this conjecture, experiments on hand-written code strongly suggest it is true.

7.1 Implementation Efficiency

There is no reason why code developed formally need be slower than any other
code. Indeed, call/cc in Scheme is so suitable for implementing backtracking
algorithms that code based on it is likely to be faster than Scheme code imple-
mented differently. In a previous study, code developed formally was marginally
faster than the original implementation of CBJ in Scheme for constraint satis-
faction problems [21]. In the case of Hamiltonian Circuit, no such comparison
is possible since CBJ has not previously been implemented for it.

To give some idea of relative efficiency, we compared run times of our code
with a Common Lisp implementation of Martello’s algorithm. To give the clos-
est comparison we translated our Scheme code into Common Lisp. As dialects
of Lisp, the translation between these languages is mostly straightforward, ex-
cept that call/cc is not available in Common Lisp. Fortunately, Norvig has
described a simple implementation of call/cc in Common Lisp when (as here)
the created continuation only has dynamic extent [35]. Our translated code
produced identical results to that of our Scheme code.

On our 100 graphs Martello’s algorithm required a mean of 0.0850 cpu sec-
onds per instance on a DEC Alpha 3000-300LX 125MHz running Gnu Common
Lisp. Our implementation of CBJ took a mean of 3.24 seconds on the same
machine. Thus our code took just under 40 times as long. This factor should be
balanced by the fact that CBJ had to search about 13 times as many branches
than Martello’s algorithm. It would be naive to suggest that our code is about
3 times slower per branch, but the comparison does show that our code is not
ridiculously slow on the small problems we tested.

A fairly small run time overhead is reassuring, but we believe that with
further work we could eliminate it completely. As well as a general lack of at-
tention to implementation efficiency in the supporting functions for Hamiltonian
circuit, there are two specific areas in which our code could be improved. First,
as described earlier, the absence of check in the formal Nuprl proof meant that
nodes high in the search tree can be re-checked many times. This would be al-
leviated by extending the Nuprl formalization to incorporate this optimization.
Second, our implemented code for the Hamiltonian circuit does not cache work
done to check one partial assignment, in order to check later assignments faster.
However, in many domains subtle use of data structures is what allows fast code
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to be implemented for search algorithms. Again, there is nothing intrinsic in
our methodology which forces this inefficiency. In particular, we have been very
free in our definition of the assignment type in section 3.1. The only properties
we have assumed about assignments are that we can order them (by prefix or
subset) so we can say A′ ⊆ A, and that we can look up the value of a variable v
in an assignment A using Val of (v,A). The actual type of an assignment may
be much more complicated – it may, for instance, contain caches of information
about expensive past computations in order to save recomputing them. Such
information could be computed by the check and check-full functions, and
returned to the main function by returning a (possibly modified) assignment
structure to the one passed to it. All that is necessary is that the two structures
satisfy the observational equality that all values of Val of (v,A) are identical.
Beyond that the implementation of the checking functions would be free to
change the structure of the assignment. This idea can be extended to allow a
method used in many of the most efficient implementations of search algorithms.
This is to change internal data structures when moving in both directions in the
search tree, for example changing values in an array when a variable is set, then
later undoing this change on backtracking. In our framework this could equally
be done by a slight change to the continuation created when backjumping is
necessary, and an additional obligation on the implementer to create a function
to undo variable assignments: each time this takes one step further back the
search tree, the undo function would be called.

To summarize, we have shown that our general methodology has allowed
the implementation of conflict-directed backjumping for the Hamiltonian circuit
problem, even though we believe that CBJ has never previously been described
in this domain. Our implementation achieved significant reductions in search
compared to a backtracking algorithm. While our code did run slower than a
previously described algorithm, there is nothing essential to our methodology
which makes this necessary.

8 Related and future work

Following Prosser’s introduction of conflict-directed backjumping (CBJ) [40],
Ginsberg [22] and Kondrak and van Beek [29] have given proofs of the correct-
ness of CBJ and also related the numbers of nodes searched by different algo-
rithms. The significant advance of our work is in its underlying basis in formal
semantics and in its generality. Ginsberg gave proofs of pseudo-code written in
English, and Kondrak and van Beek of Prosser’s Pascal-like pseudo-code: thus
neither proof applies to code for which formal semantics exists. Our results are
very general because they apply to a wide variety of search algorithms, and a
wide variety of problem classes, all obtainable from the Scheme code we have
presented by implementing suitable service functions.

Related work on formal development of search algorithms by Smith et. al.
[7, 37, 44] has concentrated on techniques for transforming search problem speci-
fications into executable search procedures. These techniques make use of a deep

29



analysis of the structure of the problem specification to produce very efficient
code tuned to the particular constraints involved. In contrast, our method is
independent of the details of the problem class as long as a solution can be deter-
mined by a predicate on assignments. Thus our approaches are complementary;
it is possible that the problem analysis techniques could generate very efficient
functions for testing possible solutions (check, check-full) or variable- and
value- ordering heuristics (choose-var, choose-val).

One of the interesting questions our work raises is how to distinguish between
correct algorithms for the same problem. Our work has focussed on the algo-
rithm CBJ, but our proof only formally shows that we have a correct algorithm
for solving search problems. Other proofs would correspond to other algorithms,
for example simple enumeration or naive backtracking. Of course any two cor-
rect algorithms must by definition have identical input/output behaviors, but
one may need much more search to solve the same problems. Choosing an appro-
priate search algorithm is often the key step in solving combinatorial problems.
Kondrak and van Beek have classified a variety of constraint satisfaction algo-
rithms and related the numbers of nodes searched by different algorithms [29].
It would be interesting to generalize this work within our framework, relating
algorithms formally proven correct and very generally applicable. This would
go some way to the problem of distinguishing between algorithms.

However, the very generality of our approach means that what might be seen
as very different algorithms can be implemented by the provision of different
checking functions to the single extract we have proved in this paper. The proof
obligations we have specified in Lemmas 2, 3, 4 and 7 are sufficient, if fulfilled,
to guarantee correctness of search for a satisfying assignment. The proof we
have given and the resulting extracted λ-terms naturally implement CBJ. How-
ever, our proof obligations are designed to ensure correctness of the resulting
algorithm, rather than guaranteeing that a particular intended algorithm has
in fact been implemented. Depending on how the obligations are fulfilled, our
code, while still correct, may search in the manner of algorithms different from
CBJ. This is not a serious concern, as the most natural implementation satis-
fying the proof obligations together with the extract given in this paper, will
typically result in CBJ, as intended. However we now discuss some of the issues
our observations raise, and how these can be addressed in future work.

The principal freedom that we give in fulfilling the proof obligations arise
in check. These obligations can be filled either arbitrarily weakly or arbitrarily
strongly.

An implementation of check which always returns the unit token indicating
continued search completely satisfies the proof obligations. Given a correct
implementation of check-full, sound and complete search is carried out, but
by enumerating all full assignments. Even given a less naive implementation,
if the proof obligations are fulfilled by returning one conflict set, any superset
of that conflict set and subset of Vars trivially meets the proof obligations. In
particular, if a partial assignment A : Assign(Vars,Valset ) cannot be extended
to a satisfying assignment, the set Vars itself is always a valid conflict set.
But returning all variables in Vars as a conflict set disables all backjumping
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beyond trivial backtracking. The result is again a correct search algorithm, but
backtracking rather than conflict-directed backjumping.

As well as implementations which satisfy proof obligations weakly, proof
obligations can be satisfied very strongly. For example, any decision procedure
may be implemented for the problem at hand. This can be applied at the root
of search, i.e. with the empty partial assignment. If the decision procedure
shows that the problem has no solution, it may correctly return an empty con-
flict set. Otherwise ‘search’ continues. Naturally this use of an oracle is not
the intended application of our work, but is entirely legal. Less trivially, at
any point some degree of work can be carried out to determine if the current
partial assignment can extend to a solution. Doing this, search may terminate
earlier than in a more straightforward implementation. Indeed, some other so-
phisticated search algorithms do exactly this: examples are Forward Checking
(FC) [25] and Maintaining Arc Consistency (MAC) [42] both of which can be
merged with CBJ [40, 23]. These techniques could be implemented directly in
our framework. In particular, just as assignments can be generalized to cache
computations (as described in section 7), so information about impossible values
and conflict sets for future variables could be stored in generalized assignments.
Indeed, in an earlier paper the second and third authors reported on the imple-
mentation of the equivalent of FC+CBJ for propositional satisfiability [21] in a
framework similar to that of this paper. However, our framework is not the best
for implementation of lookahead techniques in general. It would be better to
capture the general nature of lookahead search, just as we have done for back-
jumping search in this paper. Applying the methodology used in this paper to
the proof of algorithms which naturally combines lookahead and backjumping
search remains interesting future work.

Another area yet to be explored fully is the application of these ideas to
backtracking proof search procedures like tableaux. When tableau search is
constructed as a search in parallel for a proof and a counter-model [46], it has
the same logical structure as the search described in section 2. It may be possible
to use conflict-directed backjumping in conjunction with information obtained
from one branch of the tableau to eliminate search in other branches of the
tableau and to reduce the size of the proof constructed as a result of the search.

Finally, the Nuprl proof could be generalized to more abstract types for
sets and assignments. In earlier work [21], two of the authors formalized the
core of this work in Lego [30, 38], an implementation of type theory based on
an extension of the calculus of constructions [15]. Lego does not have Nuprl’s
sophisticated program extraction mechanisms, so the result was not so closely
connected to Scheme code. However, the approach taken included a very ab-
stract approach to the underlying data types, which essentially entailed a spec-
ification of abstract data types for sets and assignments. This work should be
easily transferable to the setting of Nuprl.
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9 Conclusion

In this paper, we have presented a very general view of search applicable in many
contexts, including proof search in decidable theories. The search is based on
extending a partial structure finitely often until either it satisfies a specified
predicate or there is evidence that it fails to satisfy the predicate. We have
shown how the evidence of failure can be used to reduce the need to search
other extensions of the partial structure.

We have demonstrated this in detail in the case of search for assignments
of values to variables satisfying some predicate: all NP complete problems are
instances of this and thus such search problems are of enormous practical import.
Using the proofs-as-programs paradigm, we have shown that careful reasoning
about ‘conflict sets’ can be used to derive a proof corresponding to the search
algorithm ‘conflict-directed backjumping’ (CBJ). Our proof uses the classical
typing of the nonlocal control operator call/cc, demonstrating the practicality of
classical typing for describing typical uses of nonlocal control. The formalization
of this proof in Nuprl further advances the technology for creating recognizable
programs from proofs with computational content.

We have developed Scheme code based on our proof, and used it to show
the value of CBJ for the Hamiltonian circuit problem. Our work shows that
sophisticated search techniques can be proved correct very rigorously and at
a high level of abstraction, yet sufficiently concretely to allow their immediate
application to domains in which they have not previously been used.
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Appendix: Nuprl extract and Scheme code

In this appendix we present the Nuprl extract described in section 6 and the
Scheme code used in the implementation reported in section 7.

Nuprl’s evaluation semantics is lazy while Scheme’s evaluator is eager. Thus,
the naive translation of Nuprl extracts into Scheme programs used here may not,
in general, result in a correct Scheme program. It is possible for a term (say
p) extracted from a Nuprl proof to contain non-terminating sub-terms. Even
if lazy evaluation of p always leads to termination, the naive translation of p
may not. It is also possible for p to contain redices which are not type safe, but
which will never be reduced under the lazy semantics. The naive translation of
such a program into Scheme may result in Scheme crashing.

Examination of the Nuprl extract presented below reveals that it does not
have either of these bad properties. Thus, the naive translation, essentially an
operator for operator translation of the Nuprl code into Scheme is faithful to the
Nuprl original. In the main, the only differences are syntactic, but a few others
may be less obvious. There is no equivalent in Scheme of disjoint union types;
to work round this we give our own definitions of inl, inr and case. Similarly
multiple values cannot be returned directly in Scheme, hence we wrote choose
so that it returned a three element dotted list of all elements up to the chosen
one, the chosen element itself, and all elements after it. These elements can then
be accessed by car, cadr or cddr. In the Nuprl extract, N3 is a type containing
three elements, the element 03 is translated to false, 23 is translated to true,
and 13, used for the unassigned value, is represented in Scheme by the atom
’unassigned. The use of letrec is different in the two formalisms, leading to
an extra explicit call to test in the Scheme code: this happens implicitly in the
Nuprl.

The Nuprl code displayed here has been automatically cleaned up by one
application of the rewrite conversion Reduce and after folding one operator
defintion (spread3).

The Nuprl code includes two artifacts explained by the fact that it is ex-
tracted from a proof. The first is that the function bodies under the top level
then and else clauses accept three arguments. The first two are the assignment
and the continuation respectively, but the third (named % and %1 by the system)
correspond to a logical part of the proof. Fortunately, their arguments in this
extract turn out to be the trivial term Ax. These extra parameters and their
arguments were not preserved in the Scheme translation. The second artifact of
the extraction is that the first argument in the recursive calls to test is the term
(choose(L0).1 @ choose(L0).3) (the append of the first and third elements
of choose(L0)) instead of the equivalent, and more natural (y1 @ y4). This
foible of extraction is preserved in the Scheme translation only to aid in the
comparison.

As an artifact of using lists to represent sets, we must ensure that the list
of unassigned variables has no repeated elements, this arises in the extract as
an application of the list function unique, which deletes duplicate elements of
a list. The Scheme translation correctly preserves this.
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λchoose,checkfull,P,L,a,kk.
(letrec test(L0) =
if null(L0)
then λa,kk,%. kk(a)(checkfull(P)(L)(a))
else λa,kk,%1.

let y1,y3,y4 = choose(L0) in
case call/cc (λ%7.

test((choose(L0)).1 @ (choose(L0)).3)
(λx.if =v(x)(y3) then 03 else a(x) fi )
(λa0,r a0.

case r a0
of inl(aa) => %7(inl(aa))
| inr(cs) => if y3∈cs

then %7(inr(remove(=v;y3;cs)))
else kk(a)(r a0)
fi )

(Ax))
of inl(%8) => inl %8
| inr(%9) => case call/cc(λ%11.

test((choose(L0)).1 @ ((choose(L0))).3)
(λx.if =v(x)(y3) then 23 else a x fi )
(λa0,r a0.

case r a0
of inl(aa) => %11(in(aa))
| inr(cs) =>

if y3∈cs
then %11(inr(remove(=v ;y3;cs)))
else kk(a)(r a0)
fi)

(Ax))
of inl(%12) => inl(%12)
| inr(%13) => inr(kk(a)(inr(remove(=v ;y3;(%9 @ %13)))))

fi
)(unique(filter(λx.undefined(a x);L)))(a)(kk)(Ax)
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(define case (lambda (elt case1 case2)

(if (car elt) (case1 (cdr elt)) (case2 (cdr elt)))))

(define inl (lambda (arg) (cons #t arg)))

(define inr (lambda (arg) (cons #f arg)))

(define find_ext

(lambda (choose checkfull P L a kk)

(letrec ((test (lambda (L0) (if (null? L0)

(lambda (a kk) (kk a (checkfull P L a)))

(lambda (a kk)

(let* ((y1y3y4 (choose L0)) (y3 (cadr y1y3y4)))

(case (call/cc

(lambda (%7) ((test (append (car (choose L0)) (cddr (choose L0))))

(lambda (x) (if (equal? x y3) #f (a x)))

(lambda (a0 r_a0)

(case r_a0

(lambda (aa) (%7 (inl aa)))

(lambda (cs) (if (member y3 cs)

(%7 (inr (remove y3 cs)))

(kk a r_a0)

))))

)))

(lambda (%8) (inl %8))

(lambda (%9) (case (call/cc

(lambda (%11) ((test (append (car (choose L0)) (cddr (choose L0))))

(lambda (x) (if (equal? x y3) #t (a x)))

(lambda (a0 r_a0)

(case r_a0

(lambda (aa) (%11 (inl aa)))

(lambda (cs) (if (member y3 cs)

(%11 (inr (remove y3 cs)))

(kk a r_a0)

))))

)))

(lambda (%12) (inl %12))

(lambda (%13) (inr (kk a (inr (remove y3 (append %9 %13))))))

)))))))))

((test (unique (filter (lambda (x) (equal? (a x) ’unassigned)) L)))

a

kk

))))
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