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Abstract

In the constructive setting, membership predicates over recursive types
are inhabited by terms indexing the elements that satisfy the criteria
for membership. In this paper, we motivate and explore this idea in
the concrete setting of lists and trees. We show that the inhabitants of
membership predicates are precisely the inhabitants of a generic shape
type. We show that membership of x (of type T ) in structure S, (x ∈T S)
can not, in general, index all parts of a structure S and we generalize to a
form ρ ∈ S where ρ is a predicate over S. Under this scheme, (λx.True) ∈
S is the set of all indexes into S, but we show that not all subsets of indexes
are expressible by strictly local predicates. Accordingly, we extend our
membership predicates to predicates that retain state “from above” as
well as allow “looking below”. Predicates of this form are complete in the
sense that they can express every subset of indexes in S. These ideas are
motivated by experience programming in Nuprl’s constructive type theory
and the theorems for lists and trees have been formalized and mechanically
checked.

1 Introduction

Recently, there has been significant interest in combining techniques of for-
mal constructive proof with programming type systems and language based
approaches to verification [28]; witness this workshop. Some of the most no-
table recent efforts include the Omega programming language[26, 27] and the
Epigram programming language[21]. These are two examples of recent program-
ming languages that push the application of the Curry-Howard isomorphism
down into the realm of “practical” programming. Similarly, the work on the
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Applied Type System (ATS) [10] looks to incorporate proofs in programs to
establish the validity of constraints.

In this paper, we work in Nuprl, [11] a Martin Löf dependent type theory
with recursive types and extensional function types. The best and most current
account of Nuprl’s type theory can be found online [3]. Nuprl might be consid-
ered “old” Curry-Howard technology 1, we apply it here to the problem of pro-
gramming with proofs. This application of Nuprl is not new [25, 15, 6, 7, 9, 8, 18].

1.1 Membership proofs as Indexes

In constructive type theory, proofs implicitly contain programs. In this paper,
we apply the propositions-as-types and proofs-as-programs interpretations to
examine the structures of the inhabitants of membership predicates over recur-
sively defined types. Under examination, we realize natural generalizations that
make these predicates more expressive in terms of the collections of inhabitants
they may contain.

Classically, given a structure S of type S and some element x, a membership
predicate x ∈ S may be true or false. In the constructive setting, if the predicate
is true, it is inhabited by the indexes into S leading to the element x. For
example, if the structure is of type Z List and S is the list [1; 2; 2; 3; 2] then, not
only is 2 ∈ S true, but its truth is witnessed by the indexes (whose form depends
on how the predicate itself is specified) to the second, third and fifth elements
of S. When the proposition 2 ∈ S is considered through the propositions-as-
types interpretation, it is a type whose elements are the indexes of 2 in S. For
tree-like structures, these indexes essentially correspond to paths in the tree.
This interpretation of membership predicates as index types arises completely
naturally in the constructive setting2 in the following sense, we prove that the
identity function is an isomorphism between a membership predicate and a
shape type.

List and tree examples serve to hone intuition and provide a framework for
considering some interesting questions related to these ideas in a well understood
setting.

In general, we are interested in how the Curry-Howard isomorphism (i.e. the
propositions-as-types and proofs-as-programs interpretations) can be exploited
to explore design spaces. From a methodological view, we show how the iden-
tification of membership predicates with index types guides the development of
the ideas presented here.

1Coq [5] and, by now, Lego [19] and Alf[24] are similarly long-in-the-tooth and have been
used for similarly rich examples programing via the Curry-Howard isomorphism.

2Indeed we can argue that the only way a membership predicate fails to be an index is if
the index information is explicitly discarded in the specification of the membership predicate
itself.
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1.2 Related Work

Going back to Jay [17, 16], ideas about shape and polymorphism with respect
to it have suggested that the separation of shape from content for recursive
types may support generic programming. In that work, Jay proposed viewing
recursive types as pairs consisting of a type of indexes together with a list of
data elements. Membership functions are not strictly shape polymorphic [23],
since indexes to the members depend, not only on the shape of the structure,
but on the contents as well.

There has been a recent flurry of interesting work driven from categorical
semantics for type theory [1, 4, 2]. These authors are investigating what they
call indexed containers and what have been called dependent polynomials in [13]
and polynomial recursive type [12]. We believe that the work described here
can be lifted to the more general setting and intend to do so in future work.

We apply constructive type theory to examine the constructive content of
membership predicates as indexes.

2 Membership in a Tree

We will motivate the ideas in the context of a type of binary trees storing values
of an arbitrary type A in the internal nodes of the tree and whose leaves are
empty.

2.1 A binary tree type

We formally define the type of Binary trees as follows:

TA
def
= µX. 1 +A×X ×X

where µX.φ is a recursive type, the least fixedpoint of type φ, which in this
case is the polynomial 1 + A × X × X. The disjoint union of types A and
B is denoted A + B and the product A × B denotes Cartesian product of A
and B. The type 1 is the “unit” type having exactly one element, we call that
element “it” and display it as “ · ”. For completeness of the propositions-as-
types interpretation, every proposition must be interpretable as a type, including
equality propositions of the form x =A y. This proposition is meaningful only
if both x and y are in A. If true (i.e. if x and y are equal in A) the type x =A y
is inhabited by it, the single element of the unit type and so is isomorphic to 1
and; if false, the type is uninhabited, and is isomorphic to the empty type 0.

We have the following well-formedness theorem for TA.

∀A :U. TA ∈ U

It says that for any type, A the type of trees TA is a type. This type is well-
formed because all occurrences of the bound variable X occur in strictly positive
positions.
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The elements of the type TA are terms of the form inl(·) (which we will
label Empty) or are terms of the form inr(a, t1, t2) (which we will display as
Node(a, t1, t2)). We remark here that outl(inl(x)) = x and outr(inr(x)) = x.

2.2 Membership x ∈A t

Membership3 in a structure of type TA can be defined most naturally4 as follows:

Definition 1 (Membership in a tree (x ∈A t)).

∀A :U. ∀x :A. ∀t :TA. (x ∈A t) ∈ P
(x ∈A Empty)

def
= False

(x ∈A Node(y, t1, t2))
def
= x =A y ∨ x ∈A t1 ∨ x ∈A t2

The first line gives the well-formedness theorem characterizing the type of
the membership predicate. It says that for every type A and for every TA tree
t and every element x of A, (x ∈A t) is a proposition 5. Note that we are
working in a constructive setting and so the disjunction property holds, i.e. the
proposition φ ∨ ψ holds if at least one of φ or ψ holds, and we know which
one. Thus, the proposition-as-types interpretation indicates that φ ∨ ψ is true
if the disjoint union φ + ψ is inhabited. So, looking back at the definition of
membership, inhabitants of (x ∈A Empty) are just the inhabitants of False6

(i.e. there are none) and the inhabitants of

x =A y ∨ x ∈A t1 ∨ x ∈A t2

are of the form inl(u) where u inhabits x =A y or inr(inl(p)) where p inhabits
the type (x ∈A t1) or are of the form inr(inr(p)) where p inhabits the type
(x ∈A t2). (We assume disjunction associates to the right.)

Thus, inhabitants of this membership predicate (terms that serve as evidence
for the truth of an instance of the predicate) are terms in a sum over the types
1 and 0. The shape of the sum term has a structure matching the shape of the
tree where internal nodes are translated as type 1 and leaves are translated as
type 0 (since the predicate always returns false on leaves.). e.g. the possible
inhabitants of the membership in the tree t defined as

Node(a,Node(b, Empty,Empty), Node(a,Empty,Empty))

3We have rather heavily overloaded the membership symbol. Membership in a type or of a
type in a universe should be reasonably easy to distinguish from membership in a tree based
on the context. x ∈A t is a defined membership predicate for trees where the type A is a
parameter to the predicate indicating which equality to use.

4By “naturally” we mean that this is the membership predicate most every functional
programmer confronted with this type would write.

5Pi denotes the propositions at some (polymorphic) level i of the hierarchy of propositions.
In Nuprl, the hierarchy of propositional universes is just the hierarchy of type universes i.e.

Pi
def
= Ui. We normally write P (U) for Pi (Ui).

6False
def
= 0
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are inhabitants of the type

1 + ((1 + (0 + 0)) + (1 + (0 + 0)))

To see this, note that the recursive unfolding of the membership predicate x ∈A t
evaluates to the following term.

x =A a ∨ (((x =A b) ∨ False ∨ False) ∨ ((x =A a) ∨ False ∨ False))

Since a occurs twice in this tree, evidence for a ∈ t takes one of two forms inl(·)
or inr(inr(inl(·))) while evidence for b ∈ t is of the form inr(inl(inl(·))). There
are no other inhabitants of this type.

2.3 Abstracting Shape

If t is a tree, we denote the membershape of t as *t+. We define a mapping from
a tree to the sum type representing the shape of the paths to internal nodes as
follows:

Definition 2 (member shape).

∀A :U. ∀t :TA. *t+ ∈ U
*Empty+ def

= 0

*Node(x, t1, t2)+
def
= 1 + *t1+ + *t2+

Note that this type is discrete i.e. equality on inhabitants of the type *t+ is
decidable.

Definition 3 (discrete). discrete A
def
= ∀x, y :A. x =A y ∨ ¬(x =A y)

Thus, a type A is discrete if it’s equality is decidable. Natural numbers are
discrete, the type of functions N → N is not.

Lemma 1 (membershape discrete). ∀A :U. ∀t :TA. discrete *t+

A type is finite iff it is in one-to-one correspondence with some initial prefix
of the natural numbers.

Definition 4 (finite). finite A
def
= ∃n :N. A ∼ {0 ... n}

Since trees are defined as least fixedpoints, the type of their indexes is finite.

Lemma 2 (membershape finite). ∀A :U. ∀t :TA. finite *t+

The evidence for the finiteness of a type A (a bijection from A to an initial
segment of N) gives a method of deciding equality. Thus, all finite types are
discrete.

Definition 5 (subtype). A ⊆ B
def
= ∀x :A. x ∈ B

Theorem 1. ∀A :U. ∀x :A. ∀t :A Tree. (x ∈A t) ⊆ *t+
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So, the inhabitants of the membership predicate x ∈A t are inhabitants of
the membershape tree for t. To see that these two types are not isomorphic,
note that the converse (*t+ ⊆ (x ∈A t)) does not hold. Consider a tree where
the internal node stores a value (call it y) that is not equal to x, this term in
the disjunction will be y =T x which will be, isomorphic to 0, not 1. Thus,
membershape over approximates the inhabitants of a membership predicate of
this form.

If, for some x ∈ A, a tree t, t ∈ TA contains the element x at every node,
then these types indeed contain the same inhabitants, i.e.

(x ∈A t) =U *t+

Note that the membershape *t+ does not include indexes to the leaves. The
definition for the Empty case could be modified but then we would loose the
close correlation which allows the equality to hold between the inhabitants of
the membership predicate x ∈A t and *t+ when the nodes of the tree t tree
contain only the element x.

2.3.1 Remarks on decidability

Equality on trees is decidable if the underlying type A is discrete.

Lemma 3. ∀A :U. discreteA⇔ discrete TA

If the underlying type A is discrete then trees TA are discrete since equality
can be determined by recursively comparing the trees node by node. Perhaps
the other direction is slightly less obvious. We reduce the problem of deciding
two elements of the underlying type, x, y ∈ A to that of a decision over the tree
type by constructing two trees with the values in question as their node values
and comparing the trees for equality:

Node(x,Empty,Empty) =TA
Node(y,Empty,Empty)

The decision procedure for trees can then, by proxy, decide the equality for A
It should be noted that to actually compute equality of trees (or with the

tree-membership predicate x ∈A t), there must be a method of deciding equality
in the type A. However, even if A is not a discrete type, evidence for x ∈A t
takes the form of indexes to nodes in t where values y where y =A x are stored.
Suppose we come by some evidence for (x ∈A t), call this index i. If A is not
discrete, we will not be able to verify that the value stored at the node indexed
by i actually contains a value equal to x, though the typing tells us it must
be. In the context of a proof, such unverifiable evidence is not uncommon, it
naturally arises from assumptions specified as antecedents of implications.

2.4 Predicated Shape

We can refine the shape type to take into account the data stored in the nodes
of structure as well as its shape, but to do so we need to know the value being
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searched for. We modify membershape to be sensitive to these issues by gen-
eralizing from an individual element of A being searched for in the tree to a
predicate that must be satisfied at a node or leaf of the tree.

We write *t+ρ for the type characterizing the shape of the tree t where the
predicate ρ holds.

Definition 6 (predicated member shape).

∀A : U. ∀ρ :TA → P. ∀t :TA. *t+ρ ∈ U

*t+ρ

def
= ρ(t) + case t of

Empty → 0
| Node(x, t1, t2) → *t1+ρ + *t2+ρ

Note that under the propositions-as-types interpretation, False is defined
to be the empty type 0. Of course, we could have instead made the predicate
ρ : A → P but this would not allow indexes to leaves of the structure and we
would claim that information is contained both in the indexes of a structure
and in values stored at internal nodes. Making the predicate over the tree, (i.e.
of type TA → P) allows for more paths in the structure to be indexed, including
paths to the empty node.

To see that this definition subsumes shape as given in Def. 2 (which simply
depended on the value of the element stored at a node) consider the following
predicate which returns true if the node value is x and is false otherwise.

Definition 7 (x =A).

∀A :U. ∀x :A. (x =A) ∈ (TA → P)

(x =A Empty)
def
= False

(x =A Node(y, t1, t2))
def
= x =A y

Using this predicate, we can establish the identity between the inhabitants
of the membership predicate x ∈A t and the membershape *t+x=A

Theorem 2. ∀A :U. ∀x :A. ∀t :A Tree. (x ∈A t) =U *t+x=A

The proof is by induction on the structure of the tree t. It may appear
that Nuprl’s equality between types is extensional, it is not. Computation in
a type (including the unfolding of definitions) does not change it i.e. subject
reduction is built into Nuprl’s type system. Since, by the propositions-as-types
interpretation, disjunction (∨) is just defined to be disjoint union (+), after a
few steps of computation, these types are indeed seen to be intentionally equal.

It is significant that a minor change in the Def. 6 changes the form of the
indexes. Consider the following slight alternative to *t+ρ that we write as *t+ρ.

Definition 8 (predicated member shape (alternate)).

∀A : U. ∀ρ :TA → P. ∀t :TA. *t+ρ ∈ U
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*t+ρ

def
= ρ(t) + case t of

Empty → ρ(Empty)
| Node(x, t1, t2) → *t1+ρ + *t2+ρ

The indexes under this slightly modified alternative definition are different
from the ones in Def. 6. To see this, assume ρ(t) = · for all trees t. Then
*Empty+ρ is inhabited by both inl(·) and inr(inl(·)) while the only inhabitant of
*Empty+ρ is inl(·). This would seem to be undesirable in a number of ways. This
example illustrates the sensitivity of the evidence on the form of the definition.
Clearly, these two shape types are equivalent propositionally, i.e. the following
holds:

∀A :U. ∀ρ :TA → P. ∀t :TA. *t+ρ ⇔ *t+ρ

However, they are not intensionally equal and are not even extensionally equal.

2.5 Predicated Membership

In the same way we have generalized membershape, we can characterize mem-
bership in a tree more abstractly by applying a predicate on trees instead of
simply searching for a particular element of type A. We continue to abuse nota-
tion by writing ρ ∈ t for the type of indexes to the members of the tree t where
ρ holds.

Definition 9 (predicated membership (ρ ∈ t)).
∀A :U. ∀ρ :TA → P. ∀t :TA. (ρ ∈ t) ∈ P

ρ ∈ t
def
= ρ(t) ∨ case t of

Empty → 0
| Node(y, t1, t2) → ρ ∈ t1 ∨ ρ ∈ t2

Now membership and shape are perfectly aligned. This agreement is char-
acterized by the following identity.

Theorem 3. ∀A :U. ∀t :TA.∀ρ :TA → P. (ρ ∈ t) =U *t+ρ

This theorem is easily proved by induction on the structure of the tree t. It
says these membership types and membershapes are equal types i.e. that they
have the same inhabitants and that those inhabitants respect the same equality.
Thus, a natural characterization of the type of indexes (*t+ρ) is just the same
as predicated membership when we look at it as a type. In the following, we
use the two interchangeably.

2.6 Indexing by inhabitants of the membership predicate

Since *t+ρ is the type inhabited by indexes into t where ρ holds, we should be
able to use them as such. The following definition gives a select function; defined
so that for each i ∈ *t+ρ, t[i] is the subtree of t indexed by i.
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Definition 10 (select).

∀A :U.∀t :TA.∀ρ :TA → P. ∀i :*t+ρ. t[i] ∈ TA

t[i]
def
= case i of

inl( ) → t
| inr(y) → case t of

Empty → any(y)
| Node(x, t1, t2) → case y of

inl( ) → t1[outl(outr(i))]
| inr( ) → t2[outr(outr(i))]

We note that the term any(y) is computational content of a proof where 0
has been assumed; specifically, if y ∈ 0 then, for every type T , any(y) ∈ T .
So, any maps the paradoxical inhabitant of 0 to any type at all. In practice,
this behaves like exceptions in ML which take any type. An index of the form
inl(· · · ) means “This is the indexed node. You’re there!”. An index of the form
inr(· · · ) means, “This is not the node, continue on.”. Continue on means, move
left or right down the tree and depends on whether outr(inr(· · · )) is of the form
inl(· · · ) [go left] or is of the form inr(· · · ) [go right]. So, if the index is of the
form inr(· · · ) and the tree is Empty, it is an exception to try to continue on
– the index extends off the end of the tree and is not well-formed. The well-
formedness theorem stipulates that the index i comes from the indexes in the
shape *t+ρ and so this is impossible.

We will write *t+ for the shape *t+λx.True which includes all indexes into t
(including indexes to leaf nodes).

3 Expressiveness of membership

Now, consider the powerset of *t+ which we write as 2*t+. Since the set *t+ is

finite, and therefore discrete, the functions in 2*t+ def
= *t+ → 2 are all computable

and so this type gives the analog of the classically defined powerset. So, 2*t+ is
isomorphic to the collection of all subtypes of indexes into the tree t. In some
sense we would like know how many of these index sets are expressible using
the methods described so far.

Definition 11 (expressible index set). A type of indexes s where s ⊆ *t+ is
expressible iff there exists a predicate ρ : TA → P such that s =U *t+ρ.

With predicated membership (ρ ∈ t) we can, for example, specify indexes
of the leaves of t by a predicate that is true when the tree is Empty and is
false otherwise: ((λx. x =TA

Empty) ∈ t). We can specify the collections of
all indexes into a tree by the predicate which evaluates to the constant True.
Similarly, we can express the set of all the internal nodes and many other combi-
nations. However, predicates of type ρ : TA → P are not sensitive to the context
or position of a node in a larger tree. So, index sets that are not extensional in
ρ (e.g. index sets that depend on the context of the indexed node within the
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tree) are not expressible. For example, no predicate ρ : TA → P can collect the
indexes to every other leaf since; no matter where it is encountered, each leaf
(Empty) is indistinguishable from every other leaf by ρ.

Obviously, predicates ρ : TA → P can not distinguish t from t′ if they are
equal trees, if t =TA

t′ then ρ t =P ρ t
′.

We are after a kind of completeness of expression that the current methods
do not give. We have two approaches: (i.) we identify all common subtrees by
a quotient construction thereby turning the graph into a directed acyclic graph
(DAG) and, (ii.) by extending the predicates to take both the root and an index
to the current location thereby gaining a global view of a node in the context
of the entire tree.

3.1 Quotienting TA by common indexes

Since the predicates cannot distinguish equal trees, the indexes so far considered
might be quotiented (see [3] and [14]) if they lead to an identical subtree.

Consider the relation which is true if its arguments index equal subtrees.

Definition 12 (≡t ).

∀A :U. ∀t :TA. ∀i, j :*t+. (i ≡t j) ∈ P
i ≡t j

def
= t[i] =TA

t[j]

This relation is easily seen to be an equivalence relation since type equality
on TA is.

Quotient types (supported in Nuprl) are of the form T/E where T is a type
and E : (T ×T ) → P is an equivalence relation. The inhabitants of the quotient
T/E are the equivalence classes on T induced by E. The equivalence classes
are named by the elements of the unquotiented type T , and so each notation
for an element of T is a notation for an equivalence class in T/E. Each element
(equivalence class) in T/E may have many distinct names, but these names all
denote the same elements of the quotient type.

In our case, *t+/ ≡t identifies indexes of t if the subtrees they index are equal
in the type TA; equivalently

i =(*t+/≡t) j iff t[i] =TA
t[j]

The quotiented structure indexed in this way is a DAG representation of the
tree structure TA and local predicates are completely expressive with respect to
this structure.

By quotienting index sets by ≡t, we get full expressiveness, in the sense
captured by the following theorem.

Theorem 4.

∀A :U. discreteA⇒ ∀t :TA. ∀s :2*t+.∃ρ : (TA → P). (s/ ≡t) =U (*t+ρ/ ≡t)
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Note that for s ∈ 2*t+, we will abuse notation by simply writing s for the
indexes in the type {i : *t+|s(i) = 1}, (e.g. s/ ≡t is the type {i : *t+|s(i) =
1}/ ≡t.)

So, the theorem says that given a tree t over a discrete type A, and given
a subset of indexes s, there exists a predicate ρ that perfectly characterizes s
modulo the equivalence ≡t.

The witness for the predicate ρ in the proof is the one that checks if its input
(say r) is among the subtrees of t indexed by s. Since this set is finite and since
A is discrete, the type TA is finite and discrete as well, we can just enumerate
the trees indexed by s checking if they are equal to r. Now, consider indexes
i such that i ∈ s. i is just a name for the equivalence class {j ∈ *t+|j ≡t i}.
So the quotient s/ ≡t (possibly) expands the number of indexes naming its
elements. It expands the set of indexes to include those indexes that can not be
distinguished by the predicate ρ.

So we see that the quotient essentially grows s to include all the indexes to
extensionally equal trees.

3.2 Global Membership Predicates

An alternative to growing the index set s through the quotient construction is to
modify the expressiveness of the predicate so that subtrees can be distinguished
by their context in the tree being searched. The way to do this is to carry state
information through the computation that indicates not only which tree is being
evaluated, but its context in the larger tree.

Consider the following dependent type:

∀t :TA. *t+ → P

Inhabitants of this type have the form λt.λi.φ where the judgment

t :TA, i :*t+ ` φ ∈ P

is derivable. The first argument t ∈ TA is the tree being searched and i ∈
*t+ is the index to the node currently being examined and φ is a proposition
determining whether the the tree t[i] is a “member”.

The idea for the global search is to pass a dependent predicate (say ρ) of this
type both the root of the tree being searched (call it t) and the index i to the
current node being searched in the tree. The membership predicate will evaluate
ρ(t)(i) and union this result with the search performed on t by appropriately
extending i to the left and right branches if t is not the Empty. In a way, it is
like the cartoon of the train rolling the track out in front of itself.

To implement this plan this we need a way to consistently extend an index.

Definition 13 (Index Composition).

∀A :U. ∀t :TA. ∀i :*t+. ∀j :*t[i]+. i ◦ j ∈ *t+
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i ◦ t
def
= case i of

inl(x) → t
| inr(x) → case x of

inl(y) → inr(inl(y ◦ t))
| inr(z) → inr(inr(z ◦ t))

The well-formedness goal for the composition is worth studying. It is proved
by induction on the structure of the tree t. Note that if t is Empty, the only
index in *Empty+ is inl(·). Since Empty[inl(·)] = Empty, the only possible
extension of i is j, where j ∈ *Empty[inl(·)]+ which is again inl(·). Looking at
the code for composition, the first case says that inl(·) ◦ inl(·) = inl(·) which
indeed is still an index into Empty. The argument in the inductive case is rather
straightforward.

The following code implements our strategy for the global search using the
composition operator to recursively unroll the indexes down through the tree.

Definition 14 (dependent predicated membership ρ ∈ 〈t, i〉).

∀A :U. ∀ρ : (∀t :TA. *t+ → P). ∀t :TA. ∀i :*t+. (ρ ∈ 〈t, i〉) ∈ P

ρ ∈ 〈t, i〉 def
= ρ(t)(i) ∨ case t[i] of

Empty → 0
| Node → ρ ∈ 〈t, i ◦ inr(inl(·)))〉 ∨ ρ ∈ 〈t, i ◦ inr(inr(·))〉

That this membership predicate is completely expressive is stated as follows.

Theorem 5.

∀A :U. ∀t :TA. ∀s :2*t+. ∃ρ : (∀t :TA. *t+ → P). s =U (ρ ∈ 〈t, inl(·)〉)

To prove it, use the following witness for the existential

λt. λi. s(i) = 1

Since s ∈ 2*t+, and since i ∈ *t+, s(i) is computable. By this definition
(λt. λi. s(i) = 1)(t)(i) will be true whenever the index i is one of the in-
dexes in s and will return · as evidence for that index of s. If s(i) 6= 1 then i is
not in s.

4 Conclusions and Future Work

We have used the Curry-Howard isomorphism in deep way to identify member-
ship predicates on trees with indexes into those trees.

The issue that came up with the introduction of Def. 8 – regarding the sen-
sitivity of the types of the inhabitants to the formulation of the membership or
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shape predicate – is potentially a serious issue that needs to be explored more.
We could use a quotient type, as we did in Section 3 to mitigate a problem
like multiple indexes for one subtree – though we have not done it. In general,
the Curry-Howard based evidence is rather delicate and dependent on the lan-
guage used to generate it. This sensitivity to seemingly small differences in the
form an expression may take seems to violate general principles of robustness
that is the basis for much software engineering practice. In the end, getting
indexes for free from easily specified membership predicates may outweigh any
possible drawbacks based on the sensitivity argument. These issues need to be
investigated more thoroughly.

We are interested in seeing how the techniques of [20] for data structure
transformation might be applied to translations between index types.

As an alternative to the fully expressive membership predicate presented in
Def. 14 we are considering formalizing a tree based state monad [29, 22] to pass
the global state through the computation.

We do not see any significant technical obstacles to generalizing the results
presented in this paper for binary trees to arbitrary polynomial recursive types
as presented in [12]. We can imagine extending our abstract data type pack-
age for Nuprl to uniformly generate membership and shape types for arbitrary
recursive types. Certain that it is related to our efforts here, we are trying to
decipher the recent work on indexed containers [4]. Also, although Nuprl’s re-
cursive types are least fixedpoints, the index type defined here is not obviously
incompatible with coinductive types. We plan to explore this issue in future
work.

The authors would like to thank the anonymous referees for their comments.
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