
Extracting Recursion Operators in Nuprl’s Type
Theory

James L. Caldwell?

Department of Computer Science, University of Wyoming, Laramie Wyoming
jlc@cs.uwyo.edu

Abstract. In this paper we describe the extraction of “efficient” recur-
sion schemes from proofs of well-founded induction principles. This is
part of a larger methodology; when these well-founded induction prin-
ciples are used in proofs, the structure of the program extracted from
the proof is determined by the recursion scheme inhabiting the induction
principle. Our development is based on Paulson’s paper Constructing re-
cursion operators in intuitionistic type theory, but we specifically address
two possibilities raised in the conclusion of his paper: the elimination of
non-computational content from the recursion schemes themselves and,
the use of the Y combinator to allow the recursion schemes to be extracted
directly from the proofs of well-founded relations.

1 Introduction

In this paper we describe the formal derivation, in Nuprl, of a number of induc-
tion principles having efficient general recursion schemes as their computational
content. The development described here supports the larger Nuprl project goals
of developing practical proof-based programming methodologies.

In a widely cited paper [11], Paulson derived recursion schemes from a theory
of well-founded relations. In the final section of that paper, Paulson suggests
some alternative approaches which would accomplish the following goals.

i.) To eliminate non-computational content from the programs extracted from
proofs that use the well-founded induction principles. This makes for more
natural and readable extracted programs.

ii.) To use the fixed point combinator Y as the extract of the proofs of the
induction principles directly thereby avoiding the introduction of proof rules
for the wfrec operator and obviating the need to extend the evaluator.

We apply both these techniques in the development described here.
To accomplish (i.) we use Nuprl’s set and intersection types to specify the

type of well-founded relations. Using Allen’s [1] terminology, these are non-
propositional types, i.e. their inhabitants do not contain all the computational
content required for proofs of their own well-formedness. A number of authors
? This research was supported by NSF CCR-9985239

have rejected non-propositional types [12, 14], especially the set type, and have
generally concluded that they are either difficult to use or not useful. Thompson
in particular has argued that, under lazy evaluation semantics, the fact that pro-
grams extracted from constructive proofs that do not use the set type typically
have large parts that are computationally insignificant does not matter. Under a
lazy computation system, the computationally insignificant parts of the program
will never be evaluated. We disagree completely. If program extraction is to work
in practice, the extracted programs must be comprehensible. In programming
practice, we care about more than just correctness, we are vitally interested in
intensional properties of programs. Do we have an efficient algorithm? Complex-
ity analysis, and program transformations are virtually impossible to apply to
programs where vast portions of the text are computationally insignificant. If
we cannot read and analyse the extracted program how can we tell if we have
the algorithm we intended? In [4], a type theoretic development of the conflict
directed back-jump search algorithm is described. The first program extracted
from the specification was (by virtue of the fact that it was extracted from a
proof of the specification) a “correct” search procedure, but the extracted pro-
gram was not conflict directed back-jump. This was only discovered by analysing
the extracted program. Modifications to the proof yielded the desired algorithm.

Addressing point (ii.). Nuprl admits definitions of general recursive functions
via the fixed point combinator Y. This is possible because Nuprl’s underlying
computation system is an untyped λ calculus. This possibility for the Nuprl type
system was first noted by Allen in 1984 who realized that applications of Y could
be assigned a type. Based on Allen’s proof, Howe [6, 7] developed the current
methodology for defining and using general recursive functions in Nuprl. Jackson
[8, 9] incorporated Howe’s methodology into his tactics for Nuprl 4.

We will only present details of Nuprl’s type theory here as necessary. A hyper-
text account of the type theory is available online [2] and the reader is urged to
examine this document. Most of the notation used here will be familiar. With
only very minor differences, the definitions and theorems presented in this paper
appear as they do on the screen in the Nuprl system. It should be noted that
the display form of any construct in the Nuprl system is under user control and
so may differ from user to user as notational tastes often do.

2 Efficient Induction Schemes

Nuprl provides support (in the form of proof rules) for inducting over built-in
types of numbers and lists. The extracts of these induction rules are primitive
recursion schemes. Induction on recursive types defined via the rec constructor
is also supported by proof rules. Induction on rec types extracts a recind form.
Explicit definition of functions by recind has been superseded in Nuprl practice
by definitions using Y.

The available forms of induction are not fixed, new forms can be added to
the system by proving the new principle. The extract of the proof is a recursion
scheme. Of course, any proof will have as its extract a correspondingly correct

2

recursion scheme, but we have gone to some lengths to insure our recursion
schemes are free of non-computational content. This approach differs somewhat
from Paulson’s where a rule for well-founded induction is added to the proof
system. Here, we prove a relation satisfies the definition of well-foundedness and
extract the recursion principle from the proof. However, there are limits on the
approach which will be discussed in the final section of this paper.

2.1 Well-founded relations and recursion schemes

A type of well-founded binary relations R over a type A is defined in the Nuprl
standard library as follows.

WellFnd{i}(A;x,y.R[x;y]) def=
∀P:A→P{i}.(∀j:A.(∀k:A.R[k;j] ⇒ P[k]) ⇒ P[j]) ⇒ ∀n:A.P[n]

Before describing this definition we introduce Nuprl term structure. Nuprl terms
are of the form <opid>{<parms>}(<bterms>) where <opid> is the name of the
operator, <parms> is a possibly empty, comma separated list of parameters, and
<bterms> is a, possibly empty, semi-colon separated list of bound terms. A bound
term is of the form <bvars>.<term> where <bvars> is a, possibly empty, comma
separated list of variable names and <term> is a term. The variable names in
the list <bvars> are bound in <term>. In this term language, λx.M is a display
form for the Nuprl term lambda(x.M) and ∀x:T.M is a display for the term
all(T;x.M).

The display form WellFnd{i}(A;x,y.R[x; y]) indicates that the definition
is parameterized by the polymorphic universe level i and that it takes two ar-
guments, the first is a type and the second is the term x,y.R[x;y] where x and
y are bound in the application R[x;y]. The definition specifies that a relation R
over a type A is well-founded if, for every property P of A satisfying the induc-
tion hypothesis ∀j:A.(∀k:A. R[k;j] ⇒ P[k]) ⇒ P[j], we can show P[n]
is true of every element n∈A.

The following lemma establishes that the natural numbers are well-founded
over the ordinary less than relation. The extract of the proof is a recursion
operator for the natural numbers 1

` WellFnd{i}(N;x,y.x < y)
Extraction: λP,g.(letrec f(i) = g(i)(λj,p.f(j)))

To better understand the type of the extract, consider the goal after unfolding
the definition of well-founded.

` ∀P:N→P{i}.(∀i:N.(∀j:N.j < i ⇒ P[j]) ⇒ P[i]) ⇒ ∀i:N.P[i]

In the extracted term λP,g.(letrec f(n) = g(i)(λj,p.f(j))), g corresponds
to the computational content of the induction hypothesis. In this scheme, the
function g takes two arguments, the first being the principal argument on which
1 For readability we display the application Y(λf,x.M) as letrec f(x) = M.

3

the recursion is formed, the second argument being a function inhabiting the
proposition (∀j:N. j < i ⇒ P[j]) i.e. a function which accepts some ele-
ment j of type N along with evidence for the proposition j < i and which pro-
duces evidence for P[j]. In this scheme, the evidence for j < i is contained in
the argument p, the innermost λ-binding. The variable p occurs nowhere else in
the term and so, clearly, does not contribute to the actual computation of P[j];
instead it is a vestige of the typing for well-founded relations. The argument
p is not part of what one would ordinarily consider part of the computation,
certainly no programmer would clutter his programs with an unused argument.

Before we introduce an alternative typing of well-founded relations we briefly
introduce Nuprl’s comprehension subtypes (set types) and intersection types and
discuss decidability, stability and squash stability.

2.2 Comprehension Subtypes and Intersection Types in Nuprl

Under the propositions-as-types interpretation, the implication φ ⇒ ψ is just
encoded as the independent function type φ → ψ. The implication is true if
there is some term λx.M inhabiting the type φ → ψ. The conjunction φ ∧ ψ is
encoded as the Cartesian product ψ × ψ. The conjunction is true if there is an
pair 〈a, b〉 inhabiting φ× ψ.

Methods of generating efficient and readable extracts by the use of com-
prehension subtypes (as opposed to the existential) were presented in [3]. We
reiterate the main points here.

x:A×B[x] is the dependent product type (or Sigma type Σx:A.B[x]) consisting
of pairs <a,b> where a∈A and b∈B[a/x]. Two pairs <a,b> and <a’,b’> are
equal in x:A×B[x] when a=a’∈A and b=b’∈B[a/x]. Under the propositions
as types interpretation, this is existential quantification and so is sometimes
displayed as ∃x:A.B[x].

{y:T|P[y]} denotes a comprehension subtype (or set type) when T is a type and
P[y] is a proposition possibly containing free occurrences of the variable y.
Elements x of this type are elements of T such that P[x/y] is true. Equality
for set types is just the equality of T restricted to those elements in the set
type.

In the case of an existential, <a,p>∈∃x:T.P[x], the second element of the
pair is the evidence for P[a]. In the context of program extraction from a ∀∃
theorem, p is the computational content of the verification that P[a] in fact
holds and is often computationally insignificant. Notice that the inhabitants of
{x:T|P[x]} are simply the projections of the first elements of the inhabitants
of ∃x:T.P[x].

y:A→B[y] is the dependent function type (or Pi type Πx:A.B) containing func-
tions with domain of type A and where B[y] is a term and y is a variable
possibly occurring free in B. λx.M ∈ y:A→B[y] when a∈A, B[a/y] is a
type, and M[a/x]∈B[a/y]. These are the functions whose range may depend

4

on the element of the domain applied to. Under the propositions as types
interpretation this is universal quantification and so is sometimes displayed
as ∀x:A.B[x].

∩x:T.P[x] denotes the intersection type. An element a is a member of∩x:T.P[x]
if for every z∈T, a∈P[z/x] (hence the name intersection type.) Informally
one may think of it as a function type where the domain has been discarded.

Thus, for our purposes, intersection types can be used to type polymorphic
functions e.g. for list functions such as append that do not depend on the type
of elements in the list, append∈∩T:U{i}.(T List) →(T List).

2.3 Decidability, the Squash Type, and Squash Stability

Decidability for an arbitrary proposition P is not constructively valid. However,
for many P it is uniformly decidable (i.e. there is an algorithm to decide) which
of P or ¬P holds.

Dec{P} def= P ∨¬P

A squashed type (or proposition) is one whose computational content has
been discarded. The squash operator is defined in Nuprl by a set type as follows:

↓(T) def= {True| T}

Thus for any type (proposition) T, ↓(T) is inhabited if and only if T is, and
furthermore, has as its only inhabitant the term Axiom (the sole inhabitant of
the proposition True.) The operator is called squash because it identifies all
inhabitants of T with the constant term Axiom.

If we can reconstruct an inhabitant of a proposition P simply from knowing
P is true (i.e. ↓(P) is inhabited) we say P is squash stable.

SqStable{P} def= ↓(P) ⇒ P

Squash stability is weaker even that stability (¬¬P⇒P) and is related to sta-
bility in that they are equivalent for decidable propositions. Squash stability is
precisely the condition that Paulson discusses in the final section of his paper.

Many propositions are squash stable. Any stable or decidable proposition is
squash stable. Equality on integers and the order relations on the integers are
decidable and thus are also squash stable. Type membership is squash stable as
is type equality (to see this recall that membership and equality goals are only
inhabited by the constant term Axiom, the only inhabitant of True.)

2.4 Squash stable well-founded relations and recursion operators

As an alternative to the first definition of well-founded relations, which contained
unwanted non-computational content in the extract, we have defined a notion of
well-foundedness that hides the ordering in a set type.

5

WF0{i}(A;x,y.R[x; y])
def=

∀P:A→P{i}.(∀j:A.(∀k:{k:A| R[k;j]}.P[k]) ⇒ P[j]) ⇒ ∀n:A.P[n]

This type can only usefully be applied in proofs when R is squash stable, thus
we call it squash stable well-foundedness. However, it should also be noted that
for program development, the constraint that R be squash stable seems not to
matter.

Since the ordering relation is hidden in the right side of a set type it can not
contribute to the computational content. The following lemma that the natural
numbers are squash stable well-founded has the expected extract term.

` WF0{i}(N;x,y.x < y)
Extraction: λP,g.(letrec f(i) = (g i (λj.f j)))

By our own criteria for naturalness (if an argument does not appear in the
body of the extracted term it should not be an argument), P should not appear
in the extract. We further modify the type of squash stable well-foundedness to
eliminate it using Nuprl’s intersection type.

WF{i}(A;x,y.R[x; y])
def=

∩P:A→P{i}.(∀j:A.(∀k:{k:A| R[k;j]}.P[k]) ⇒ P[j]) ⇒ ∀n:A.P[n]

Now the well-foundedness of the natural numbers appears as follows.

` WF{i}(N;x,y.x < y)
Extraction: λg.(letrec f(i) = (g(i)(λj.f j)))

The following two theorems characterize the relationship between the defi-
nition of well-foundedness and our definition of squash stable well-foundedness.
The first says that squash stable well-foundedness implies well-foundedness.

` ∀T:U. ∀R:T → T → P.
WF{i}(T;x,y.R[x;y]) ⇒ WellFnd{i}(T;x,y.R[x;y])

The second says that if the relation is squash stable, well-foundedness implies
squash stable well-foundedness.

` ∀T:U. ∀R:T → T → P.
(∀x,y:T. SqStable(R[x;y])) ⇒

WellFnd{i}(T;x,y.R[x;y]) ⇒ WF{i}(T;x,y.R[x;y])

2.5 Measure Induction and Lexicographic Induction Schemes

Using squash stable well-foundedness we prove a measure induction principle.

` ∩T:U.∩ρ:T → N.WF{i}(T;x,y.ρ(x) < ρ(y))
Extraction: λg.(letrec f(i) = (g(i)(λj.f(j))))

6

Thus, once a measure function ρ: T →N is shown to exist we can apply
well-founded induction on the type T. Note that the measure function ρ does not
occur in the body of the extract. It is used to provide evidence for termination,
but of course, termination measures are not typically included as arguments to
functions.

Using a squash stable well-founded relation we are able to define an induction
scheme for the lexicographic ordering of inverse images onto natural numbers.

` ∩T:U.∩T’:U.∩ρ:T → N.∩ρ’:T’ → N.
WF{i}(T × T’; x,y.ρ(x.1) < ρ(y.1)

∨ (ρ(x.1) = ρ(y.1) ∧ ρ’(x.2) < ρ’(y.2)))
Extraction: λg.(letrec f(i) = (g(i)(λj.f(j))))

3 Final Remarks

In the full paper we will show applications of these theorems to program extrac-
tion and will include other induction principles.

3.1 Remarks on the Proofs and the Limitations of the Method

The proofs having the efficient recursion schemes as their extracts would perhaps
more correctly be called verifications. The extract terms are explicitly provided
using the UseWitness tactic. After this step, the remaining proof is to show
that the extract does indeed inhabit type. These proofs are surprisingly intri-
cate. Also, proofs of well-foundedness of the lexicographic measure induction are
widely published [5, 10], but they rely on the least element principle which is
non-constructive. The proof used here is by nested inductions on the natural
numbers.

The method of applying well-founded induction principles in proofs has a
limitation; lemmas can not be used in proving well-formedness goals. This is be-
cause the instantiation of the property being proved (P in the definition squash
stable well-foundedness) will generate a well-formedness subgoal which is equiv-
alent to the original goal. In practice, this limitation has not been a burden
since well-formedness goals are typically proved by following the structure of the
type. A mechanism for incorporating derived rules into Nuprl has been designed.
Once implemented, this feature will eliminate this restriction on the use of these
principles.

3.2 Future Work

We have only formalized a few of Paulson’s well-founded induction schemes, how-
ever, we have applied them extensively. Some of the more complex schemes that
we have not formalized (yet) have been used elsewhere, notably the application
of lexicographic exponentiation in the certification of Buchberger’s algorithm
[13].

7

3.3 Thanks

The author thanks the anonymous reviewers for their detailed and thoughtful
comments. Suggestions that have not been addressed in this preliminary version
of the paper will be fully addressed in the final paper.

References

1. S. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD
thesis, Cornell University, Ithaca, NY, 1987. TR 87-866.

2. Stuart Allen. NuprlPrimitives - Explanations of Nuprl
Primitives and Conventions. Computer Science Depart-
ment, Cornell University, Ithaca, NY. Manuscript available at
http://www.cs.cornell.edu/Info/People/sfa/Nuprl/NuprlPrimitives/Welcome.html,
2001.

3. James Caldwell. Moving proofs-as-programs into practice. In Proceedings, 12th
IEEE International Conference Automated Software Engineering, pages 10–17.
IEEE Computer Society, 1997.

4. James Caldwell, Ian Gent, and Judith Underwood. Search algorithms in type
theory. Theoretical Computer Science, 232(1-2):55–90, Feb. 2000.

5. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem
Proving. Harper and Row, 1986.

6. D. Howe. Automating Reasoning in an Implementation of Constructive Type The-
ory. PhD thesis, Cornell University, Ithaca, NY, April 1988.

7. Douglas J. Howe. Reasoning about functional programs in Nuprl. In Functional
Programming, Concurrency, Simulation and Automated Reasoning, volume 693 of
Lecture Notes in Computer Science, Berlin, 1993. Springer Verlag.

8. Paul Jackson. The Nuprl proof development system, version 4.2 reference manual
and user’s guide. Computer Science Department, Cornell University, Ithaca, N.Y.
Manuscript available at
http://www.cs.cornell.edu/Info/Projects/NuPrl/manual/it.html, July 1995.

9. Paul B. Jackson. Enhancing the Nuprl proof development system and applying it
to computational abstract algebra. PhD thesis, Cornell University, 1995.

10. Zohar Manna and Richard Waldinger. The Logical Basis for Computer Program-
ming: Volume II: Deductive Systems. Addison Wesley, 1990.

11. L. C. Paulson. Constructing recursion operators in intuitionistic type theory. Jour-
nal of Symbolic Computation, 2(4):325–355, 1986.

12. Anne Salvesen. On specifications, subset types and interpretation of propositions
in type theory. In Proceedings of the Workshop on Programming Logic, pages 209–
230, Bȧstad, Sweden, May 1989. Programming Methodology Group, University of
Göteborg and Chalmers University of Technology.

13. Laurent Théry. A Certified Version of Buchberger’s Algorithm. In H. Kirchner
and C. Kirchner, editors, 15th International Conference on Automated Deduction,
LNAI 1421, pages 349–364, Lindau, Germany, July 5–July 10, 1998. Springer-
Verlag.

14. Simon Thompson. Type Theory and Functional Programming. Addison Wesley,
1991.

8

