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Abstract

The concept of support is pervasive in constraint programming. Tradi-
tionally, when a domain value ceases to have support, it may be removed
because it takes part in no solutions. Arc-consistency algorithms such as
AC2001 [5] make use of support in the form of a single domain value.
GAC algorithms such as GAC-Schema [4] use a tuple of values to support
each literal. We generalize these notions of support in two ways. First,
we allow a set of tuples to act as support. Second, the supported object
is generalized from a set of literals (GAC-Schema) to an entire constraint
or any part of it.

We design a methodology for developing correct propagators using
generalized support. A constraint is expressed as a family of support
properties, which may be proven correct against the formal semantics
of the constraint. Using Curry-Howard isomorphism to interpret con-
structive proofs as programs, we show how to derive correct propagators
from the constructive proofs of the support properties. The framework is
carefully designed to allow efficient algorithms to be produced. Derived
algorithms may make use of dynamic literal triggers or watched literals
[11] for efficiency. Finally, two case studies of deriving efficient algorithms
are given.

1 Introduction

In this paper we provide a formal development of the notion of support in con-
straint satisfaction. This notion is ubiquitous and plays a vital role in the under-
standing, development, and implementation of constraint propagators, which in
turn are the keystone of a successful constraint solver. While we focus on a
formal development in this paper, our purpose is not to describe formally what
is currently seen in constraint satisfaction. Instead, we generalize the notion of
support so that it can be used in a wider variety of propagators. The result
is the first step in a twin programme of developing a formal understanding of
constraint algorithms, while also developing notions such as generalized support
which should lead to improved constraint algorithms in the future.
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The methodology presented here for formal development of propagators is
based on the proofs-as-programs and propositions-as-types interpretations of
constructive type theory [7, 13]. Unlike [6], where the proofs where formalized
in the Nuprl theorem prover [8], the approach presented here is rigorous though
informal.

1.1 Overview of the Constraint Satisfaction Problem

A constraint is simply a relation over a set of variables. Many different kinds
of information can be represented with constraints. The following are simple
examples: one variable is less than another; a set of variables must take distinct
values; task A must be scheduled before task B; two objects may not occupy
the same space. It is this flexibility which allows constraints to be applied to
many theoretical, industrial and mathematical problems.

The classical constraint satisfaction problem (CSP) has a finite set of vari-
ables, each with a finite domain, and a set of constraints over those variables.
A solution to an instance of CSP is an assignment to each variable, such that
all constraints are simultaneously satisfied — that is, they are all true under
the assignment. Solvers typically find one or all solutions, or prove there are no
solutions. The decision problem (‘does there exist a solution?’) is NP-complete
[1], therefore there is no known polynomial-time procedure to find a solution.

1.2 Solving CSP

Constraint programming includes a great variety of domain specific and gen-
eral techniques for solving systems of constraints. Since CSP is NP-complete,
most algorithms are based on a search which potentially explores an exponen-
tial number of nodes. The most common technique is to interleave splitting
and propagation. Splitting is the basic operation of search, and propagation
simplifies the CSP instance. Apt views the solution process as the repeated
transformation of the CSP until a solution state is reached [1]. In this view,
both splitting and propagation are transformations, where propagation simpli-
fies the CSP by removing domain values which cannot take part in any solution.
A splitting operation transforms a CSP instance into two or more simpler CSP
instances, and by recursive application of splitting any CSP can be solved.

Systems such as Choco [16], ILOG Solver [15] and Minion [10, 11] implement
highly optimized constraint solvers based on search and propagation, and (de-
pending on the formulation) are able to solve extremely large problem instances
quickly.

Our focus in this paper is on propagation algorithms. A propagation algo-
rithm operates on a single constraint, simplifying the containing CSP instance
by removing values from variables in the scope of the constraint. Values which
cannot take part in any solution are removed. For example, a propagator for
x ≤ y might remove all values of x which are greater than the largest value of y.
Typically propagation algorithms are executed iteratively until none can make
any further simplifications.

2



1.3 Proofs to propagators

Researchers frequently invent new algorithms and (sometimes) give proofs of
correctness, of varying rigour. In this paper we provide a formal semantics of
CSP. This allows us to formally characterize correctness of constraint propaga-
tors, and therefore aid the proof of correctness of propagators. Following this,
we lay the groundwork for automatic generation of correct propagators. The
method is to write a set of support properties which together characterize the
constraint. Each property is inserted into a schema, and a constructive proof
of the schema is generated. This proof is then translated into a correct-by-
construction propagator. This method is based on the concept of generalized
support, described in the next section. Finally, we give examples of this method
by deriving propagators for the element, occurrenceleq and occurrencegeq
constraints.

1.4 Generalized support

Central to this work is the notion of support. This notion is used informally
in many places (for example, in the description of the algorithm GAC-Schema
[4]) and more formally by Bessière [2]. We generalize the concept of support,
and develop a formal framework to allow us to produce rigorous proofs of the
correctness of propagators that exploit the generalized concept of support.

Support is a natural concept in constraint programming. Constraint prop-
agators remove unsupported values from variable domains, thus simplifying a
CSP instance. Supported values cannot be removed, since they may be con-
tained in a solution. Thus a support is evidence that a value (or set of values)
may be contained in a solution. If no support exists, it is guaranteed that a
value (or set of values) is not contained in any solution.

A support property characterises the supports of a particular value (or set of
values) for a particular constraint. For example, three support properties of an
element constraint are given by Gent et al. [11]. Each of these three properties
is used to create a propagator, such that the three propagators together achieve
generalized arc consistency. In this instance, writing down support properties
assisted in proving the propagators correct.

We show that correct support properties can be used to create propagators
that are correct by construction. We describe a general “propagation schema”,
which is a description of what should be proved when support is lost for a given
support property. This captures how propagators work in practice. They are
“triggered” when it is noted that the current support is lost. The propagator
then seeks to re-establish support. This might be possible on the current do-
mains, or it may need to narrow domains (i.e. remove some values of some
variables), or it may be that no new support is possible and the constraint is
guaranteed to be false. The propagation schema specialised for a given support
property can be proven constructively. The proof contains sufficient information
to be translated into a correct propagator. We envisage two main uses for such
a propagator. For some constraints, it may be an efficient propagator that can
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be used directly. Otherwise, the constructed propagator may be used as part of
an informal argument for the correctness of an efficient propagator.

2 Definitions and Notation

2.1 The Standard Mathematical Account

We start by giving the standard definition of a constraint satisfaction problem
(e.g. see [9, 2]). Formal definitions of the notations used here are given below.

Definition 1 (Constraint Satisfaction Problem). A Constraint Satisfaction
Problem (CSP) is given by a triple 〈X, σ,C〉 where X is a k-tuple of variables
X = 〈x1, · · · , xk〉 and σ is a signature (a function σ : X → 2Z mapping variables
in X to their corresponding domains, i.e. such that σ(xi) ⊆ Z is the finite do-
main of variable xi.) C is a tuple of extensional constraints C = 〈C1, · · · , Cm〉
where each Ci is of the form 〈Y, RY 〉 where Y ⊆ X is a tuple of variables called
the schema or scope of the constraint Ci. Also, RY is a relation given by a
subset of the Cartesian products of the domains of the variables in the scope Y
and is called the extension of Ci.

Definition 2 (Satisfying tuple). We say a Z-tuple τ satisfies constraint 〈Y, RY 〉
if Y ⊆ Z, and the projection Y [τ ] is in RY (i.e. if the projection of the scope
Y from τ is in RY .)

Definition 3 (Solution). A solution to a CSP 〈X, σ,C〉 is a tuple τ , with
schema X, such that τ satisfies every constraint in C.

2.2 Variable Naming Conventions, Ranges, and Literals

We use lower case letters (possibly subscripted or primed) from near the end
of the Latin alphabet {w, x, y, z} to denote variables. We use Latin letters
{i, j, k} to denote integer indexes, and use the Latin letters occurring early in
the alphabet {a, b, c, d} (possibly subscripted) to denote arbitrary integer values.

{b..c} def
= {a ∈ Z | b ≤ a ∧ a ≤ c}

We write 2A to denote the powerset (set of all subsets) of A. A literal is a
variable-value pair (e.g. 〈x, 5〉).

2.3 Vectors

We use uppercase letters W,X, Y, Z, ... to denote vectors of variables. We use
the Greek letters {τ, τ ′, τ1, τ2 · · ·} to denote tuples of integer values.

We write finite vectors as sequences of values enclosed in angled brackets,
(e.g. 〈x, y, z〉). The empty vector is written 〈〉. We take the operation of
prepending a single element to the left end of a vector as primitive and denote
this operation x·Y . We abuse this notation by writing X·Y for the concatenation
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of vectors X and Y . We write |Y | to denote the length of vector Y . Given a
vector Y , we write Y [i] to denote the (zero-based) ith element of Y . This
operation is undefined if i 6∈ {0..|Y | − 1}.

Membership in a vector;

z ∈ Y
def
= ∃i : {0..|Y | − 1}. Y [i] = z

We will sometimes need to collect the set of indexes to an element in a vector.
Y [[z]]

def
= {i ∈ {0..|Y | − 1} | Y [i] = z}. Thus, 〈x, y, z, x〉[[x]] = {0, 3}. Note

that Y [[z]] 6= ∅ iff z ∈ Y and also each index in Y [[z]] is a witness for z ∈ Y .
If y ∈ Y , we write Y − y to denote the vector obtained from Y by deleting

the leftmost occurrence of y from Y . Y − y = Y if y 6∈ Y . We write Z − Y
for the vector obtained by removing leftmost occurrences of all (y ∈ Y ) from
Z. Given a vector Z, we write {Z} to denote the set of values in Z and given
a set of variables S we write 〈S〉 to denote a vector of the variables in S;
the reader may assume the variable in 〈S〉 occur in increasing lexicographic
order. Intersection and unions are defined on vectors by taking them as sets:
X ∩ Y

def
= 〈{X} ∩ {Y }〉; and X ∪ Y

def
= 〈{X} ∪ {Y }〉. We write Y ⊆ X to

mean {Y } ⊆ {X}, i.e. that every element in Y is in X with no stipulations on
relative lengths of X or Y or on the order of their elements.

2.4 Signatures

A signature σ is a function mapping variables in X to their associated domains.
Thus, signatures are functions σ : X → 2Z where in practice, the subset of
integers mapped to is finite. If σ and σ′ are signatures mapping variables in X
to their finite integer domains:

σ′ vX σ
def
= ∀x ∈ X.σ′(x) ⊆ σ(x)

We write σ′ @X σ if σ′ vX σ and ∃x ∈ X : σ′(x) @ σ(x), i.e. if some domain
of σ′ is a proper subset of the corresponding domain of σ. We drop the schema
subscript when the schema is clear from the context. We state the following
without proof.

Lemma 1 (Signature Inclusion Well-founded). The relation @ is well-founded
if restricted to signatures with finite domains.

2.5 Relations

In the description of a CSP given above, a constraint 〈Y, RY 〉 is a relation
where the schema Y gives the attribute names and RY is the set of tuples in
the relation.

Given a signature σ mapping variables in schema Y to their domains, a
relation 〈Y, RY 〉 is well-formed with respect to σ iff the following conditions
hold:
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i. All tuples in RY have length |Y |

ii. The values in each column come from the specified domain for that column.

∀τ : RY . ∀i : {0..|Y | − 1}. τ [i] ∈ σ(Y [i])

Schemata are vectors of variable names with no restriction on how many
times a variable may occur. Thus it is possible to have a wellformed relation
whose schema has common names for multiple columns. Given a signature σ
over a schema X, a tuple τ is called a X-tuple if 〈X, {τ}〉 is well-formed w.r.t. σ.
In this case, we write X−tupleσ(τ). We write X−tupleσ for the set of tuples
satisfying this condition.

2.5.1 Tuple Coherency

Conceptually, relations provide a representation for storing valuations (assign-
ments of values to variables) and so we must distinguish between tuples which
represent coherent valuations (even when their schemata may contain duplicate
variable names) and tuples that do not. This motivates the following definitions.

The wellformedness condition on relations requires values in columns labeled
by a variable come from the domain of that variable, but does not rule out cases
where a single tuple with multiple columns named by the same variable have
different values in those columns.

Example 1. Consider the relation

〈〈x, x, y〉, {〈1, 2, 3〉, 〈1, 1, 3〉, 〈2, 2, 3〉}〉

The variable x occurs twice in the schema and the first tuple in the schema
assigns different values to x, this tuple is not coherent.

An X-tuple τ is coherent w.r.t. variable z iff the following holds.

coh{X, z}(τ)
def
= ∀i, j : X[[z]]. τ [i] = τ [j]

We say a tuple is incoherent w.r.t. z if it is not coherent. Note that this definition
is sensible whether z ∈ X or not. A simple consequence of the definition is that
an X-tuple τ is incoherent w.r.t. variable z iff

∃i, j : X[[z]]. τ [i] 6= τ [j]

An X-tuple τ is coherent with schema Y iff it is coherent w.r.t. all variables
z ∈ Y .

coh{X, Y }(τ)
def
= ∀z ∈ Y. coh{X, z}(τ)

We say an X-tuple is incoherent with respect to schema Y if it is not coherent
w.r.t. Y . Only coherent tuples count as solutions (Def. 3).
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Remark 1. In many constraint solvers, incoherent tuples may arise during
a computation, but they are never counted among solutions. For example,
the Global Cardinality constraint GCC(〈x, x, y〉, 〈1, 2〉, 〈(2 . . . 3), (1 . . . 2)〉) (stat-
ing that value 1 occurs two or three times, and value 2 occurs once or twice
among variables 〈x, x, y〉) could generate the incoherent tuple 〈1, 2, 1〉 internally
when using Règin’s algorithm [18].1 Generating incoherent tuples affects both
the internal state of a constraint propagator, and the number of vertices in the
search tree.

Strictly speaking, because incoherent tuples do not count as solutions, the
semantics could be specified simply disallowing them. However, this approach
would rule out faithful finer grained representations of the internal states of
constraint solvers which do generate incoherent tuples e.g. when searching for
support. Based on this, we have decided to include them although this adds some
complexity to the specification.

2.5.2 Selection

Selection is an operation mapping relations to relations generating new ones
from old by filtering rows (tuples) based on predicates on the values in the
tuple.

Given a relation 〈Y, RY 〉 and an index i ∈ {0..|Y | − 1}, and a value (say a),
index selection is defined as follows.

select (i=a)(RY )
def
= {τ ∈ RY |τ [i] = a}

The tuples selected from a relation by index selection are not guaranteed to
be coherent with respect to schema Y .

Given a relation 〈Y, RY 〉 and a variable x and a value (say a), value selection
is defined as follows.

select (x=a)(RY )
def
= {τ ∈ RY |∀i : Y [[x]]. τ [i] = a}

Thus a tuple τ is included in a selection selectx=aRY if and only if all columns
of τ indexed by x have value a, i.e. τ must be coherent for x and those columns
must have value a.

Lemma 2. [Selection Wellformed] For all well-formed relations 〈Y, RY 〉 and
all x, and all a ∈ Z, the relation 〈Y, selectx=aRy〉 is well-formed.

Finally, we define coherent selection as follows.

selectY (RX)
def
= {τ ∈ RX |coh{X, Y }(τ)}

Coherent selection selects the tuples which are coherent with respect to Y .
1Règin’s algorithm [18] is polynomial-time and enforces GAC iff the schema contains no du-

plicate variables. With duplicate variables, enforcing GAC on GCC is NP-Hard [3], therefore
it is sensible to use Règin’s algorithm in this case even though it will not enforce GAC.
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2.5.3 Projection

Projection is an operation for creating new relations from existing ones by allow-
ing for the deletion, reordering and duplication of columns. We use a general-
ized version here that allows duplicate names. This is because many constraint
solvers (including Minion [10]) allow schemata to contain duplicate names.

Lemma 3. [Projection maps exist] For all vectors X and Y , if Y ⊆ X,
then there exists a function from the indexes of Y to the indexes of X (say
f ∈ {0..|Y | − 1} → {0..|X| − 1}) such that

∀i : {0..|Y | − 1}. Y [i] = X[f(i)]

Note that there is no restriction on the relative lengths of X and Y , e.g. it
is possible for any of the following to hold: |Y | < |X|, |Y | = |X| or |Y | >
|X|. The projection maps are evidence witnessing claims of the form Y ⊆ X.
Furthermore, because our model allows for duplicated columns, there may be
multiple projection maps witnessing an inclusion Y ⊆ X.

Example 2. Consider

Y = 〈x4, x2, x2, x1, x3〉 X = 〈x1, x2, x3, x4〉

then Y ⊆ X is witnessed by the projection map:

{〈0, 3〉, 〈1, 1〉, 〈2, 1〉, 〈3, 0〉, 〈4, 2〉}

Similarly, X ⊆ Y and is witnessed by the following.

{〈0, 3〉, 〈1, 1〉, 〈2, 4〉, 〈3, 0〉}

Also 〈x2〉 ⊆ Y is witnessed by two functions.

{〈0, 1〉} {〈0, 2〉}

Lemma 4. [Tuple Projection] Given X and Y , if Y ⊆ X is witnessed by f ,
for each X-tuple τ there is a vector Yf (τ) : {0..|Y | − 1} → Z such that

∀i : {0..|Y | − 1}.Yf (τ)[i] = τ [f(i)]

Corollary 1. [Tuple Projection Wellformed] Given X and Y , if Y ⊆ X is
witnessed by f , for each X-tuple τ , Yf (τ) is a Y -tuple , i.e. |Yf (τ)| = |Y | and
all values in Yf (τ) are in their domains.

Whenever Y ⊆ X, projection maps f and g witnessing this fact behave the
same when used to index into tuples coherent with Y . This is illustrated by the
following example.

Example 3. Suppose Y = 〈x, y〉 and X = 〈x, x, w, y, w〉 then there are two
projections maps witnessing Y ⊆ X, f = {〈0, 0〉, 〈1, 3〉} and g = {〈0, 1〉, 〈1, 3〉}.
Now, any length |X| = 5 tuple coherent with Y is of the form τ = 〈a, a, b, c, d〉
where a, b, c, d ∈ Z. Thus, even though f(0) 6= g(0) the following equalities hold:

τ [f(0)] = τ [0] = a = τ [1] = τ [g(0)]
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This observation is made precise by the following lemma.

Lemma 5. [Coherent Projection Unique] For all X and Y , and for all
projection maps f and g witnessing Y ⊆ X, for all X-tuples τ coherent with
schema Y , Yf (τ) = Yg(τ).

Notational Remark 1. Since projections Z where Z ⊆ X do not depend on
the projection map they are built from when the X-tuple τ is coherent with Z,
we will simply write Z(τ) in this case.

Lemma 6. [Projection Coherent] For all X, Y and Z, if Y ⊆ X and if τ
is an X-tuple coherent with Z, then Y [τ ] is a Y -tuple coherent with Z.

We lift the notation tuple-wise to relations as given by the following defini-
tion.

Definition 4. [Relation Projection] Given X and Y , and a wellformed re-
lation 〈X, RX〉, if Y ⊆ X is witnessed by f ,

Yf (〈X, RX〉) = 〈Y, {τ ∈ Z|Y | | ∃τ ′ ∈ RX . τ = Yf (τ ′)}〉

Lemma 7. [Relation Projection WF] For all well-formed relations 〈X, RX〉
and all Y , Y ⊆ X having a witnesses f , the relation Yf 〈Y, RY 〉 is well-formed.

Now we are able to define an equivalence of constraints which does not
depend on the ordering of schemata.

Definition 5. [Schema Equivalence]

X ≡ Y
def
= X ⊆ Y ∧ Y ⊆ X

Definition 6. [Constraint Equivalence]

〈X, RX〉 ≡ 〈Y, RY 〉
def
=

X ≡ Y ∧
X ⊆ Y is witnessed by the projection map f∧
〈Z,RZ〉 = Yf (〈X, RX〉)∧
selectZ(〈Z,RZ〉) = selectY (〈Y, RY 〉)

There are three steps to the constraint equivalence definition. First, it is
required that the schemata are equivalent. Then a projection is used to reorder
the schema X to match Y , creating the new relation 〈Z,RZ〉. Finally, coherent
selection is used to remove incoherent tuples. The two constraints are equivalent
if they have the same set of coherent tuples.

Constraints are rarely presented extensionally but are instead described in
some syntactic way. We introduce the following notation to denote the map
from syntactic descriptions to their extensional meanings.

Definition 7 (Semantics). Given a syntactic description of a constraint (say
C) over schema X and where σ is a signature consistent with X, we will write
[[C]]σ to denote its extension.
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3 Propagation and Support

Propagation is the process of narrowing the domains of variables so that solu-
tions are preserved. This effectively shrinks the search-space and is one of the
fundamental techniques used in constraint programming. It has been described
([9, pp. 17]) as a process of inference to distinguish it from search.

Definition 8. [Generalized Arc Consistency] Given a constraint C with
schema X and a signature σ, we say σ′ v σ is Generalized Arc Consistent iff

∀i ∈ {0..|X| − 1}. ∀k ∈ σ′(X[i]). ∃τ ∈ [[C]]σ. τ [i] = k

If σ is Generalized Arc Consistent, we say it is GAC.

Corollary 2. [Generalized Arc Consistency] Given a constraint C and a
signature σ, σ is GAC for C iff

∀σ′ @ σ. [[C]]σ′ ⊂ [[C]]σ

i.e. if all signatures having strictly narrower domains provide strictly fewer
solutions for C than σ.

Typically, an individual constraint may be implemented by a collection of
propagators.

3.1 Support

The concept of support was introduced in Section 1.4. Support is evidence that
a set of domain values (or a single value) are consistent for some definition of
consistency (for example, GAC) for a particular constraint C. If a set of values
have no support, then they cannot be part of any solution to C, and therefore
can be eliminated from variable domains without losing any solutions to the
CSP. The concept of support is central to the process of propagation.

In [2, pp. 37] Bessière gives a description of when a tuple supports a literal.
We use a more expressive model where support (or perhaps we should call it
evidence) is defined by sets of tuples. In most cases, supports will be singletons
(i.e. they are simply represented by a set containing a single tuple). However,
some constraints require a set of tuples to express the condition for support.

Example 4. Consider the constraint C = AllDifferent(x1, x2, x3) with the signa-
ture σ : x1 ∈ {1, 2}, x2 ∈ {1, 2, 3, 4}, x3 ∈ {1, 2, 3, 4, 5}. This signature is GAC.
Given Bessière’s description of support [2, pp. 37] (as used by general-purpose
GAC algorithms such as GAC-Schema [4]), each literal in the signature would
be supported by a tuple containing the literal. Hence every literal is contained
in the support for C. However, not all literals are required; the following set is
sufficient: L = {〈x1, 1〉, 〈x1, 2〉, 〈x2, 2〉, 〈x2, 4〉, 〈x3, 2〉, 〈x3, 3〉, 〈x3, 5〉} [12, §5.2].
While all literals in L remain valid, in some smaller signature σ1 v σ, then the
constraint remains GAC. This can be used to avoid calling the propagator, and
therefore is important to capture in our definition of generalized support.
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Extensional constraints (sets of tuples) are interpreted disjunctively, i.e. as
long as the set is non-empty, a solution exists. Similarly, support exists if the
support set is non-empty. Our generalization of support is to model it as a set
of tuples interpreted conjunctively i.e. thay all must be valid for support to
exist. Thus, a generalized support set is a disjunction of conjunctions (∃∀); we
say support exists if at least one support is present in the set and all the tuples
in that support are valid w.r.t. variable domains.

We use the following as a simple running example throughout this section.

Example 5. Consider the constraint x + y + z ≥ 2 with initial signature σ :
x, y, z ∈ {0, 1}. The signature is GAC, and the constraint is satisfied by three
tuples: [[x + y + z ≥ 2]]σ = {〈0, 1, 1〉, 〈1, 0, 1〉, 〈1, 1, 0〉}.

3.1.1 Support Sets

Definition 9. [Support property] Given a schema Y and signature σ over
Y , a support property is a predicate

P : signature → 2Z|Y |
→ B

mapping signatures and sets of integer tuples of length |Y | to a Boolean. We will
sometimes write the parameter indicating which signature P [σ] depends on as a
subscript Pσ or drop it entirely if the property does not depend on a signature.

Definition 10. [Support Set for a property P ] Given a schema Y and a
signature σ over Y and a property of sets of Y -tuples, Pσ we define the support
set for P to be the set:

support〈Y,σ〉(P )
def
=

{S ⊆ Y−tupleσ|Pσ(S) ∧ ∀S′ ⊂ S. ¬Pσ(S′)}

Note that support sets are minimal w.r.t. the property P since they contain
no subset which also satisfies the property.

Consider example 5, the constraint x + y + z ≥ 2. One support property
is Pσ(S)

def
= ∃τ ∈ S :

∑
τ ≥ 2 ∧ τ [0] = min(σ(x)). This property admits sets

of tuples of any size as long as one tuple satisfies the constraint, and the value
for x in that tuple is the minimum value in σ(x)2. The support set for Pσ is
support〈〈x,y,z〉,σ〉(P ) = {{〈0, 1, 1〉}}.

A collection of properties is supported if they all are.

Definition 11. [Support for a collection of properties] If P = {P1, · · · , Pk}
is a collection of properties sharing schema Y and σ is a signature over Y , we
write

support〈Y,σ〉(P)
def
= ∀P ∈ P. support〈Y,σ〉(P ) 6= ∅

2This support property corresponds to a propagator that prunes the minimum value of x
whenever there is no supporting tuple containing it. To enforce GAC, two other properties
would be required for y and z.
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3.1.2 Admissible Properties and Triggers

Our language for properties is unrestrained and allows us to specify properties
that are not sensible for specifying propagators. Therefore an admissibility
condition is required. We define p-admissibility as follows.

Definition 12. [P-Admissibility] We say a property P is p-admissible if it
satisfies the following condition.

∀σ. ∀σ′ v σ.
∀S ⊆ Y−tupleσ.

(Pσ(S) ∧ S ⊆ Y−tupleσ′) ⇒ Pσ′(S)

In this case, we write p−admissible(P ).

P-admissibility is a kind of stability condition on properties that guarantees
that if a Pσ(S) holds and the domain is narrowed to σ′, but no tuple is lost from
S because of the narrowing, then Pσ′(S) must also hold. In the implementation
of dynamic-triggered propagators [11], it is implicitly assumed that support for
these propagators satisfy this property.

Continuing example 5, the support property Pσ(S)
def
= ∃τ ∈ S :

∑
τ ≥

2 ∧ τ [0] = min(σ(x)) is p-admissible:
∑

τ ≥ 2 does not depend on σ, and
τ [0] = min(σ(x)) can only be falsified under σ′ when the value min(σ(x)) is
not in σ′(x). This means τ is not in 〈x, y, z〉−tupleσ′ so the implication is
trivially satisfied. Suppose S = {〈0, 1, 1〉}. The only way Pσ′(S) can be false is
if 0 /∈ σ′(x). In this case, S contains a tuple that is not valid in σ′ therefore the
p-admissibility property is trivially true.

A constraint solver has a trigger mechanism which calls propagators when
necessary. Each propagator registers an interest in domain events by placing
triggers. For example, if a propagator placed a trigger on 〈x, a〉, then the removal
of value a in σ(x) would cause the propagator to be called. (This is named a
literal trigger [11], or neq event [19].)

In this paper, we focus on literal triggers which can be moved during search.
We consider two different types of movable literal trigger: those which are re-
stored as search backtracks (named dynamic literal triggers), and those which
are not restored (named watched literals [11]).

The definition of p-admissibility allows the use of dynamic literal triggers,
among other types. Watched literals are preferable to dynamic literal triggers
because there is no need to restore them when backtracking, which saves space
and time. However, it is not always possible to apply watched literals. We
define an additional condition on properties named backtrack stability, which is
sufficient to allow the use of watched literals.

Definition 13. [Backtrack Stability] We say a property P is backtrack sta-
ble if it satisfies the following condition.

∀S. ∀σ. ∀σ′ v σ.
S 6= ∅ ⇒

Pσ′(S) ⇒ Pσ(S)

12



Backtrack stability states that any non-empty support S under σ′ must
remain a support for all signatures σ where σ is larger than σ′. This guarantees
that a non-empty support S will remain valid as the search backtracks. The
empty support indicates that the property is trivially satisfied; this support is
not usually valid after backtracking, so it is excluded here.

Continuing example 5, the support property Pσ(S)
def
= ∃τ ∈ S :

∑
τ ≥

2 ∧ τ [0] = min(σ(x)) is not backtrack stable because min(σ(x)) may not be the
same as min(σ′(x)).

Backtrack stability is in fact too strong: it is not necessary for a support to
remain valid for all larger signatures, it is only necessary for it to remain valid
at signatures that are reachable on backtracking. However it is sufficient for the
purposes of this paper.

Backtrack stability also depends on the form of properties. The element
support properties presented in Section 4.1.1 are not backtrack stable. However,
they can be reformulated to be backtrack stable, by dividing them up as we show
in Section 4.1.2.

For some property Pσ(S) the support S is evidence that the constraint cor-
responding to P is consistent. The intuition is that S remains valid evidence
until domains are narrowed to the extent that S 6⊆ Y−tupleσ′ (where σ′ v σ).
This is an efficiency measure: a constraint solver can disregard the constraint
corresponding to P until S 6⊆ Y−tupleσ′ .

For example, the property Pσ(S)
def
= ∀b 6∈ σ(j).〈i, b〉 ∈ S is not p-admissible

when j 6= i.

Definition 14. [Properties True and False] We define the constant properties
True and False by lifting them to functions of sets of tuples.

True(S) = True False(S) = False

Lemma 8. [True singleton] For all Y and for every signature σ over Y ,

support〈Y,σ〉(True) = {∅}

Note, that it might be assumed that if any of the domains in σ are empty,
then there should be no support, even for the True property. Checking for
emptiness is not a function of support, but is done at a higher level.

Lemma 9. [False Empty] For all Y and for every signature σ over Y ,

support〈Y,σ〉(False) = ∅

Corollary 3. [True and False are p-Admissible] The properties True and
False are p-Admissible.

We can combine supports by taking the conjunctions or disjunctions of their
properties.

13



Definition 15. We define the conjunction and disjunction of support properties
as follows.

(P ∧Q)σ(S)
def
= Pσ(S) ∧Qσ(S)

(P ∨Q)σ(S)
def
= Pσ(S) ∨Qσ(S)

We state the following lemma without proof.

Lemma 10. [Conjunction and disjunction p-admissible] Given a schema
Y and signature σ for Y and two p-admissible properties P and Q, then (P ∧Q)
and (P ∨Q) are p-admissible as well.

3.1.3 Extensional Support for literals

Definition 16. [Support Property (for a Literal)] Given a relation schema
Y and signature σ over Y , and a literal 〈i = a〉, then: 〈i = a〉 denotes the prop-
erty supporting this literal and is given by:

〈i = a〉(S)
def
= ∃τ ∈ S. τ [i] = a

The support for 〈i = a〉 is just the set support〈Y,σ〉(〈i = a〉).

Corollary 4. If S ∈ support〈Y,σ〉(〈i = a〉) then S is a singleton.

Proof. Assume S ∈ support〈Y,σ〉(〈i = a〉) then 〈i = a〉(S) holds, i.e. we know
∃τ ∈ S.τ [i] = a. Thus |S| ≥ 1. Now, we assume that |S| > 1 and show a
contradiction. There is at least one tuple in S, such that τ [i] = a. If there is
any other tuple τ ′ ∈ S where τ 6= τ ′ then 〈i = a〉(S − {τ ′}) holds as well, and
since this set is smaller, S was not minimal and so was not a support as we
assumed.

Lemma 11. [Literals are p-admissible] Given a schema Y and a signature
σ on Y , if i ∈ {0..|Y | − 1} and a ∈ σ(Y [i]) then 〈i = a〉 is a P-admissible
property.

Proof. Note that 〈i = a〉 does not refer to σ at all and so is P-admissible.

3.1.4 Structural Support - Evidence

Literal support captures support for variable-value pairs. Structural support is
support for some structural condition not representable by a single tuple. Thus,
if any tuple in a structural support is lost, then the support no longer holds.
In example 4 (GAC AllDifferent) we gave a list of literals as evidence that an
AllDifferent constraint is GAC. Using the support property for a literal, these
would be represented as a structural support in our framework.
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3.2 Soundness and Completeness of a Collection of Prop-
agators

Propagators narrow domains to minimize the search space and provide evidence
that the narrowed domains have not eliminated any solutions. Constraints may
be supported by a collection of propagators. To show that the propagators are
correct with respect to the constraint they support we show they are sound and
complete.

3.2.1 Soundness

Definition 17. [Propagator Soundness] Given a constraint C with schema
Y and a set of propagators P = {P1, · · · , Pm} we say P is sound with respect to
the constraint C if the following holds:

∀σ. singleton(σ) ⇒ (support〈Y,σ〉(P) ⇒ [[C]]σ 6= ∅)

Soundness says that for the most restricted non-empty signatures (ones
where all domains in the signature have been narrowed to a singleton) the
propagator must be able to distinguish between the constraint being empty or
inhabited by a single tuple. If support is non-empty at a singleton domain then
the constraint must be true there as well. The definition of soundness presented
here is related to the one in [20].

Thinking of support as evidence for truth, one might expect soundness to
be characterized as follows:

∀σ. support〈Y,σ〉(P) ⇒ [[C]]σ 6= ∅

This is too strong. At a non-singleton signature, support is an approximation
to truth. For example, even though a constraint may fail in a particular non-
convex domain (i.e. the domain has gaps), a propagator that operates on domain
bounds may not recognize the domain is not convex until the signature has been
narrowed further.

3.2.2 Completeness

Completeness guarantees that if the meaning of a constraint is non-empty at a
signature σ (semantic truth) then there is support for the family of properties
P. The wrinkle on this scheme is that the support may not exist at σ itself, but
only at some refined σ′ v σ. If so, we insist that the constraint has not lost any
tuples at the refined signature σ′.

Definition 18. [Propagator Completeness] Given a constraint C with schema
Y and a set of propagators P = {P1, · · · , Pm} we say P is complete with respect
to the constraint C if the following holds:

∀σ. [[C]]σ 6= ∅ ⇒
∃σ′ v σ. [[C]]σ ⊆ [[C]]σ′ ∧ support〈Y,σ′〉(P)

If P is complete we write complete(P).
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Theorem 1. [Local Completeness] Give a set of properties P = {P1, · · · , Pk}
defined over schema Y , if each singleton {Pi} is complete then P is complete.

Proof. If P is supported at σ, then use witness σ for σ′ and completness trivially
holds. Suppose there is not support for P at σ where [[C]]σ 6= ∅. Choose one
of the Pi ∈ P such that ¬support〈Y,σ〉(Pi) and let σ′, σ′ @ σ be the signature
claimed to exist in the proof of completeness of Pi. By completeness of {Pi},
[[C]]σ ⊆ [[C]]σ′ . If there is support for P at σ′ then P is complete. If not, iterate
this process by choosing another Pk ∈ P that is not supported at σ′. The fixed-
point of this process must yield a signature σ̂ such that support〈X,σ̂〉(P). The
fixed-point exists because @ is a well-founded relation on signatures.

Our definition of completeness ensures that a propagator derived from a sup-
port property does not fail early, therefore it is merely a correctness property. It
is similar in intention to Maher’s definition of weak completeness [17], although
Maher’s definition only applies to singleton domains.

Soundness and completeness as defined here are not the only options for
characterizing the correctness of a set of generalized support properties. In [11]
it is shown that properties imply the domain is GAC (def. 8). Other forms of
consistency could also serve as correctness conditions for a set of properties.

3.3 Formal Development of Constraint Propagators

The methodology for formal development of propagators for a constraint C is
as follows:

i. Describe support properties (P = {P1, · · · , Pk}) that characterize con-
straint C and prove that they are p-admissible.

ii. For each property Pi, give a constructive proof of the propagation schema
given in Def. 19. The computational content of these proofs gives correct-
by-construction algorithms for each propagator.

iii. Prove the soundness and completeness of P with respect to C. This shows
the collection of propagators are correct w.r.t. the constraint C. This proof
often reuses the propagation schema proofs.

3.3.1 The Propagation Schema

We present the following schematic formula whose constructive proofs capture
the methods of generating support for a particular property P .

Definition 19. [Propagation Schema] Given a schema X, a signature σ and
a p-admissible property P , constructive proofs of the following statement yield
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a propagator for P .

∀S ∈ support〈X,σ〉(P ).
∀σ1 v σ. nonempty(σ1) ⇒
S 6∈ support〈X,σ1〉(P ) ⇒
(∃σ2 v σ1. nonempty(σ2) ∧
∃S′ ∈ support〈X,σ2〉(P ).
∀σ3. σ2 @ σ3 v σ1 ⇒ support〈X,σ3〉(P ) = ∅)

∨
(
∀σ2 v σ1. nonempty(σ2) ⇒ support〈X,σ2〉(P ) = ∅

)
We are interested in constructive proofs3 of the propagator schema when P

is instantatied to individual support properties.
Given an admissible support property P , a constructive proof of the prop-

agator schema yields a function that takes as input a set S, evidence that
S ∈ support〈X,σ〉(X), a signature σ1 and evidence that σ1 v σ, evidence that
S 6∈ support〈X,σ1〉(P ) and returns one of two items:

i.) a new signature σ2, together with evidence that σ2 v σ1, a set of tuples S′

and evidence that S′ ∈ support〈X,σ2〉(P ) and evidence that σ2 is maximal.

ii.) Evidence that there is no support for P in σ1 or for any smaller signature.

Lemma 12. [non-empty in propagation schema] In the propagation schema,
if we assume the antecedent S /∈ support〈X,σ1〉(P ) for σ1 v σ then S 6= ∅.

Proof. By p-admissibility of P , if ∅ ∈ support〈X,σ〉(P ) then for all σ1 v σ,
∅ ∈ support〈X,σ1〉(P ).

4 Generating Propagators

In this section we present two case studies of applying our methodology.

4.1 A Propagator for the Element Constraint

The element constraint is widely useful in specifying a large class of constraint
problems. It has the form element(X, y, z) where X is a vector of variables and
y and z are variables. The meaning of the element constraint is the set of all
coherent tuples on the schema 〈X · y · z〉 of the following form.

τ = 〈v1, · · · , vi−1, j, vi+1, · · · , vk, i, j〉

Thus, τ [k + 1] = i indexes 〈v1, · · · , vk〉 and τ [k + 2] = τ [i].

3There is a classical proof of propagator schema that is independent of the property P and
carries no interesting computational content.
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Definition 20. [Element Semantics]

[[element(X, y, z)]]σ = 〈〈X · y · z〉, R〉
where
R = {τ ∈ 〈X · y · z〉−tupleσ |

k = |X| ∧ τ [k + 1] ∈ {1..k} ∧ τ [k + 2] = τ [τ [k + 1]]}

The element constraint is widely used because it represents the very basic
operation of indexing a vector. For example, Gent et al. model Langford’s
number problem and quasigroup table generation problems using element [11].

In [11, pp. 188] three properties to establish GAC for the element constraint
are characterized. We restate theorem 1 from that paper here:

Theorem 2. [Theorem 1 of reference [11].] Given an element constraint of
the form Element(X, y, z), domains given by a signature σ are Generalized Arc
Consistent if and only if all of the following hold.

∀i ∈ σ(y). σ(y) = {i} ⇒ σ(X[i]) ⊆ σ(z) (1)
∀i ∈ σ(y). σ(X[i]) ∩ σ(z) 6= ∅ (2)
σ(z) ⊆

⋃
i∈σ(y)

σ(X[i]) (3)

4.1.1 Support Properties

Each of the three properties above can be characterized as properties of their
generalized supports.

Definition 21. [Element Support Properties] Given a schema X and vari-
ables y and z and a signature σ there are three properties corresponding to three
propagators for establishing GAC for the element constraint Element(X, y, z).
Let k be |X|, then k + 1 is the index of y and k + 2 is the index of z in the
schema (X · y · z).

P1[σ](S)
def
=

(∃i, j : σ(y). i 6= j ∧ 〈k + 1, i〉 ∈ S ∧ 〈k + 1, j〉 ∈ S)
∨ ∀i : σ(y). ∀a : σ(X[i]). 〈k + 2, a〉 ∈ S

P2[σ](S)
def
= ∀i : σ(y). ∃a : σ(z). 〈i, a〉 ∈ S ∧ 〈k + 2, a〉 ∈ S

P3[σ](S)
def
= ∀a : σ(z). ∃i : σ(y). 〈i, a〉 ∈ S ∧ 〈k + 1, i〉 ∈ S

Note that for property P1, the first disjunct is true iff the domain of the index
variable y has more than one element, |σ(y)| > 1. Support for this disjunct is
a pair of literals 〈k + 1, i〉 and 〈k + 1, j〉 where i, j ∈ σ(y), i 6= j 4. Logically,
(∃i, j : σ(y). i 6= j) is equivalent, but for our purposes we must provide p-
admissible support. Once the domain of the index variable is a singleton (σ(y) =

4This specification corresponds to a set of dynamic literal triggers [11]. Ideally a static as-
signment trigger would be used for P1, which would trigger the propagator when y is assigned.
However, assignment triggers are outside the scope of this paper.
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{i}), the second disjunct of P1 may be satisfied. This disjunct is supported by
a set of |σ(X[i])| literals of the form 〈k + 2, a〉, one literal for each a ∈ σ(X[i]).
This is evidence for σ(X[i]) ⊆ σ(z) since k + 2 is the index of z in the schema
(X · y · z).

Property P2 is supported iff σ(X[i]) ∩ σ(z) is non-empty for every i ∈ σ(y).
The support is 2m literals where m = |σ(y)|, two for each i ∈ σ(y). These
have the form 〈i, a〉 and 〈k + 2, a〉 where a is some value in σ(z). If there is no
support, then σ(X[i]) ∩ σ(z) = ∅.

Property P3 is supported iff σ(z) ⊆
⋃

i∈σ(y) σ(X[i]). The support is a set of
2m literals where m = |σ(z)|, two for each a ∈ σ(z). The literals have the form
〈i, a〉 and 〈k + 1, i〉 where i is some value in σ(y). If there is no support then
for some a ∈ σ(z), for all i a 6∈ σ(X[i]).

It is easy to prove that the three properties act as intended:

Theorem 3. Given a signature σ, we have:

• (1) is true if and only if ∃S : P1[σ](S)

• (2) is true if and only if ∃S : P2[σ](S)

• (3) is true if and only if ∃S : P3[σ](S)

Proof. The if directions are all easy. For (1), if the first disjunct of P1 is satisfied
then |σ(y)| > 1 so (1) is vacuous. If the second disjunct is satisfied, it ensures
that σ(X[i]) ⊆ σ(z). If P2(S) is true then, for each element of the domain of the
index variable y, there is a value a ∈ σ(X[i]) ∩ σ(z), establishing (2). If P3(S)
is true then, for any value a in σ(z) there is a value i of the index variable with
a ∈ σ(X[i]), proving that (3) holds.

For Only if, first suppose that (1) is true. If |σ(y)| > 1 then we can find i, j
to satisfy the first disjunct of P1, and set S = {〈k + 1, i〉, 〈k + 1, j〉}. Otherwise,
we have σ(y) = {i} and σ(X[i]) ⊆ σ(z). We can thus set S = {〈k + 2, a〉|a ∈
σ(X[i])}.

Suppose (2) is true. We have σ(X[i]) ∩ σ(z) 6= ∅ for each i ∈ σ(y). So
for each i there is thus some ai with ai ∈ σ(X[i]) ∩ σ(z). We can thus set
S = {〈i, ai〉, 〈k + 2, ai〉|i ∈ σ(y)}.

Suppose (3) is true. Since σ(z) ⊆
⋃

i∈σ(y)

σ(X[i]), we have for each a ∈

σ(z) some ia such that ia ∈ σ(y) and a ∈ σ(X[ia]). We can thus set S =
{〈ia, a〉, 〈k + 1, ia〉|a ∈ σ(z)}.

4.1.2 P-Admissibility and Backtrack Stability

Following our methodology, we first prove that properties P1, P2 and P3 are
p-admissible.

Lemma 13. [P1 is p-admissible]

P−admissible(P1)
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Proof. We case split on the disjuncts of P1. The first disjunct requires distinct
values i, j ∈ σ(y). Assuming S ⊆ 〈X · y · z〉−tupleσ′ , i, j ∈ σ′(y) because the two
necessary literals are in S, therefore P1[σ′](S) holds.

For the second disjunct of P1, since σ′ v σ we can see that σ′(y) ⊆ σ(y)
and ∀i. σ′(X[i]) ⊆ σ(X[i]), therefore all necessary literals are present in S and
P1[σ′](S) holds.

Lemma 14. [P2 is p-admissible]

P−admissible(P2)

Proof. Since σ′ v σ, σ′(y) ⊆ σ(y) therefore there are fewer (or the same)
values of i to consider under σ′. Assuming S ⊆ 〈X · y · z〉−tupleσ′ , for each i,
〈k + 2, a〉 ∈ S therefore a ∈ σ′(z) and P2[σ′](S) holds.

Lemma 15. [P3 is p-admissible]

P−admissible(P3)

Proof. The proof is the same as above, with z and y exchanged, i and a ex-
changed, and k + 1 substituted for k + 2.

P1, P2 and P3 are not backtrack stable according to Def. 13. However, P2 and
P3 can be straightforwardly reformulated to be backtrack stable: the universal
quantifier is expanded to a conjunction using the initial signature, then each
conjunct is made into an individual property, subscripted by i or a respectively.
For example, P2 is transformed as follows.

P2,i[σ](S)
def
= i ∈ σ(y) ⇒ (∃a : σ(z). 〈i, a〉 ∈ S

∧ 〈k + 2, a〉 ∈ S)

Each of these smaller properties then requires two literals as support, or (if
i /∈ σ(y)) the empty set, and they are backtrack stable. P1 can be reformulated
to be backtrack stable, by expanding out the universal quantifiers in the same
way as for P2. P1 would be subscripted by i and a, ∀i : σ(y) replaced with
i ∈ σ(y) ⇒, and the same for ∀a : σ(X[i]). These reformulations give a large
set of properties, so for the sake of simplicity we use the original P1, P2 and P3.

4.1.3 Proofs of the Propagation Schema

Now that we have established p-admissibility for each of P1, P2 and P3 we prove
the instances of the propagator schema for each of them.

Theorem 4 (P1 Support Generation). We consider P1 on constraint Element(X, y, z).
We claim that Def. 19 (propagation schema) holds for P1.
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Proof. Let C be an element constraint of the form Element(X, y, z) where
|X| = k and let σ and σ1 be signatures mapping the variables in X.y.z to
their respective domains. We claim the following:

∀S ∈ support〈X,σ〉(P1).
∀σ1 v σ.
nonempty(σ1) ⇒
S 6∈ support〈X,σ1〉(P1) ⇒
(∃σ2 v σ1. nonempty(σ2) ∧
∃S′ ∈ support〈X,σ2〉(P1).
∀σ3. σ2 @ σ3 v σ1 ⇒ support〈X,σ3〉(P1) = ∅)

∨
(
∀σ2 v σ1. nonempty(σ2) ⇒ support〈X,σ2〉(P1) = ∅

)
The proof consists of constructing σ2 and S′ for all cases, given σ1. When

σ2 @ σ1, we also prove that σ2 is maximal (i.e. there exists no σ3).

|σ1(y)| > 1 ⇒
S′ = {〈k + 1,min(σ1(y))〉, 〈k + 1,max(σ1(y))〉} ∧ σ2 = σ1

σ1(y) = {i} ⇒
σ2(X[i]) = σ1(z) ∩ σ1(X[i])
∧ (∀x ∈ 〈X · y · z〉. x 6= X[i] ⇒ σ2(x) = σ1(x))
∧ S′ =

⋃
b∈σ2(X[a]){〈k + 2, b〉}

For the second case above, it remains to be shown that σ2 is nonempty and
maximal. We prove that σ2 is maximal. For all values b ∈ σ2(X[a]), a supporting
literal 〈z, b〉 is required in S′. Therefore, P1 implies that σ2(X[a]) ⊆ σ2(z), hence
σ2(X[a]) = σ1(z) ∩ σ1(X[a]) is maximal. For all other variables w, σ2(w) =
σ1(w), therefore σ2 is maximal under v.

If σ2(X[i]) = ∅ (i.e. σ1(z) ∩ σ1(X[i]) = ∅), σ2 is empty. Since σ2 is the
maximal one which satisfies P1, the second disjunct of the consequent of the
schema holds.

Theorem 5 (P2 Support Generation). We consider P2 on constraint Element(X, y, z).
We claim that Def. 19 (propagation schema) holds for P2.

Proof. Let k = |X|, and σ1 and σ2 be signatures mapping the variables in X.y.z
to their respective domains. The proof is by constructing σ2 and S′ to satisfy
the first disjunct of the consequent of the schema.

σ2(y) = {i ∈ σ1(y) | ∃a ∈ σ1(z). a ∈ σ1(X[i])}
∀x ∈ 〈X.z〉 σ2(x) = σ1(x)

S′ =
⋃

i∈σ2(y){〈i, a〉, 〈k + 2, a〉}

σ2 is maximal: the constructed σ2 is identical to σ1 except for the set σ2(y). For
each value i of σ2(y), P2 requires that there exists a value a in the domains of
X[i] and z. σ2(y) is the maximal subset of σ1(y) which satisfies this condition,
therefore σ2 is maximal under v.

If σ2 is empty, then (since σ2 is maximal) the second disjunct of the conse-
quent of the schema holds.
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Theorem 6 (P3 Support Generation). We consider P3 on constraint Element(X, y, z).
We claim that Def. 19 (propagation schema) holds for P3.

Proof. Let k = |X|, and σ1 and σ2 be signatures mapping the variables in X.y.z
to their respective domains. The proof is by constructing σ2 and S′ to satisfy
the first disjunct of the consequent of the schema.

σ2(z) = {a ∈ σ1(z) | ∃i ∈ σ1(y). a ∈ σ1(X[i])}
∀x ∈ X.y. σ2(x) = σ1(x)

S′ =
⋃

a∈σ2(z){〈i, a〉, 〈k + 1, i〉}

The constructed σ2 is identical to σ1 except for the set σ2(z). For each value
a of σ2(z), P3 requires that there exists an index i such that a ∈ σ2(X[i]) and
i ∈ σ2(y). σ2(z) is the maximal subset of σ1(y) which satisfies this condition,
therefore σ2 is maximal under v.

If σ2 is empty, then (since σ2 is maximal) the second disjunct of the conse-
quent of the schema holds.

4.1.4 Soundness and Completeness

Now we prove that the conjunction of the element support properties (Def. 21)
is sound and complete using the semantics of element (Def. 20). We will write
Pe for the set {P1, P2, P3}.

Lemma 16. [Pe is sound]

∀σ. singleton(σ) ⇒
(support〈X,σ〉(Pe) ⇒ [[element(X, y, z)]]σ 6= ∅)

Proof. Let σ be an arbitrary singleton signature. Since σ is a singleton it encodes
a single tuple (say τ). Assume support〈X,σ〉(Pe) holds. That is, supports for
P1[σ], P2[σ] and P3[σ] are non empty. Now, consider P1. Since |σ(y)| = 1
we know the first disjunct can not hold and so we must have support for the
second. Since σ(y) 6= ∅ we know that there is a single tuple supporting the
second disjunct of P1 and since |σ(X[i])| = 1, to support P1, τ must have the
form 〈x1, · · · , xi−1, a, xi+1, · · · , xk, i, a〉. This same tuple supports P2 and P3.
This tuple is clearly in [[element(X, y, z)]]σ and so soundness holds.

Theorem 7. [{P1} complete]

∀σ. [[element(X, y, z)]]σ 6= ∅ ⇒
∃σ′ v σ. [[element(X, y, z)]]σ′ = [[element(X, y, z)]]σ
∧ support〈Y,σ′〉({P1})

Proof. Assume [[element(X, y, z)]]σ 6= ∅ for arbitrary σ. If support〈Y,σ〉(P1) 6= ∅
then the theorem is trivially true, so we assume that support〈Y,σ〉(P1) = ∅
and construct a signature σ′ that does not eliminate any solutions from the
constraint and which is supports P1.
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The first disjunct of P1 is supported whenever |σ(y)| > 1 and so if P1 is not
supported σ(y) = {i} or σ(y) = ∅; by assumption no domain of σ is empty and
so σ(y) = {i}. To falsify the second disjunct of P1 when σ(y) = {i}, there must
be some a ∈ σ(X[i]) such that the literal 〈k + 2, a〉 can not be supported. This
happens for any a ∈ σ(X[i]) where a 6∈ σ(X[k + 2]). Let σ1 be a signature that
is just like σ except that

σ1(X[k + 2]) = σ(X[k + 2]) ∩ σ(X[i])

Since the constraint is non-empty the intersection is non-empty. The second
disjunct of P1 supports this new signature so it supports P1. Clearly σ1 v σ
and so it only remains to show that the meaning of the constraint does not
change under the new signature. It is enough to show that

[[element(X, y, z)]]σ ⊆ [[element(X, y, z)]]σ1

Assume τ ∈ [[element(X, y, z)]]σ. Then τ ∈ X−tupleσ is coherent and is of the
form

τ = 〈x1, · · · , xi−1, a, xi+1, · · · , xk, i, a〉
Since τ is an X−tupleσ, we know τ [j] ∈ σ(X[j]) for all j ∈ {1..k + 2}. To
construct σ1 we simply eliminated elements b ∈ σ(X[k + 2]) such that b 6∈
σ(X[i]) so since a ∈ σ(X[i]), a ∈ σ1(X[i]) and a ∈ σ1(X[k + 2]) and so τ ∈
[[element(X, y, z)]]σ1 .

Theorem 8. [{P2} complete]

∀σ. [[element(X, y, z)]]σ 6= ∅ ⇒
∃σ′ v σ. [[element(X, y, z)]]σ′ = [[element(X, y, z)]]σ
∧ support〈Y,σ′〉({P2})

Proof. Note that if P2[σ] is unsupported then σ(X[i]) ∩ σ(z) = ∅. But since
we assume [[element(X, y, z)]]σ 6= ∅, this is impossible and so P2[σ] must be
supported and completeness trivially holds.

Theorem 9. [{P3} complete]

Proof. If there is no support for P3[σ] then

∃a ∈ σ(z). ∀i ∈ σ(y). a 6∈ σ(X[i])

Just let σ′ be the same as σ except that we remove all such elements from the
domain of z in σ′.

σ′(z) = σ(z) ∩
⋃

i∈σ(y)

σ(X[i])

Clearly σ′(z) ⊂ σ(z). The elements that have been removed could not be
included in an solution of [[element(X, y, z)]]σ and so we have lost no answers.
Thus, we have shown P3 is complete.

Corollary 5. [Pe is complete]

Proof. The completeness of Pe follows from local completeness (Thm. 1) and
the completeness of P1, P2 and P3.
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4.1.5 Discussion

The propagators derived here to enforce GAC on the element constraint are not
identical to those presented by Gent et al. [11]. However they do follow the same
general scheme. The main difference is that the propagators here use dynamic
literal triggers in place of watched literals and a static assignment trigger. The
concept of generalized support has allowed us to create these propagators within
one formal framework.

4.2 New Watched Literal Propagators for Occurrence Con-
straints

The occurrenceleq(X, a, c) and occurrencegeq(X, a, c) constraints restrict
the number of occurrences of a value in a vector of variables. If occ(X, a) is
the occurrences of value a in X, occurrenceleq states that occ(X, a) ≤ c and
occurrencegeq states that occ(X, a) ≥ c.

Occurrence constraints arise in many problems. For example, in a round-
robin tournament schedule, it may be required that no team plays more than
twice at each stadium, represented by occurrenceleq constraints. In car se-
quencing (car factory scheduling), occurrence constraints may be used to avoid
placing too much demand on a work-station. Both problems are described on
CSPLib [14].

First we present the formal semantics of occurrenceleq and occurrencegeq,
followed by support properties for the two constraints.

Definition 22. [Occurrenceleq Semantics]

[[occurrenceleq(X, a, c)]]σ = 〈X, RX〉 where
RX = { τ ∈ X−tupleσ |

|{i | τ [i] = a}| ≤ c }

Definition 23. [Occurrencegeq Semantics]

[[occurrencegeq(X, a, c)]]σ = 〈X, RX〉 where
RX = { τ ∈ X−tupleσ |

|{i | τ [i] = a}| ≥ c }

4.2.1 Support Properties

Definition 24. [Occurrence Support Properties] Given a schema X, value
a and occurrence count c, Pl is the support property for the occurrenceleq
constraint, and Pg is the property for occurrencegeq.

Pl[σ](S)
def
= (∃I ⊆ {1 . . . |X|}. |I| = (|X| − c + 1)∧

∀i ∈ I.∃b 6= a. 〈i, b〉 ∈ S)
∨
(∃I ⊆ {1 . . . |X|}. |I| = (|X| − c) ∧
∀i ∈ I. a /∈ σ(X[i]))
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Pg[σ](S)
def
= (∃I ⊆ {1 . . . |X|}. |I| = (c + 1) ∧

∀i ∈ I. 〈i, a〉 ∈ S)
∨
(∃I ⊆ {1 . . . |X|}. |I| = c ∧
∀i ∈ I. 6 ∃b ∈ σ(X[i]). b 6= a)

Pg is slightly simpler, so we consider it first. There are two forms of support
which can satisfy Pg, corresponding to the two disjuncts. The first disjunct can
be satisfied if c + 1 variables have a in their domain, by a support set which
contains c + 1 literals mapping distinct variables to a. The second disjunct is
satisfied if c variables are set to a. In this case, S may be empty.

When it is no longer possible to satisfy the first disjunct, a corresponding
propagator must narrow the domains to satisfy the second disjunct, by setting
c variables to a. At this point, the constraint is trivially satisfied so S may be
empty.

Pl is very similar, and essentially works in the same way except that it
requires |X| − c non-occurrences of a rather than c occurrences of a.

4.2.2 P-Admissibility and Backtrack Stability

We now prove that both properties meet the p-admissibility requirement.

Theorem 10. [Pl P-Admissible] Pl is p-admissible according to Def. 12.

Proof. We case split on the disjuncts of Pl. The first disjunct does not refer
to σ′, and (since S has not changed) it remains true. The second disjunct is
satisfied by S = ∅ only when the constraint is a tautology. Since a /∈ σ(X[i])
and σ′ v σ, then a /∈ σ′(X[i]) and the property remains true.

Theorem 11. [Pg P-Admissible] Pg is p-admissible according to Def. 12.

Proof. We case split on the disjuncts of Pg. The first disjunct does not refer
to σ′, and (since S has not changed) it remains true. The second disjunct is
satisfied by S = ∅ only when the constraint is a tautology. Since σ(X[i]) ⊆ a
and σ′ v σ, then σ′(X[i]) ⊆ a and the property remains true.

In order for the two propagators to make use of watched literals, we must
prove that both properties are backtrack stable. The watched literals repre-
senting a support are not backtracked, so a support must remain a support as
search backtracks (and the domains are widened).

Theorem 12. [Occurrence Backtrack Stable] The two occurrence support
properties are backtrack stable according to Def. 13.

Proof. For both properties, the second disjunct is irrelevant because it is sat-
isfied by S = ∅ only when the constraint is a tautology. The support ∅ is not
required to be backtrack stable. In both properties the first disjunct requires a
fixed number (|X|−c+1 or c+1) of literals to be in S (with variable indices I).
It is clear that for any σ′ where σ v σ′, the same I may be used to discharge
the existential, and S will be valid w.r.t σ′.
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4.2.3 Proofs of the Propagation Schema

Now we give a constructive proof of the propagation schema for Pl. Recall that
the computational content of the proof is a propagator for Pl.

Theorem 13 (Pl Support Generation). We consider Pl on constraint occurrenceleq(X, a, c).
We claim that Def. 19 (propagation schema) holds for Pl.

Proof. Let σ1 and σ2 be signatures mapping the variables in X to their respec-
tive domains. S and σ1 v σ are universally quantified in the schema, therefore
we use them as givens. We assume that S /∈ support〈X,σ1〉(Pl) and prove the
consequent by constructing S′ and σ2. By lemma 12, S 6= ∅. The second dis-
junct of Pl would be satisfied by S = ∅, therefore S corresponds to the first
disjunct of Pl.

S contains one literal for each index in I. At least one item in S is invalid
(by the antecedant). The proof proceeds by constructing I ′ and corresponding
S′ and σ2 to satisfy the first disjunct of Pl if possible. Otherwise, the second
disjunct is satisfied by constructing σ2 and S′ = ∅.

I1 = {i | 〈i, b〉 ∈ S ∧ (∃b 6= a. b ∈ σ1(X[i]))}
I2 = {i | i /∈ I1 ∧ (∃b 6= a. b ∈ σ1(X[i]))}
I3 = I1 ∪ I2

|I3| > (|X| − c) ⇒ (I ′ ⊆ I3 ∧ |I ′| = (|X| − c + 1)
∧ S′ = {〈i, b〉 | i ∈ I ′

∧ b ∈ σ1(X[i]) ∧ b 6= a}
∧ σ2 = σ1)

|I3| = (|X| − c) ⇒ S′ = ∅ ∧
(∀i /∈ I3. σ2(X[i]) = σ1(X[i])) ∧
(∀i ∈ I3. σ2(X[i]) = σ1(X[i]) \ {a})

σ2 is maximal in both of the above cases: in the first case, σ2 = σ1, and
in the second case only the necessary values are removed to satisfy the second
disjunct of Pl.

When |I3| < (|X| − c), Pl is false and remains false for all σ2 v σ1 (by
construction of I1 and I2). Hence the second disjunct of the consequent of the
schema is satisfied.

The proof explicitly re-uses variable indices but not b values from S. This fits
well with Minion’s watched literal implementation, which notifies the propagator
once for each invalid literal in S. However, the proof does not require the use
of watched literals, it allows many concrete implementations and may be used
with any propagation-based solver.

It is straightforward to prove the propagation schema for Pg, based on the
proof for Pl.

Theorem 14 (Pg Support Generation). We consider Pg on constraint occurrencegeq(X, a, c).
We claim that Def. 19 (propagation schema) holds for Pg.
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Proof. The proof is the same as the proof of Pl, with c substituted for |X| − c
in all places, and (a ∈ σ1(X[i])) substituted for (∃b 6= a. b ∈ σ1(X[i])), and {a}
substituted for σ1(X[i]) \ {a}.

This proof also re-uses variable indices from S and thus fits well with Min-
ion’s watched literal infrastructure.

4.2.4 Soundness and Completeness

Now we prove the soundness and completeness of both properties, and hence
the correctness of the two propagators.

Lemma 17. [Occurrenceleq Sound]

∀σ. singleton(σ) ⇒
(support〈X,σ〉(Pl) ⇒ [[occurrenceleq(X, a, c)]]σ 6= ∅)

Proof. Let σ be an arbitrary singleton signature. Since σ is a singleton it encodes
a single tuple (say τ). Assume support〈X,σ〉(Pl) holds. Let b be the number of
occurrences of a in τ .

Since σ is singleton, the first disjunct of Pl implies the second disjunct.
(Assume I satisfies the first disjunct. I ′ ⊆ I where |I ′| = (|X| − c) is used
to satisfy the second disjunct.) Therefore support〈X,σ〉(Pl) implies the second
disjunct of Pl is satisfied (by the empty support). Hence, at least |X| − c
elements of τ are not equal to a, so b ≤ c. By Def. 22, RX = {τ} and the lemma
holds.

The proof that Pg is sound proceeds by the same argument, with |X| − c
replaced with c, ‘not equal to a’ replaced with ‘equal to a’ and ≤ replaced with
≥.

Lemma 18. [Occurrenceleq Complete]

C = occurrenceleq(X, a, c)
∀σ. [[C]]σ 6= ∅ ⇒
∃σ′ v σ. [[C]]σ ⊆ [[C]]σ′

∧ support〈X,σ′〉(Pl)

Proof. Assume [[C]]σ 6= ∅ for arbitrary σ. If support〈X,σ〉(Pl) then σ′ = σ and
completeness trivially holds. Otherwise, by the proof of the propagation schema
for Pl, there exists a σ′ @ σ (named σ2 there) such that support〈X,σ′〉(Pl). Since
σ′ 6= σ, σ′ is constructed in the case where |I3| = (|X| − c). σ′ is the same as
σ except for indices I3, where the value a is removed if present. For all i /∈ I3,
σ(i) = {a} therefore corresponding elements of all tuples τ ∈ [[C]]σ also equal a.
No other element of τ can be a (by Def. 22), therefore no tuples are invalidated,
[[C]]σ′ = [[C]]σ and the lemma holds.
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Once again, the proof that Pg is complete follows the same argument. For
Pg, |I3| = c and for all indices i ∈ I3, σ′(i) = {a}. For other indices, the
constructed σ′ is equal to σ and does not contain a. By Def. 23, all tuples
τ ∈ [[C]]σ must equal a at all indices I3, therefore no tuples are invalidated
under σ′ and [[C]]σ′ = [[C]]σ.

4.2.5 Empirical Evaluation

The occurrence propagators implemented in Minion 0.12 (and, to the best of
our knowledge, all other solvers) use static triggers. Therefore they may be
invoked when support has not been lost. By comparison, these watched literal
propagators are only invoked when one of the literals in the support is lost.

We implemented the occurrenceleq(X, a, c) propagator described by the
proof of Theorem 13 in Minion 0.12. The propagator re-uses literals 〈i, b〉 from
S when constructing S′, allowing it to leave the corresponding watched literals
in place. When a literal 〈i, b〉 in S is invalid, the propagator scans through
X[{i..|X| − 1}] then X[{0..i− 1}] to find a replacement literal. The propagator
(referred to as WatchedProp) was constructed from the proof in less than 3
hours programmer time.

We compare against the existing occurrenceleq propagator (StaticProp)
provided in Minion 0.12, which uses static assignment triggers (i.e. the propa-
gator is notified when any variable in scope becomes assigned).

We constructed a benchmark CSP as follows. We have a vector of variables
X where |X| = 100, and initial signature σ where ∀i. σ(X[i]) = 1, 2. The
constraints are as follows. ∀i ∈ 80..98. (X[i] 6= X[i + 1]), and 100 copies of the
constraint occurrenceleq(X, 1, 90). The occurrence constraint is duplicated
to allow accurate measurement of its efficiency. This CSP is solved to find all
solutions.

The solver branches on variables in X in index order, and branches for 1
before 2. Once variable X[80] is assigned by search, the remaining variables are
assigned by propagation on the 6= constraints. As search progresses, the value
of each variable in X[{80..99}] alternates between 1 and 2.

WatchedProp watches 11 literals of the form 〈i, 2〉. Early in the search, most
of these literals will necessarily involve variables X[{80..99}], a pathological case
for WatchedProp. As search progresses, more variables in X[{0..79}] will be
assigned 2, therefore the performance of WatchedProp should improve.

Table 1 shows that StaticProp scales approximately linearly in the number
of search nodes explored, but WatchedProp speeds up as search progresses.
With a limit of 100 million nodes, WatchedProp is more than twice as fast as
StaticProp.

5 Conclusions and Future Work

This paper has made a number of contributions to the formal study of constraint
solving, in particular of propagation in constraint solving. We have shown that
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Search node limit (n) WatchedProp time (s) StaticProp time (s)
100,000 1.72 1.20

1,000,000 12.40 11.54
10,000,000 86.13 120.31

100,000,000 518.81 1205.07

Table 1: Times for the WatchedProp and StaticProp algorithms, median of 16
runs on a dual processor Intel Xeon E5520 at 2.27GHz.

we can define formally a notion of generalized support, which generalizes the
standard notion of support in constraint satisfaction. This generalization allows
us to show that propagators which might not have been seen as using support.
Since our definition is so general, we introduced the notion of “p-admissible”
support properties. The definition of p-admissibility corresponds to the use of a
particular kind of trigger within the constraint solver. Triggers are events which
cause propagators to be called within the solver, and p-admissibility guarantees
that any event which might cause support to be lost is observed by some trigger.
In this paper we have focussed on a definition of p-admissibility corresponding to
dynamic literal triggers. We have given a formal description of constraint propa-
gation. Given a p-admissible support property, we have defined the propagation
schema. A constructive proof of the propagation schema shows how a propa-
gator can be constructed to find new support when support is lost. We have
given examples of this for the specific constraints “element”, “occurrenceleq”
and “occurrencegeq”.

Our work on propagators is not merely a formalisation of existing standard
usage in constraint programming. We are not aware of a definition of support as
general as ours within constraints. The notion of generalized support should be
directly useful in constraints, enabling a much better understanding of propaga-
tion algorithms in the constraint community. Our hypothesis is that almost all
propagators used in constraint solvers can be seen as reasoning with some form
of support property, even though most propagators are not currently presented
as doing so. Once this hypothesis is confirmed, we can present propagation al-
gorithms in a much more uniform fashion, as well as building constraint solvers
to exploit these propagation algorithms. Thus our intended future work con-
sists of two strands: first continuing the formal development we have started
here, and second demonstrating the application of our work to the constraints
community.
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