
Type Checking SQL for Secure Database Access

James Caldwell1 and Ryan Roan2

1 Department of Computer Science, University of Wyoming, Laramie, WY 82071
2 Handel Information Technologies, 200 South 3rd Street Laramie, WY 82070

Abstract. In client/server software systems clients often interface with
database servers by dynamically generating strings which are to be inter-
preted as an SQL query. The practice of passing raw string data that may
or may not be syntactically correct or well-typed admits the possibility
of run-time errors and compromises the security of the database by open-
ing them to injection attacks. It is possible to avoid a large class of these
attacks by comparing the syntactic structure of a generated query to the
structure of the query the programmer intended. In this paper we present
a type system for a subset of SQL that provides stronger guarantees than
syntax based approaches. A SQL query is well-typed with respect to a
database instance if it only refers to table names and field names that
exist in the target database and if those references are all well typed. Er-
ror messages from queries that are syntactically well-formed but which
refer to nonexistent tables or field names or are otherwise intentionally
non well-typed can be used to discoverer the structure of the database
providing significant aid to intruders. The type system described here
has been implemented using F# interfacing to a MySQL backend. This
paper briefly introduces the ideas behind SQL injection attacks, presents
both an abstract syntax for SQL and the typing rules, and provides some
details of the implementation.

1 Introduction

In this paper we describe a type system for a subset of the SQL query
language. A type checker based on this system has been implemented in
F# and it serves as a firewall to an SQL database server. Dynamically
generated queries are parsed and statically type checked against the state
of the data-base server. Thus, queries accessing tables and columns in
those tables are well-typed only if the names match valid tables and col-
umn names in the database and if the types of the data stored there are
consistent with the usage of those fields in the query. The firewall rejects
syntactically ill-formed queries, those that are not well-typed and can be
used to detect SQL injection attacks.

Web applications are often written in some combination of Java,
JavaScript, Perl, Python and PHP and they typically pass on SQL queries
to the server as strings. Passing untyped strings leads to the possibility

of run-time errors [9] and compromises the security of the database by
opening them to injection attacks [3]. An approach based on parsing dy-
namically generated SQL queries and comparing resulting shape of the
parse tree to the expected shape protects against a large class of injection
attacks [1]. By type-checking we provide even stronger guarantees.

We should mention that a number of efforts are underway to integrate
syntax and type-checking into scripting languages and libraries allowing
access to databases [2, 8, 4, 10, 5]. Our approach is different in that it pro-
vides type-checking support as a trusted layer front of the database back-
end. Syntactically ill-formed or non well-typed queries are rejected and
never reach the server. The inputs to the type checker are query strings
generated by an existing web application. The input is parsed and then
type-checked before being passed to the backend database for processing.

In the rest of the paper we introduce the basics of SQL injection at-
tacks, we present the type system and describe the implementation in F#
which connects to the MySQL backend. The type system presented here
is built using techniques well-known in the the programming languages
community and are described in a number of text-books [7, 6].

2 SQL Injection Attacks

SQL injection attacks allow malicious users to make unauthorized access
to a database. Injection attacks are mounted by users who enter text
which, used to dynamically generate a query, is interpreted as a valid
SQL but whose resulting effect is different from the one intended by the
programmer. By altering the structure of the query, the user is able to
force their input into being treated as code. With partial control of the
code, a user is then able to perform tasks of their choosing.

A significant risk related to SQL-Injection is exposing the schemas
in use on the target database. An attacker with knowledge about the
database structure is far more likely to succeed in unauthorized access
than an attacker without such information. The type checker only allows
well-typed queries to be run against the database - this allows an appli-
cation to control the visibility of errors that would generally be returned
by the SQL engine. In an unprotected server environment, when a state-
ment is run requesting information from a table that does not exist, an
error will be generated by the SQL engine specifying the table does not
exist. The error provides information to the attacker that a table does
not exist in the database. This information would be valuable on its own,
but additional information in the error tends to include the SQL database

runtime information. This information identifies what type of database is
being used, and since each SQL engine provides built in functionality, an
attacker would now know exactly what built in schemes may exist. The
attacker will typically try other options until a table name is discovered.
A query referencing a non-existent table is not well-typed and non-well-
typed results in a null answer. A null answer provides some information
to the attacker, but not as much as an error message which explicitly
identifies a table by name.

Once a table has been identified, an injection can be created by deter-
mining the column names in a similar guess and check fashion. Similarly,
a query containing references to non-existent columns will not be well
typed, by checking if the statement is well-typed we control the infor-
mation returned from a query. This limits the information an attacker
can gain from error messages. With no information to go on, it is sig-
nificantly more difficult to formulate a successful attack. Note that in a
parser based approach, the shape of a dynamically generated query may
match the expected shape and yet still refer to nonexistent table names
and thereby inadvertently exposing information to an attacker via error
messages.

Another type of injection attack is based on purposely mismatching
column types in the hopes that a SQL error will yield schema information.
When a user is asked to enter an integer, a user might purposely input a
string value. This can cause the database engine to throw an error that
not only informs the attacker of the table being selected from, but also
the column name that had the incorrect value in it. By type checking all
statements before execution, we are able to identify that a value provided
is of the wrong type and can prevent these errors from being displayed as
well.

Most applications taking information from the user and passing it
through a business layer to perform a database query are susceptible to
SQL-Injection. The applications with the highest risk though, are web-
based applications and sites that are Internet facing. The nature of the
application requires it to be available to both the target users, as well
as potentially unintended users. As a visual way to describe various at-
tacks, we present a simple program that could commonly be used as an
authentication page for a website.

3 The SQL Type System

In this section we describe a static type system for dynamically gener-
ated SQL queries. The table schemas themselves serves as a basis for the
specification of the type of the database. The fact that the type checker
requires access to the table schemas means it is implemented as a trusted
servers IDE application.

3.1 Abstract Syntax for SQL

The abstract syntax is for a core subset of the SQL query language. SQL
is known for its Baroque syntax and we have only target a subset with
the abstract syntax. The subset of the language presented here includes
the constructs required to specify typed relational schemas, to populate
them with data, and to query them.
The syntactic classes are given as follows.

TName : table names FName : field names
E : expressions N : numerals
S : schemas T : tables
V : tuples of values Type : types

The abstract syntax of the language is presented in Figure 1. If A is a
syntax class, we use the notation [A]∗ to denote a list of elements of class
A and [A]+ to denote a non-empty list of elements of class A.

We assume the values of the primitive types (BOOL, INT , STRING, and
CHAR[k]) are understood. We use the notation 〈〉 to denote the empty
tuple and abuse notation by using the same constant to denote the single
element of the type UNIT. The type constructor NULL is intended to
indicate that that type is nullable. If θ is a type NULL θ = {〈〉} ∪ θ. Note
that representations of null vary in different SQL implementations.

If T is a type the values in NULL T are {〈〉} ∪ T .

The syntactic class I is a collection of simple identifiers. The class
TName includes simple identifiers as well as the special table name ?[FName]∗ .
This name is used as a placeholder for anonymous tables that may arise
from a query. The parameter [FName]∗ indicates the field names included
in the schema for ?. We use meta-variables {I?, I ′?, I1?, · · ·} to denote ta-
ble names which might be simple identifiers or anonymous names of the
form ?names. Field names are captured by the class FName and includes
simple identifiers as well as indexed field names of the form I1 ? .I2 where
I1? is a table name and I2 is a simple identifier naming the field.

I ::= identifier
TName ::= ?[FName]∗ | I
FName ::= I | TName . I
Type ::= UNIT | BOOL | INT | STRING | CHAR[k] | NULLType
S ::= 〈I1 : θ1, · · · , Ik : θk〉 where k ≥ 0 and θi ∈ Type
V ::= 〈v1, · · · , vk〉 where k ≥ 0 and vi are values.
E ::= N | FName | E1 OR E2 | E1 AND E2 | NOT E

| E1 = E2 | E1 < E2 | E1 + E2 | E1 ∗ E2

T ::= TName
| CREATE TABLE TName S
| INSERT INTO T V
| JOIN T1 T2 ON E
| SELECT [FName]+ FROM T
| SELECT [FName]+ FROM T WHERE E
| T1; T2

| T1 GO T2

Fig. 1. An Abstract Syntax for SQL

3.2 Supporting operations

In this section we define schemas and type assignments and the operations
on them. The syntactic class S of schemas plays a fundamental role in
type checking.

Definition 1 (Schema). A schema is a binding of names to types; they
are of the form 〈I1 : θ1, · · · , Ik : θk〉. We will use meta-variables {σ, σ′, σ1, · · ·}
to denote schemes. We insist that the binding be functional, if Ii = Ij

and Ii : θi and Ij : θj are field name-type pairs in σ then θi = θj.

We will write |σ| to denote the length of the tuple σ. We write dom(σ)
to be the domain of σ – the tuple of field names in the order in which
they appear in σ. We write Ty(σ) to be the type of tuples inhabiting a
table of type σ i.e. Ty 〈I1 : θ1, · · · , Ik : θk〉 = θ1 × · · · × θk.

For i ∈ {1..|σ|} we write σ[i] to denote the ith pair in the tuple σ.
We write fst and snd to denote the projection functions on pairs; thus
fst(σ[i]) is the field name of the ith pair in σ and snd(σ[i]) is the type
of the ith pair in σ. We write σ@σ′ to denote the concatenation of the
schemas σ and σ′. Not that this operation is not defined if the resulting
tuple does not satisfy the functionality condition on schemas. We write
σ′ ⊆ σ ext ρ to mean that that there is an injection ρ : {1..|σ′|} → {1..|σ|}
which which preserves field names and types. This function is evidence
for σ′ ⊆ σ. The condition on ρ that guarantees the injection is name and

type preserving is given as:

∀i :{1..|σ′|}. (σ′[i]) = (σ[ρ(i)])

Type assignments do not appear in the object language given by the
abstract syntax but are an important structure used in to specify the
typing rules.

Definition 2 (Type Assignment). A type assignment is a binding of
a table names to their schemes and is of the form 〈I1? : σ1, · · · , Ik? : σk〉.
We use meta-variables {π, π′, π1, · · ·} to denote type assignments. Type
assignments will be used to keep track of the tables and their schemes in
the database. We assume the binding is functional, thus if Ii? and Ij? are
equal table names in π and 〈Ii? : σi〉 ∈ π and 〈Ij? : σj〉 ∈ π, then σi = σj.

We will write |π| to denote the length of the type assignment π. We
write dom(π) to be the domain of π – the collection of table names in
π. For type assignments π and π′ we write π∪−π′ to denote the type
assignment in which the bindings in π′ take precedence over those in π.

Definition 3 (Unique fieldname membership I ∈1 π). We introduce
the predicate I ∈1 π to mean that the unqualified field name I occurs
exactly once in the type assignment π. That means it occurs in exactly
one schema in π. Here is a formal definition:

I ∈1 π
def= ∃!I1.∃σ.〈I1, σ〉 ∈ π ∧ I ∈ dom(σ)

The use of unique existence1 (∃!) in the definition of ∈1 means that un-
qualified field names can only occur in exactly one schema in π.

Definition 4 (Type Assignment Lookup). For an identifier I and a
type assignment π, if I ∈1 π then we write π(I) to denote the unique θ
such that the following condition holds:

π(I) = θ
def= ∃!I1.∃σ.〈I1, σ〉 ∈ π ∧ 〈I, θ〉 ∈ σ

If I 6∈1 π then π(I) is undefined.

1 Note that ∃! is notation indicating unique existence. It can be defined in terms of

ordinary existence as follows: ∃!x.φ[x]
def
= ∃x.φ[x] ∧ ∀y. φ[y] ⇒ y = x

Definition 5 (Schema arising from a restriction). We introduce an
operation for constructing a schema σ from a type assignment π and a
list of field names names. The idea is for each field name n ∈ names
to be paired with its type in π to create a new schema. Note that field
names can be simple identifiers or they might be qualified names of the
form (I1 ? .I2) where I1? is the table name and I2 is the field name in that
table. If the field name is simple, we insist that there is only one table in
the type assignment π with that field name.

The restriction (π↓names) is defined by recursion on the structure of
the list names 2.

π↓ [] = 〈〉
π↓((I1.I2) :: ns) = 〈I2 : θ〉 :: (π↓ns) where 〈I1 : σ〉 ∈ π ∧ 〈I2 : θ〉 ∈ σ
π↓(I :: ns) = 〈n : θ〉 :: (π↓ns) where ∃!I1.〈I1 : σ〉 ∈ π ∧ 〈I : θ〉 ∈ σ

Note that if there is a field name in names that does not occur in the
type assignment π then π↓names is not defined.

3.3 The Typing Rules

Typing Table names The type of a table name (elements of the syn-
tactic class TName) is the schema for the table bound to that name in
the type assignment π.

For table names that are simple identifiers, the name must appear in
the type assignment π bound to the schema σ.

π ` I : σ
if 〈I : σ〉 ∈ π

There is a special rule for the name ?names which arises from a query.
The table name ?names is used for tables that are constructed from queries
projecting out the fields listed in names and so, their field names and
associated types must already exist in some schema in the type assignment
π. The following is the typing rule for the table name ?names:

π ` ?names : σ
if σ = (π↓names)

The rule says that the field names names must appear in the domain of
σ in the same order and the restriction of π to the names in the schema
σ must be σ itself. This condition is only satisfied if the names in σ are
already names in π and the types associated with those names match the
types of those fields in π.
2 We use F#’s double colon notation for cons (::) and to build tuples.

Typing field names The types of field names are gathered from their
schemas in a type assignments π. If the name is qualified by the table
name, the typing is easy.

π ` I1.I2 : θ
if 〈I : σ〉 ∈ π ∧ 〈I2 : θ〉 ∈ σ

To avoid ambiguity, unqualified names must occur uniquely as field
names in π.

π ` I : θ
if I ∈1 π ∧ π(I) = θ

Note that if either I ∈1 π or π(I) = θ are undefined, the rule does not
hold.

Typing Types Syntactically well-formed elements of the class Type are
well-typed – there is nothing to check.This gives the following four rules.

UNIT : Type

BOOL : Type INT : Type

θ : Type

NULL θ : Type CHAR[k] : Type
if k ≥ 0

Obviously, if we extended the language of Type to include user defined
types, checking them may be more complex.

Typing Schemas A schema σ = 〈I1 : θ1, · · · , Ik : θk〉 is well typed if it
is functional in its names and all the types θi are well formed.

` θi : Type
` σ : Ty σ

if
σ = 〈I1 : θ1, · · · , Im : θm〉
∀j, k :{1..m}. (i 6= j ∧ Ii = Ij) ⇒ θi = θj

Typing Tuples The syntax class V of tuples of values is well-typed
with respect to a schema. Given a tuple V = 〈v1, · · · , vm〉 and a schema
σ = 〈I1 : θ1, · · · , Im : θm〉, then the rule appears as follows:

` vi : θi

σ ` V
if |V | = |σ| and i ∈ {1..|V |}

We assume that there are type rules for each primitive type, thus

` vi : θi

is understood. For example, determining whether a number is an integer
is understood. For the nullable types NULL θ the value must be the null
value 〈〉 or of type θ; thus, σ ` vi : NULL θ is well-typed if vi = 〈〉 or
vi : θ.

Note that if the schema and the tuple have different lengths, the rule
does not apply.

Typing Expressions The meaning of expressions will (almost always)
turn out to depend on the values in the positions of tuples in a particular
schema. The semantics determines the typing rule. This means the type of
the syntax class E of expressions is naturally modeled as a functions from
schemas to the result type of the expression. In the end, the expression
E of type σ → θ can be applied to any tuple of type σ′ where σ ⊆ σ′.

The domain schemas get built in the rule for typing a field name as
an expression. In that case, the type of field name is the expression is
determined by the type of that field in π. Thus if F ∈ FName (F could
be a simple identifier or a qualified name), we have the following typing
rule. This is the only rule that actually uses the type assignment π and
builds the domain for the expression.

π ` F : θ

π ` F : 〈F : θ〉 → θ

Recalling that (σ@σ′) denotes the functional concatenation of schemas,
the other cases are given as follows.

π ` N : 〈〉 → INT

π ` E1 : σ1 → BOOL π ` E2 : σ2 → BOOL
π ` E1 OR E2 : (σ1@σ2) → BOOL

π ` E1 : σ1 → BOOL π ` E2 : σ2 → BOOL
π ` E1 AND E2 : (σ1@σ2) → BOOL

π ` E : σ → BOOL
π ` NOT E : σ → BOOL

π ` E1 : σ1 → θ π ` E2 : σ2 → θ

π ` E1 = E2 : (σ1@σ2) → BOOL

π ` E1 : σ1 → θ π ` E2 : σ2 → θ

π ` E1 < E2 : (σ1@σ2) → BOOL

π ` E1 : σ1 → INT π ` E2 : σ2 → INT
π ` E1 + E2 : (σ1@σ2) → INT

π ` E1 : σ1 → INT π ` E2 : σ2 → INT
π ` E1 ∗ E2 : (σ1@σ2) → INT

Note that we assume the order operator < is defined for all types
θ ∈ Type but that addition and multiplication are only defined on type
INT .

Typing Tables The syntactic class T includes phrases that denote ta-
bles. A single table phrase is typed by a name paired with its schema.
The simplest case is when a table name is mentioned.

Typing a TName as a Table: The mention of a table name (say I?) is
well typed under type assignment π if I? names some well typed schema
in π.

π ` I? : σ

π ` I? : {I? : σ}

CREATE TABLE : The rule for creating a new table just says that the
schema must be well-typed. Note that the typing rule for CREATE forces
the name of a created table to be an identifier (and not ?).

` σ : Ty σ

π ` CREATE TABLE I σ : {I : σ}

INSERT INTO : The rule for inserting a tuple of values into a table T
checks that the type of the tuple matches the schema for the table being
inserted into.

` T : {I? : σ} σ ` V

π ` INSERT INTO T V : {I? : σ}

JOIN ON : Joins are used to consistently combine tables that possibly
share common field names. The ON condition is an expression that can
be used to specify how fields should be related.

π ` T1 : {I1? : σ1} π ` T2 : {I2? : σ2} π ` E : (σ1@σ2) → BOOL
π ` JOIN T1 T2 ON E : {?names : (σ1@σ2)}

where names = dom(σ1)@ dom(σ2).

SELECT : The SELECT statement is the core of the query language.

π ` T : {I? : σ} π ` E : σ′ → BOOL
π ` SELECT names FROM T WHERE E : {?names : π↓names}

σ′ ⊆ σ ext ρ′

names ⊆ dom(σ)

SEQUENCING The sequencing operator is denoted by a semi-colon and
allows a sequence of table operations where the latter operation has access
to the database resulting from the previous operation.

π ` T1 : {I1? : σ1} π∪−{I1? : σ1} ` T2 : {I2? : σ2}
π ` T1;T2 : {I2? : σ2}

GO Parallel composition of table queries is typed as follows:

π ` T1 : {I1? : σ1} π ` T2 : {I2? : σ2}
π ` T1;T2 : {I2? : σ2}

4 Implementation

Our implementation was designed to be used as a tool for enterprise level
software development. It is implemented in F# and utilizes Microsoft
based products, though the implementation can easily be used by anyone
interested in protecting their data from SQL Injection. The implementa-
tion sits as an extension of the server-side code in the application hier-
archy. Due to the nature of the target market, the code was written in
F#, a Microsoft Common Language Runtime (CLR) compatible object
oriented functional language. By using a CLR compatible language, we
are able to easily integrate with other CLR compatible languages and
utilize their functionality and libraries as well. This strategy allowed us
to use supported database communications within our implementation,
through the MySQL C# database interaction dynamic link libraries.

4.1 Schema Retrieval

At the start of the application, an initial call is made to build the type
assignment. Through the utilization of the SQL information tables, in
the case of MySQL the Information Schema tables, the type checker
queries the shape of the SQL Instance and recovers the necessary in-
formation needed to perform type and syntax checking. Since the type
system checks against an existing database, is imperative to know the
table names, field names, and types before a request for information can
be made. It is important to note, that since the system caches type as-
signment information, if the table structures in the database were to be
altered the application would need to be reset as well. For the web appli-
cation software we intend to target, this is not an unreasonable constraint,
since changes in the underlying data base structure often require addi-
tional code changes and a restart of the application anyhow. For more
dynamic applications,an implementation that does not cache this infor-
mation could be built as well. The trade-off for this flexibility is in the
overhead of repeatedly retrieving the SQL information tables before each
SQL query is processed.

4.2 Parsing and Type Checking

Evaluating a dynamically generated query on the SQL server is a multi-
stage process.

Once a query string has been passed to the server side, the first step
in the process is to parse the input. The parser has been implemented

using FsLex and FsYacc. The concrete syntax is a sub-set of the full SQL
grammar and the parser maps strings into recursive types representing
the abstract syntax presented above. For example, the abstract syntax
of phrases in class of table statements are represented by the following
recursive type.

type TStatement =
| TName of TName
| Create of TName * Schema
| Insert of TName * V
| Join of TName * TName * Expression
| Select of FName list * TName
| SelectWhere of FName list * TName * Expression
| Semi of TStatement * TStatement
| Go of TStatement * TStatement

The parser maps strings into the corresponding abstract syntax rep-
resentations which serve as the basis for the type checking algorithm. The
typing rules are naturally implemented by recursion on the structure of
the abstract syntax. As an example consider the first few cases of the
function checking the type of table statements.

let rec WellTypedTStatement (TA ta) statement =
match statement with
|TName (tn) -> WellTypedTName (TA ta) tn
|Create(tn, schema) -> WellTypedSchema schema
|Insert(tn, values) ->

WellTypedTName (TA ta) tn
&& (let schema = SchemaOfTable (TA ta) tn in

WellTypedTuple schema values)
|Join(tn1,tn2,e)->

WellTypedTName (TA ta) tn1
&& WellTypedTName (TA ta) tn2
&& WellTypedExpression (TA ta) e

...

5 Conclusions

The typing rules above have served as a specification for an SQL type
checker implemented in F#. The database system being used is MySQL
and although only a subset of SQL is encoded by the abstract syntax it

is rich enough for us to examine simple web applications. We have also
used these typing rules to define a denotational semantics for this subset
of SQL. We have implemented a parser for taking string based queries
from a client side into an accepted SQL query. We have used FsLex and
FsYacc to implement the parser.

Since the typing rules depend on the database schema, the application
must run as trusted code. It queries the database for its own schema by
requesting the information schema tables. The type checker reconstructs
the schemas of the various tables in the database from these schemas.

Also note that the abstract syntax does not tightly bind us to any
particular SQL implementation although the parser does.

References

1. Gregory Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti. Using parse tree
validation to prevent SQL injection attacks. In Proceedings of the 5th international
workshop on Software Engineering and Middleware, SEM ’05, pages 106–113, New
York, NY, USA, 2005. ACM.

2. Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-
gramming without tiers. In Frank de Boer, Marcello Bonsangue, Susanne Graf,
and Willem-Paul de Roever, editors, Formal Methods for Components and Objects,
volume 4709 of Lecture Notes in Computer Science, pages 266–296. Springer Berlin
/ Heidelberg, 2007.

3. William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A classification of
SQL-Injection attacks and countermeasures. In Proceedings of the IEEE Interna-
tional Symposium on Secure Software Engineering, Arlington, VA, USA, March
2006.

4. Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Green-
berg, Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a programming lan-
guage for ajax applications. In Proceedings of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications, OOPSLA ’09,
pages 1–20, New York, NY, USA, 2009. ACM.

5. Atsushi Ohori and Katsuhiro Ueno. Making standard ML a practical database
programming language. In Proceedings of the 16th ACM SIGPLAN international
conference on Functional programming, ICFP ’11, pages 307–319, New York, NY,
USA, 2011. ACM.

6. Benjamin C Pierce. Types and Programming Languages. MIT, 2002.
7. David A. Schmidt. The Structure of Typed Programming Languages. MIT, 1994.
8. N. Swamy, B.J. Corcoran, and M. Hicks. Fable: A language for enforcing user-

defined security policies. In Security and Privacy, 2008. SP 2008. IEEE Symposium
on, pages 369 –383, may 2008.

9. Gary Wassermann, Carl Gould, Zhendong Su, and Premkumar Devanbu. Static
checking of dynamically generated queries in database applications. ACM Trans.
Softw. Eng. Methodol., 16(4), September 2007.

10. Limsoon Wong. Kleisli, a functional query system. J. Funct. Program., 10(1):19–
56, January 2000.

