
Quicksort via Bird’s Tree Fusion Transformation?

Tjark Weber1 and James Caldwell2

1 Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

tjark.weber@gmx.de
2 Department of Computer Science, University of Wyoming

Laramie, Wyoming, USA, 82071-3315
jlc@cs.uwyo.edu

Abstract. In this paper we present a Nuprl formalization and proof of Bird’s fusion theorem for trees.
We apply the theorem to a derivation of quicksort.

1 Introduction

Many algorithms can be specified as the composition of a function that constructs an intermediate data
structure from the given input, and another function that traverses the intermediate data structure to
extract the requested information.

Bird’s fusion theorem [1] proves that if the first function is an anamorphism and the second function
is a catamorphism, these two functions can be combined into a single function, thereby eliminating the
intermediate data structure constructed by the anamorphism.

This paper presents a formalization of the fusion theorem for the special case where the underlying data
structure is the type of binary trees and then applied the theorem to the derivation of the quicksort algorithm.
The formalization presented here is partially based on a formalization of Bird’s fusion transformation in PVS
by N. Shankar [7].

2 Binary Trees

A binary tree (over some type T ) is a type of data structure in which each element is attached to zero or
two elements directly beneath it. We use the following inductive definition after [2].

Definition 1 (Binary Trees) Suppose T is a type.

– A leaf is a binary tree over T .
– If t ∈ T and B1, B2 are binary trees over T , then node(t, B1, B2) is a binary tree over T .

BinTree(T ) is the type of all binary trees over T .

According to this definition, leafs do not carry information (i.e. elements from T ). All information is
stored in the nodes, and in the structure of the tree itself.

The Nuprl abstraction defining binary trees is shown in Figure 1. Due to the use of the disjoint product
type +, a binary tree in Nuprl now is equal to either inl · or inr < t,B1, B2 >, where t ∈ T and B1,
B2 are binary trees. We define leaf as an abbreviation for inl ·, and node(t,B_1,B_2) as an abbreviation
for inr < t, B1, B2 >, as shown in Figure 2. The fact that leaf and node(t,B_1,B_2) are binary trees is
captured by the two well-formedness theorems shown in Figure 3. The theorems are proved in two steps
each.
? This work was supported by NSF grant CCR-9985239 and a DoD Multidisciplinary University Research Initiative

(MURI) program administered by the Office of Naval Research under grant N00014-01-1-0765.



* ABS binary_tree

BinTree(T) == rec(t.Unit + T × t × t)

Fig. 1. Abstraction binary_tree

* ABS leaf

leaf == inl ·

* ABS node

node(t,b1,b2) == inr <t, b1, b2>

Fig. 2. Abstractions leaf and node

* THM leaf_wf

∀T:U. leaf ∈ BinTree(T)

* THM node_wf

∀T:U. ∀t:T. ∀B1,B2:BinTree(T). node(t,B1,B2) ∈ BinTree(T)

Fig. 3. Well-formedness theorems for leaf and node

3 The reduce Operator

Suppose T and R are types, c ∈ R and g : T ×R×R → R. We want to define a function f : BinTree(T ) → R
by the following recursion over binary trees:

f(leaf ) = c

f(node(t, B1, B2)) = g(t, f(B1), f(B2))

The reduce operator is defined such that f = reduce(c; g).

Definition 2 (reduce) Suppose T and R are types, c ∈ R and g : T × R × R → R. Define reduce(c; g) :
BinTree(T ) → R recursively by

reduce(c; g)(B) =
{

c if B = leaf
g(t, reduce(c; g)(B1), reduce(c; g)(B2)) if B = node(t, B1, B2)

for all B ∈ BinTree(T ).

The corresponding abstraction treereduce is shown in Figure 4. We use a curried function g : T →
R → R → R in the treereduce abstraction instead of a function with domain T × R × R and codomain
R. Avoiding the cartesian product (and consequently, tuples as function arguments) simplifies the Nuprl
notation.

Since reduce is defined recursively, we have to verify that this recursion always terminates to make sure
that reduce(c; g) is well-defined, i.e. that reduce(c; g)(B) is in R for all binary trees B.

Lemma 1. Suppose T and R are types, c ∈ R and g : T ×R×R → R. Then

reduce(c; g)(B) ∈ R

for all B ∈ BinTree(T ).



* ABS treereduce

reduce(c;g)(B) ==

(letrec recfun(B) =

case B of

inl(x) => c

| inr(y) => let t,B1,B2 = y in g t (recfun B1) (recfun B2))

B

Fig. 4. Abstraction treereduce

Proof. Let B ∈ BinTree(T ). We use structural induction on B.
Base case (B = leaf ): reduce(c; g)(B) = c ∈ R.
Inductive step (B = node(t, B1, B2)): By the induction hypothesis, reduce(c; g)(B1) ∈ R and

reduce(c; g)(B2) ∈ R. Therefore

reduce(c; g)(B) = g(t, reduce(c; g)(B1), reduce(c; g)(B2)) ∈ R.

The proof of the formal theorem treereduce_wf, which is shown in Figure 5, proceeds along the same
lines. The RecElimination tactic is used for structural induction on B. The base case is then proved by
the Auto tactic after we unfold the definition of treereduce. The induction hypothesis is used to prove the
inductive step. Altogether the proof is about nine steps long.

* THM treereduce_wf

∀T,R:U.∀c:R.∀g:T → R → R → R. ∀B:BinTree(T). reduce(c;g)(B) ∈ R

Fig. 5. Theorem treereduce_wf

Example 1. The height of a binary tree (over an arbitrary type T ) can be defined recursively. The height of
a leaf is 0, and the height of a node is one more than the maximum of the heights of the node’s left and right
subtree:

height(leaf ) = 0,

height(node(t, B1, B2)) = 1 + max(height(B1), height(B2)).

See Figure 6 for a formal definition.

* ABS treeheight

|B|==

(letrec recfun(B) =

case B of

inl(x) => 0

| inr(y) => let t,B1,B2 = y in 1 + imax(recfun B1;recfun B2) )

B

Fig. 6. Abstraction treeheight



Clearly height(B) ∈ N for all binary trees B; this fact is proved by the theorem treeheight_wf shown
in Figure 7. Again the RecElimination tactic is used for structural induction on B in the proof of this
theorem. The formal proof is about 27 steps long, mainly because we have to overcome a few technical
difficulties caused by the use of N and Z.

* THM treeheight_wf

∀T:U. ∀B:BinTree(T). |B| ∈ N

Fig. 7. Theorem treeheight_wf

Alternatively, height can be defined in terms of reduce. Define g : T × N × N → N by g(t,m, n) =
1 + max(m,n). Then height(B) = reduce(0; g)(B) for all binary trees B, as shown in Figure 8. The proof
of this theorem is about ten steps long and uses both the RecElimination tactic and the treeheight_wf
lemma, as well as a few other lemmata.

* THM treereduce_example

∀T:U. ∀B:BinTree(T). |B| = reduce(0;λt,m,n.1 + imax(m;n))(B)

Fig. 8. Theorem treereduce_example

4 The unfold Operator

The reduce operator extracts some information from a binary tree. It provides a general pattern to define
catamorphisms on binary trees. Now suppose S is a type, and we want to define an operator unfold that
constructs a binary tree from some input x ∈ S as follows. First, a given predicate p is applied to x. If p(x)
is true, we apply a function f to x that computes a node value a and two new input values y and z. unfold is
then recursively applied to y and z to compute the left and right subtree of the node. If p(x) is false, unfold
simply returns leaf .

However, there is a problem with this ‘definition’. If y and z are allowed to be arbitrary input values, this
recursion is not guaranteed to terminate: Assume p(x) is true for every input x, and consider the function
f : S → S × S × S, defined by f(x) = (x, x, x). Then

unfold(p; f)(x) = node(x, unfold(p; f)(x), unfold(p; f)(x))
= node(x,

node(x, unfold(p; f)(x), unfold(p; f)(x)),
node(x, unfold(p; f)(x), unfold(p; f)(x)))

= . . .

To guarantee that the recursion terminates, we require y and z to be ‘smaller’ than x, where the ‘size’ of an
input is just a natural number.1

1 As pointed out by N. Shankar [7], any well-founded ordering could be used here instead of the less-than relation
on natural numbers.



Definition 3 (Smaller) Suppose S is a type, size : S → N, and x ∈ S. Then we define

Smaller(S, size, x) = {y ∈ S | size(y) < size(x)}

to be the type of all elements in S with a size less than the size of x.

The formal definition of Smaller is shown in Figure 9. The well-formedness theorem smaller_wf proves
that Smaller(S,size,x) is a type if S is a type, size : S → N, and x ∈ S. It is proved in a single step by
the Auto tactic.

* ABS smaller

Smaller(S,size,x) == {y:S| size y < size x}

Fig. 9. Abstraction Smaller

Now we are ready to define the type of functions that we allow as a parameter to unfold . Note that to
compute unfold(p; f)(x), we only need to evaluate f(x) when p(x) is true. Therefore the domain of f does
not need to be S, but it can be restricted to the subtype {x ∈ S | p(x) = true}.

Definition 4 (WellFnd) Suppose S and T are types, p : S → B, and size : S → N. Then we define

WellFnd(S, p, size, T ) =
{f : {x ∈ S | p(x) = true} → T × S × S |

∀x ∈ {x ∈ S | p(x) = true} :
f(x) ∈ T × Smaller(S, size, x)× Smaller(S, size, x)}.

In Nuprl, the dependent function type can be used to define WellFnd more elegantly: The codomain
does not have to be a single type, but it can depend on the function argument x. Thus given x, we can require
f(x) to be in T × Smaller(S, size, x) × Smaller(S, size, x). Figure 10 shows the corresponding abstraction
treewellfnd.

* ABS treewellfnd

WellFnd(S,p,size,T) ==

x:{x:S| p[x] = tt} → (T × Smaller(S,size,x) × Smaller(S,size,x))

Fig. 10. Abstraction treewellfnd

The well-formedness theorem for treewellfnd simply states that this is a type if S and T are types,
p : S → B, and size : S → N. It is proved in a single step by Nuprl’s Auto tactic. Using the type WellFnd
of ‘well-founded’ functions, we can now precisely define unfold .

Definition 5 (unfold) Suppose S and T are types, p : S → B, size : S → N, and f ∈ WellFnd(S, p, size, T ).
Define unfold(p; f) : S → BinTree(T ) recursively by

unfold(p; f)(x) =
{

node(a, unfold(p; f)(y), unfold(p; f)(z)) if p(x) is true
leaf if p(x) is false

for all x ∈ S, where f(x) = (a, y, z).



* ABS treeunfold

unfold(p;f)(x) ==

(letrec recfun(x) =

if p[x] then

let a,y,z = (f x) in node(a; recfun y; recfun z)

else

leaf

fi )

x

Fig. 11. Abstraction treeunfold

See Figure 11 for the definition of treeunfold in Nuprl.
The restrictions imposed on f allow us to prove that unfold is well-defined, i.e. that the recursion always

terminates.

Lemma 2. Suppose S and T are types, p : S → B, size : S → N, and f ∈ WellFnd(S, p, size, T ). Then

unfold(p; f)(x) ∈ BinTree(T )

for all x ∈ S.

Proof. Let x ∈ S. We show unfold(p; f)(x) ∈ BinTree(T ) by complete induction on size(x). Assume
unfold(p; f)(y) ∈ BinTree(T ) for all y ∈ S with size(y) < size(x).

Case 1: Assume p(x) is false. Then unfold(p; f)(x) = leaf ∈ BinTree(T ).
Case 2: Assume p(x) is true. Let f(x) = (a, y, z). Then y, z ∈ Smaller(S, size, x) since

f ∈WellFnd(S, p, size, T ). Hence size(y) < size(x) and size(z) < size(x). Thus unfold(p; f)(y) ∈ BinTree(T )
and unfold(p; f)(z) ∈ BinTree(T ) by the induction hypothesis. Therefore

unfold(p; f)(x) = node(a, unfold(p; f)(y), unfold(p; f)(z)) ∈ BinTree(T ).

In Nuprl we state this lemma as a well-formedness theorem for treeunfold. This well-formedness
theorem is shown in Figure 12. The formal proof uses Nuprl’s InvImageInd tactic in combination with
the CompNatInd tactic for complete induction on the size of x. The IfThenElse tactic is then used for
the case split on p(x). The proof is about 15 steps long.

* THM treeunfold_wf

∀S:U.∀p:S → B.∀size:S → N.∀T:U.∀f:WellFnd(S,p,size,T).∀x:S.
unfold(p;f)(x) ∈ BinTree(T)

Fig. 12. Theorem treeunfold_wf

The unfold operator, just like reduce, can be used to specify a number of algorithms. We give a simple
example below, and a more elaborate example in the following section.

Example 2. We say a binary tree B is balanced if and only if every leaf in B has the same height. Consider
a function bal : N → BinTree(N) that, given a natural number n, creates a balanced binary tree of height n
in which every node is labelled with its height (i.e. the root node is labelled with n, the two nodes directly
beneath it are labelled with n− 1, and so on). See Figure 13 for two examples.



leaf

(a) bal(0)

2

vvmmmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQQQ

1

~~||
||

||
||

  B
BB

BB
BB

B 1

~~||
||

||
||

  B
BB

BB
BB

B

leaf leaf leaf leaf

(b) bal(2)

Fig. 13. Example: bal

More precisely, let bal : N → BinTree(N) be defined inductively by

bal(0) = leaf ,

bal(n + 1) = node(n + 1, bal(n), bal(n)).

The Nuprl abstraction defining bal is shown in Figure 14. The well-formedness theorem create_balanced_wf
proves that create_balanced(n) is in BinTree(N) for every n ∈ N. We use the NatInd tactic in the proof
of create_balanced_wf for mathematical induction on n. The proof is about six steps long.

* ABS create_balanced

create_balanced(n) ==

(letrec recfun(n) =

if(n =z 0) then

leaf

else

node(n; recfun (n - 1); recfun (n - 1))

fi)

n

Fig. 14. Abstraction create_balanced

Now define p : N → B by p(n) ⇐⇒ (n 6= 0), and define g : N\{0} → N×N×N by g(n) = (n, n−1, n−1).
Then bal(n) = unfold(p; g)(n) for all n ∈ N, as proved by the theorem treeunfold_example shown in
Figure 15. The proof uses Nuprl’s NatInd tactic for mathematical induction on n. It is about 92 steps
long, mainly because several well-formedness goals need to be verified.

* THM treeunfold_example

∀n:N. create_balanced(n) = unfold((λn.¬b(n =z 0)); (λn.<n, n - 1, n - 1>); n)

Fig. 15. Theorem treeunfold_example



5 The fun Operator

The composition of unfold and reduce can be used to specify a large number of algorithms, e.g. the Quick-
sort algorithm (see Section 9 for details). However, unfold first constructs a binary tree, and reduce then
consumes the tree. Bird’s fusion transformation allows us to replace reduce · unfold with a single operator
fun (defined below) that does not construct an intermediate tree. This is an instance of deforestation [3,8,5],
a program optimization technique that fuses adjacent phases to eliminate the intermediate data structures.

Definition 6 (fun) Suppose S, T, R are types, p : S → B, size : S → N, and f ∈ WellFnd(S, p, size, T ).
Furthermore, suppose c ∈ R and g : T ×R×R → R. Define fun(p; f ; c; g) : S → R by

fun(p; f ; c; g)(x) =
{

g(a, fun(p; f ; c; g)(y), fun(p; f ; c; g)(z)) if p(x) is true
c if p(x) is false

for all x ∈ S, where f(x) = (a, y, z).

Figure 16 shows the corresponding Nuprl abstraction treefun. Again we avoid tuples as function argu-
ments by using a curried function g.

* ABS treefun

fun(p;f;c;g)(x) ==

(letrec recfun(x) =

if p[x] then

let a,y,z = (f x) in g a (recfun y) (recfun z)

else c

fi )

x

Fig. 16. Abstraction treefun

The operator fun, like reduce and unfold before, is defined recursively. Therefore we need to verify that
it is well-defined, i.e. that the recursion terminates for every input x ∈ S.

Lemma 3. Suppose S, T, R are types, p : S → B, size : S → N, and f ∈ WellFnd(S, p, size, T ). Furthermore,
suppose c ∈ R and g : T ×R×R → R. Then

fun(p; f ; c; g)(x) ∈ R

for all x ∈ S.

Proof. Let x ∈ S. We show fun(p; f ; c; g)(x) ∈ R by complete induction on size(x). Assume fun(p; f ; c; g)(y) ∈
R for all y ∈ S with size(y) < size(x).

Case 1: Assume p(x) is false. Then fun(p; f ; c; g)(x) = c ∈ R.
Case 2: Assume p(x) is true. Let f(x) = (a, y, z). Then y, z ∈ Smaller(S, size, x) since

f ∈ WellFnd(S, p, size, T ). Hence size(y) < size(x) and size(z) < size(x). Thus fun(p; f ; c; g)(y) ∈ R and
fun(p; f ; c; g)(z) ∈ R by the induction hypothesis. Therefore

fun(p; f ; c; g)(x) = g(a, fun(p; f ; c; g)(y), fun(p; f ; c; g)(z)) ∈ R.

The formal well-formedness theorem is shown in Figure 17. Its proof is about eleven steps long and uses
the InvImageInd tactic in combination with CompNatInd for complete induction on the size of x.



* THM treefun_wf

∀S:U.∀p:S → B.∀size:S → N.∀T:U.∀f:WellFnd(S,p,size,T).
∀R:U.∀c:R.∀g:T → R → R → R.∀x:S.

fun(p;f;c;g)(x) ∈ R

Fig. 17. Theorem treefun_wf

6 Bird’s Fusion Theorem for Binary Trees

As mentioned before, we want to replace reduce · unfold with fun to eliminate the intermediate tree. In
this section we prove that reduce · unfold and fun are equivalent, in the sense that they compute the same
function.

Theorem 7 (Bird’s Fusion Theorem for Binary Trees). Suppose S, T, R are types, p : S → B, size :
S → N, and f ∈ WellFnd(S, p, size, T ). Furthermore, suppose c ∈ R and g : T ×R×R → R. Then

(reduce(c; g) · unfold(p; f))(x) = fun(p; f ; c; g)(x)

for all x ∈ S.

Proof. Let x ∈ S. We show (reduce(c; g) · unfold(p; f))(x) = fun(p; f ; c; g)(x) by complete induction on
size(x). Assume (reduce(c; g) · unfold(p; f))(y) = fun(p; f ; c; g)(y) for all y ∈ S with size(y) < size(x).

Case 1: Assume p(x) is false. Then

(reduce(c; g) · unfold(p; f))(x) = reduce(c; g)(unfold(p; f)(x))
= reduce(c; g)(leaf )
= c

= fun(p; f ; c; g)(x).

Case 2: Assume p(x) is true. Let f(x) = (a, y, z). Then y, z ∈ Smaller(S, size, x) since
f ∈ WellFnd(S, p, size, T ). Hence size(y) < size(x) and size(z) < size(x). Thus (reduce(c; g)·unfold(p; f))(y) =
fun(p; f ; c; g)(y) and (reduce(c; g) ·unfold(p; f))(z) = fun(p; f ; c; g)(z) by the induction hypothesis. Therefore

(reduce(c; g) · unfold(p; f))(x)
= reduce(c; g)(unfold(p; f)(x))
= reduce(c; g)(node(a, unfold(p; f)(y), unfold(p; f)(z)))
= g(a, reduce(c; g)(unfold(p; f)(y)), reduce(c; g)(unfold(p; f)(z)))
= g(a, (reduce(c; g) · unfold(p; f))(y), (reduce(c; g) · unfold(p; f))(z))
= g(a, fun(p; f ; c; g)(y), fun(p; f ; c; g)(z))
= fun(p; f ; c; g)(x)

as required.

Figure 18 shows the formal fusion theorem. The proof uses the usual combination of the tactics InvIm-
ageInd and CompNatInd for complete induction on the size of x; it is about 27 steps long.

In the following sections we apply the fusion transformation to the Quicksort algorithm.



* THM fusion

∀S:U. ∀p:S → B. ∀size:S → N. ∀T:U. ∀f:WellFnd(S,p,size,T).
∀Range:U. ∀c:Range. ∀g:T → Range → Range → Range. ∀x:S.

reduce(c;g)(unfold(p;f)(x)) = fun(p;f;c;g)(x)

Fig. 18. Theorem fusion

7 Quicksort

The Quicksort algorithm was first published by C.A.R. Hoare [6] in 1961. It is “one of the fastest, the best
known, the most generalized, . . . and the most widely used algorithms for sorting an array of numbers” [4].
Both R. Bird [1] and N. Shankar [7] chose it as an example to apply the fusion transformation to.

Despite its speed, Quicksort is a relatively simple algorithm. It can be described as follows.

1. If the list is empty, there is nothing to do.
2. Otherwise pick an element from the list to be the ‘partition element’.
3. Divide the other elements into those less than or equal to the partition element, and those greater than

the partition element.
4. Arrange the elements in the list such that the order is the elements below the partition element, the

partition element itself, and the elements above the partition element.
5. Recursively invoke Quicksort on the smaller elements.
6. Recursively invoke Quicksort on the larger elements.

As we can see from this description, Quicksort can be used for any type on which an order relation ≤
is defined.2

8 Quicksort in Nuprl

Figure 19 shows an implementation of the Quicksort algorithm in Nuprl. We define quicksort as a
recursive function that takes a relation ≤ and a list L as arguments and returns a list (Nuprl’s built-in data
type list is used here). If L is the empty list, denoted as [], then the empty list is returned. Otherwise the
head of L is picked as the partition element. Then quicksort is invoked recursively on a list of all elements
in the tail of L that are smaller than or equal to (‘below’) the head of L, and on a list of all elements in
the tail of L that are larger than (‘above’) the head of L. Both lists are generated by the filter function:
filter(p;L) returns a list with those elements in L that satisfy the predicate p. Finally append (@) and
cons (::) are used to concatenate the two lists and the partition element in the proper order.

The quicksort function is defined recursively. We prove that it is well-defined by complete induction on
the length of the input list L.

Lemma 4. Suppose T is a type and ≤ : T × T → B. Then

quicksort(≤, L) ∈ List(T )

for all L ∈ List(T ).

We first prove another lemma, namely that the list returned by filter(p;L) is at most as long as L.

2 Note that even when ≤ is not an order relation, we can still formally apply Quicksort. In fact, we will prove that
Quicksort returns a permutation of its input when ≤ is an arbitrary relation on the type of the list elements.



* ABS quicksort

quicksort(≤,L) ==

(letrec recfun(L) =

case L of

[] => []

| a::y => (recfun filter(λb.b below(≤) a; y))

@ (a::(recfun filter(λb.b above(≤) a; y)))

esac)

L

Fig. 19. Abstraction quicksort

Lemma 5. Suppose T is a type, and f : T → B. Then

|filter(f, L)| ≤ |L|

for all L ∈ List(T ).

The filter abstraction is part of the LIST_3 library, as is the abstraction defining list_length. Here
we define filter as follows.

Definition 8 (filter) Suppose T is a type, f : T → B, and L ∈ List(T ). Define filter(f ;L) ∈ List(T )
recursively by

filter(f ;L) =

 [] if L = []
filter(f ; t) if L = h :: t and f(h) is false
h :: filter(f ; t) if L = h :: t and f(h) is true

.

With this definition we can easily prove Lemma 5.

Proof. The proof is by structural induction on L.
Base case (L = []): |filter(f ;L)| = |[]| = |L|.
Inductive step (L = h :: t): By the induction hypothesis, |filter(f ; t)| ≤ |t|. If f(h) = true,

|filter(f ;L)| = |h :: filter(f ; t)| = 1 + |filter(f ; t)| ≤ 1 + |t| = |L|.

If f(h) = false,
|filter(f ;L)| = |filter(f ; t)| ≤ |t| = |L| − 1 < |L|.

Figure 20 shows the corresponding Nuprl theorem list_length_filter. The proof of the formal the-
orem uses the ListInd tactic for structural induction on L, and the IfThenElseCases tactic for the case
split on f(h). The proof is about six steps long; most of the work is done by Nuprl’s Auto tactic.

* THM list_length_filter

∀T:U. ∀f:T → B. ∀L:T List. |·| filter(f;L) ≤ |·| L

Fig. 20. Theorem list_length_filter

Given a type T and a relation ≤ : T × T → B, we define b below(≤) a as b ≤ a, and b above(≤) a
as ¬(b below(≤) a) for a, b ∈ T . The corresponding Nuprl abstractions below and above are shown in
Figure 21.



* ABS below

b below(≤) a == b ≤ a

* ABS above

b above(≤) a == ¬bb below(≤) a

Fig. 21. Abstractions below and above

The well-formedness theorems below_wf and above_wf prove that b below(≤) a and b above(≤) a are in
B if T is a type, ≤ : T × T → B, and a, b ∈ T . They are proved in a single step each. Now we are ready to
prove Lemma 4.

Proof. By complete induction on the length of L. Assume quicksort(≤,M) ∈ List(T ) for all M ∈ List(T )
with |M | < |L|.

Case 1: Assume L = []. Then quicksort(≤, L) = [] ∈ List(T ).
Case 2: Assume L = h :: t, where h ∈ T and t ∈ List(T ). By Lemma 5, |filter(b below(≤) h; t)| ≤ |t| < |L|

and |filter(b above(≤) h; t)| ≤ |t| < |L|. Thus

quicksort(≤,filter(b below(≤) h; t)) ∈ List(T )

and

quicksort(≤,filter(b above(≤) h; t)) ∈ List(T )

by the induction hypothesis. Therefore

quicksort(≤, L)
= quicksort(≤,filter(b below(≤) h; t))

@ (h :: quicksort(≤,filter(b above(≤) h; t)))
∈ List(T ).

The Nuprl theorem quicksort_wf is shown in Figure 22. Note the use of a curried function ≤ : T →
T → B to avoid tuples as function arguments. The formal proof uses the ListLenInd tactic for complete
induction on the length of the list L. Then Cases is used to do a case split on L = [] and L = h :: t. The
case L = [] is proved by an invocation of the ListInd tactic, because even though we know that L is equal
to [], we cannot substitute [] for L in the proof goal quicksort(≤, L) ∈ List(T ) without creating unprovable
well-formedness goals. For the same reason, we cannot simply substitute h :: t for L in the other case. We
circumvent this problem by eliminating L from all hypotheses first (by substituting h :: t for L, or by moving
them to the conclusion), and by decomposing the declaration of L as a list then. With 26 steps altogether,
the proof is relatively short, but surprisingly tricky.

* THM quicksort_wf

∀T:U. ∀≤:T → T → B. ∀L:T List. quicksort(≤,L) ∈ T List

Fig. 22. Theorem quicksort_wf



9 Quicksort by Fusion

If we compare our implementation of Quicksort (Figure 19) to the treefun operator (Figure 16) defined
in the previous section, it is almost obvious that Quicksort can be written as treefun, and hence—by the
fusion theorem—that Quicksort is equal to the composition of an anamorphism and a catamorphism. In
this section we make a few necessary definitions before we finally prove this equality.

Using a binary tree, we can split Quicksort into two phases. The first phase constructs an ordered
binary tree that contains the same elements as the input list L as follows: The partition element becomes
the tree’s root value. The left subtree and the right subtree are recursively constructed from a list of those
elements in the tail of L that are below the partition element, and from a list of those elements in L that
are above the partition element. The empty list [] simply becomes a leaf.

The second phase flattens the ordered binary tree into an ordered list by an in-order search: First the left
subtree is flattened, then the root value is inserted at the end of the list, then the right subtree is flattened.

Flattening a binary tree is a catamorphism that can easily be defined in terms of reduce.

Definition 9 (flatten) Suppose T is a type. Let g : T × List(T ) × List(T ) → List(T ) be defined by
g(a, x, y) = x@(a :: y). Define flatten : BinTree(T ) → List(T ) by

flatten(B) = reduce([]; g)(B).

The formal definition of flatten is shown in Figure 23. The well-formedness theorem flatten_wf proves
that flatten(B) is a list over T for every type T and every B ∈ BinTree(T ). It is proved in two steps by
instantiating the treereduce_wf lemma.

* ABS flatten

flatten(B) == reduce([];λa,x,y.x @ (a::y))(B)

* THM flatten_wf

∀T:U. ∀B:BinTree(T). flatten(B) ∈ T List

Fig. 23. Abstraction flatten and Theorem flatten_wf

Defining the first phase of Quicksort in terms of unfold requires a little more effort. Firstly we define a
simple predicate is cons : List(T ) → B such that is cons(L) is true if and only if L = h :: t for some h ∈ T ,
t ∈ List(T ). The abstraction is_cons is shown in Figure 24.

* ABS is_cons

is_cons == λL.case L of [] => ff | h::t => tt esac

Fig. 24. Abstraction is_cons

The well-formedness theorem is_cons_wf states that is cons : List(T ) → B for every type T . It is proved
in a single step by the Auto tactic. We also prove two useful lemmata, namely that is cons([]) is false and
that is cons(h :: t) is true (see Figure 25). The lemmata are proved in a single step each by unfolding the
definition of is_cons and applying the Auto tactic afterwards.

We then define a function unjoin(≤) : {L ∈ List(T ) | is cons(L)} → T × List(T ) × List(T )} that maps
a non-empty list L to the triple that has hd(L) as its first component, the list of all elements in tl(L) that



* THM is_cons_of_nil

is_cons [] = ff

* THM is_cons_of_cons

∀T:U. ∀u:T. ∀v:T List. is_cons (u::v) = tt

Fig. 25. Theorems is_cons_of_nil and is_cons_of_cons

are below hd(L) as its second element, and finally the list of all elements in tl(L) that are above hd(L) as
its third element.

Definition 10 (unjoin) Suppose T is a type and ≤ : T × T → B. Define unjoin(≤) : {L ∈ List(T ) |
is cons(L)} → T × List(T )× List(T ) by

unjoin(≤)(L) =
(hd(L),filter(· below(≤) hd(L); tl(L)),filter(· above(≤) hd(L); tl(L)))

for all L ∈ List(T ) with is cons(L) = true.

The Nuprl abstraction unjoin is shown in Figure 26. We want to use unjoin as an argument to the
unfold operator defined in Section 1, so we have to verify that unjoin is a ‘well-founded’ function.

* ABS unjoin

unjoin(≤) ==

λx.<hd(x),
filter((λb.b below(≤) hd(x));tl(x)),

filter((λb.b above(≤) hd(x));tl(x))>

Fig. 26. Abstraction unjoin

Lemma 6. Suppose T is a type and ≤ : T × T → B. Then

unjoin(≤) ∈ WellFnd(List(T ), is cons, | · |, T ).

Proof. Clearly unjoin(≤) : {L ∈ List(T ) | is cons(L)} → T × List(T )× List(T ). We have to verify

filter(· below(≤) hd(L); tl(L)) ∈ Smaller(List(T ), | · |, L)

and
filter(· above(≤) hd(L); tl(L)) ∈ Smaller(List(T ), | · |, L)

for all L in List(T ) with is cons(L) = true.
Both statements follow from Lemma 5 in combination with |tl(L)| = |L| − 1 < |L|.

We prove this lemma as a well-formedness theorem unjoin_wf in Nuprl (see Figure 27). The formal
proof is about 24 steps long. It uses a number of lemmata, including list_length_filter and length_tl.
The latter proves |tl(L)| = |L| − 1. It can be found in the LIST_1 library. The final proof step for each of the
two statements invokes the SupInf tactic which handles integer inequalities in Nuprl.

We can now define a function mktree(≤) : List(T ) → BinTree(T ) that implements the first phase of
Quicksort, that is, the generation of an ordered binary tree from a list.



* THM unjoin_wf

∀T:U. ∀≤:T → T → B. unjoin(≤) ∈ WellFnd(T List,is_cons,|·|,T)

Fig. 27. Theorem unjoin_wf

Definition 11 (mktree) Suppose T is a type, and ≤ : T × T → B. Define mktree(≤) : List(T ) →
BinTree(T ) by

mktree(≤)(L) = unfold(is cons; unjoin(≤))(L)

for all L ∈ List(T ).

The mktree abstraction and the associated well-formedness theorem mktree_wf are shown in Figure 28.
The well-formedness theorem is proved in a single step by the Auto tactic.

* ABS mktree

mktree(≤)(x) == unfold(is_cons;unjoin(≤))(x)

* THM mktree_wf

∀T:U. ∀≤:T → T → B. ∀L:T List. mktree(≤)(L) ∈ BinTree(T)

Fig. 28. Abstraction mktree and Theorem mktree_wf

Like for is_cons before, we prove two simple, yet useful lemmata about mktree that can later be used
when we do structural induction on a list L. The first lemma proves mktree(≤)([]) = leaf , and the second
lemma proves mktree(≤)(u :: v) = node(u,mktree(≤)(filter(· below(≤) u; v)),mktree(≤)(filter(· above(≤
) u; v)). The lemmata are shown in Figure 29. The proof of mktree_of_nil is about seven steps long, and
proving mktree_of_cons requires about nine steps—mainly just unfolding definitions.

* THM mktree_of_nil

∀T:U. ∀≤:T → T → B. mktree(≤)([]) = leaf

* THM mktree_of_cons

∀T:U. ∀≤:T → T → B. ∀u:T. ∀v:T List.

mktree(≤)(u::v) = node(u,

mktree(≤)(filter((λb.b below(≤) u);v)),

mktree(≤)(filter((λb.b above(≤) u);v)))

Fig. 29. Theorems mktree_of_nil and mktree_of_cons

We have a second way of stating the Quicksort algorithm now: quicksort is equal to the composition
of mktree and flatten.

Theorem 12. Suppose T is a type and ≤ : T × T → B. Then

quicksort(≤, L) = flatten(mktree(≤)(L))

for all L ∈ List(T ).



The theorem quicksort_by_fusion shown in Figure 30 formalizes this result in Nuprl. To prove it,
we first replace flatten ·mktree with fun using the fusion theorem. The ListLenInd tactic is then used to
prove the resulting equality by complete induction on the length of L. A minor complication is introduced
by the fact that the Fold tactic does not work for certain abstractions,3 which forces us to work with the
unfolded terms in some places. The proof is about 31 steps long.

* THM quicksort_by_fusion

∀T:U. ∀≤:T → T → B. ∀L:T List.

quicksort(≤,L) = flatten(mktree(≤)(L))

Fig. 30. Theorem quicksort_by_fusion

10 A Formal Correctness Proof

Quicksort is a sorting algorithm: For every list L, it should return an ordered permutation of that list. We
prove that Quicksort is correct by first proving that it returns an ordered list, and secondly by proving
that it returns a permutation of its input. The first proof is based on the representation of quicksort as
flatten ·mktree, while the second proof uses the definition of quicksort directly.

10.1 Quicksort Returns an Ordered List

We say a list L is ordered if the elements in L are in ascending order (with respect to a relation ≤).

Definition 13 (ordered) Suppose T is a type and ≤ : T ×T → B. Define ordered(≤, L) ∈ B recursively by

ordered(≤, L) =
{

true if L = []
(∀x ∈ t. h ≤ x) ∧ ordered(≤, t) if L = h :: t

.

By checking whether the head of the list is below every other element in the list (instead of just checking
whether it is below the second element), we avoid having to check if there exists a second element in the list.
The Nuprl abstraction defining ordered is shown in Figure 31. The well-formedness theorem ordered_wf
proves ordered(≤, L) ∈ B if T is a type, ≤ : T × T → B and L ∈ List(T ). The well-formedness theorem is
proved by structural induction on L using the ListInd tactic.

* ABS ordered

ordered(≤,L) ==

(letrec recfun(L) =

case L of

[] => tt

| h::t => ∀x∈2t.(h ≤ x) ∧b recfun t esac )

L

Fig. 31. Abstraction ordered

3 Folding abstractions that contain so_apply seems to be a problem in some cases.



To prove that the list returned by quicksort = flatten · mktree is ordered, we first prove that mktree
creates an ordered tree. Before we can define what it means for a binary tree to be ordered, we need to define
a function that computes whether some predicate P [x] holds for every element x in a tree. The abstraction
defining tree_all_2 is shown in Figure 32. The name of the function ends with ‘_2’ to indicate that a
boolean value is returned (as opposed to a proposition in P), thereby following the naming scheme for the
list_all functions defined in the LIST_3 library.

* ABS tree_all_2

∀x∈2B.P[x] ==

(letrec recfun(B) =

case B of

inl(y) => tt

| inr(z) => let t,B1,B2 = z in P[t] ∧b recfun B1 ∧b recfun B2 )

B

Fig. 32. Abstraction tree_all_2

The well-formedness theorem tree_all_2_wf shows that (∀x ∈2 B.P [x]) is a boolean value for every
type T , P : T → B, and B ∈ BinTree(T ). It is proved in about eight steps; we use the RecElimination
tactic in its proof for structural induction on B. We can now define when a binary tree is ordered.

Definition 14 (treeordered) Suppose T is a type and ≤ : T×T → B. Define ordered(≤, B) ∈ B recursively
by

ordered(≤, B) =

 true if B = leaf
(∀z ∈ B1. z ≤ t) ∧ (∀z ∈ B2. ¬(z ≤ t)) if B = node(t, B1, B2)
∧ordered(≤, B1) ∧ ordered(≤, B2)

.

The corresponding Nuprl abstraction treeordered is shown in Figure 33. As usual, we prove a well-
formedness theorem for it: treeordered_wf just shows that for every type T , ≤ : T × T → B, and B ∈
BinTree(T ), ordered(≤, B) ∈ B. It is proved in about six steps by structural induction on B.

* ABS treeordered

ordered(≤,B) ==

(letrec recfun(B) =

case B of

inl(x) => tt

| inr(y) => let t,B1,B2 = y in

∀z∈2B1.(z ≤ t)

∧b ∀z∈2B2.(¬b(z ≤ t))

∧b recfun B1

∧b recfun B2 )

B

Fig. 33. Abstraction treeordered

Lemma 7. Suppose T is a type and ≤ : T × T → B. Then

ordered(≤,mktree(≤)(L))



for all L ∈ List(T ).

Figure 34 shows the Nuprl theorem ordered_mktree. The arrow ‘↑’ (assert) is used to turn the boolean
value ordered(≤,mktree(≤)(L)) into a proposition, i.e. tt becomes True, ff becomes False.

* THM ordered_mktree

∀T:U. ∀≤:T → T → B. ∀L:T List. ↑ordered(≤,mktree(≤)(L))

Fig. 34. Theorem ordered_mktree

To prove the formal theorem, we need three lemmata: Firstly, that f [x] holds for all x in filter(f ;L)
assuming T is a type, f : T → B and L ∈ List(T ). Secondly, that P [x] holds for all x ∈ L if and only if
P [x] holds for all x in filter(f ;L) and for all x in filter(¬f ;L) assuming T is a type, P, f : T → B, and
L ∈ List(T ). Finally, that f [x] holds for all x in L if and only if f [x] holds for all x in mktree(≤)(L) assuming
T is a type, ≤ : T × T → B, f : T → B, and L ∈ List(T ). The lemmata are shown in Figures 35, 36, and 37
respectively.

* THM filter_all_2

∀T:U. ∀f:T → B. ∀L:T List. ↑∀x∈2filter(f;L).f[x]

Fig. 35. Theorem filter_all_2

The filter_all_2 lemma is proved in about eight steps by structural induction on L using the ListInd
tactic. The base case is proved in a single step by the Auto tactic. For the case L = u :: v, the IfThenElse-
Cases tactic is used to do a case split on f [u].

* THM list_all_2_filter_filter

∀T:U. ∀f,P:T → B. ∀L:T List.

∀x∈2L.P[x] = ∀x∈2filter(f;L).P[x] ∧b ∀x∈2filter((λz.¬bf[z]);L).P[x]

Fig. 36. Theorem list_all_2_filter_filter

The list_all_2_filter_filter lemma is also proved by structural induction on L. The case L = [] is
proved in a single step again, and for the case L = u :: v, we do a case split on f [u] by IfThenElseCases.
The resulting equalities are proved using the associativity and commutativity of ∧b. The proof is about
eleven steps long.

* THM mktree_all_2

∀T:U. ∀≤:T → T → B. ∀f:T → B. ∀L:T List. ∀x∈2L.f[x] = ∀x∈2mktree(≤)(L).f[x]

Fig. 37. Theorem mktree_all_2

Proving the mktree_all_2 lemma is slightly more complicated. We start by using the ListLenInd tactic
for complete induction on the length of L, followed by the ListInd tactic to differentiate between the two



cases L = [] and L = u :: v. For the base case, we instantiate the lemma mktree_of_nil, and for the case
L = u :: v, we use the mktree_of_cons lemma. The induction hypothesis is then used on the two lists
filter(· below(≤) u; v) and filter(· above(≤) u; v). Finally the list_all_2_filter_filter lemma is used to
prove the equivalence of (∀x ∈2 v.f [x])) and (∀x ∈2 filter(· below(≤) u; v).f [x]) ∧ (∀x ∈2 filter(· above(≤
) u; v).f [x]). The proof is about 23 steps long.

The proof of ordered_mktree then requires about 26 steps. It is based on complete induction on the
length of L, using the ListLenInd tactic followed by ListInd. About 20 of those steps are needed to prove
the case L = u :: v.

Our next step in proving that quicksort returns an ordered list is to show that flatten(B) is an ordered
list if B is an ordered tree.

Lemma 8. Suppose T is a type, ≤ : T ×T → B is transitive and total (i.e. x ≤ y or y ≤ x for all x, y ∈ T ),
and B ∈ BinTree(T ). Then

ordered(≤, B)⇒ordered(≤,flatten(B)).

The corresponding Nuprl theorem ordered_flatten is shown in Figure 38.

* THM ordered_flatten

∀T:U.
∀≤:{≤:T → T → B| Trans(T;x,y.↑≤[x;y]) ∧ Connex(T;x,y.↑≤[x;y])} .

∀B:BinTree(T).
↑ordered(≤,B) ⇒ ↑ordered(≤,flatten(B))

Fig. 38. Theorem ordered_flatten

We need a number of fairly self-evident lemmata before we can formally prove this theorem. The
list_all_2_append_lemma lemma shown in Figure 39 proves that a property P [x] holds for all x in L@M
if and only if it holds for all x in L and for all x in M . In other words, ‘∀’ distributes over append . Using the
ListInd tactic for structural induction on L, the lemma is proved in about four steps.

* THM list_all_2_append_lemma

∀T:U. ∀P:T → B. ∀L,M:T List.

∀x∈2(L @ M).P[x] = ∀x∈2L.P[x] ∧b ∀x∈2M.P[x]

Fig. 39. Theorem list_all_2_append_lemma

Figure 40 shows a lemma proving that a list of the form L@(t :: M) is ordered if and only if L is ordered,
M is ordered, x ≤ t for all x in L, and t ≤ x for all x in M . To prove the lemma, we use structural induction
on L, the list_all_2_append_lemma lemma and a number of other lemmata. A nested induction on M and
several case splits are required for the case where L = u :: v. The proof is about 60 steps long.

The flatten_all_2 lemma (see Figure 41) shows that a property f [x] holds for all x in a binary tree
B if and only if it holds for all x in flatten(B). This lemma is similar to the mktree_all_2 lemma proved
earlier. The proof is by structural induction on B. It requires about 29 steps, including one instantiation of
the list_all_2_append_lemma lemma.

Figure 42 shows another lemma that we need, list_all_2_implies_lemma. It proves that if P [x] and
(P [x]⇒Q[x]) hold for all x in a list L, then Q[x] holds for all x in L. The lemma is proved in about 13



* THM ordered_append

∀T:U. ∀≤:{≤:T → T → B| Trans(T;x,y.↑≤[x;y])} . ∀L,M:T List. ∀t:T.
ordered(≤,L @ (t::M)) =

∀x∈2L.(x ≤ t) ∧b ∀x∈2M.(t ≤ x) ∧b ordered(≤,L) ∧b ordered(≤,M)

Fig. 40. Theorem ordered_append

* THM flatten_all_2

∀T:U. ∀f:T → B. ∀B:BinTree(T). ∀x∈2B.f[x] = ∀x∈2flatten(B).f[x]

Fig. 41. Theorem flatten_all_2

* THM list_all_2_implies_lemma

∀T:U. ∀P,Q:T → B. ∀L:T List.

↑∀x∈2L.P[x] ∧ ↑∀x∈2L.(P[x] ⇒b Q[x]) ⇒ ↑∀x∈2L.Q[x]

Fig. 42. Theorem list_all_2_implies_lemma

steps by structural induction on L; many of those steps just deal with the fairly technical difference between
boolean values and propositions.

Our last lemma for now is shown in Figure 43. The list_all_2_if_all lemma proves that a property
P [x] holds for all x in a list L ∈ List(T ) if it holds for all x ∈ T . It is proved in about six steps by structural
induction on L.

* THM list_all_2_if_all

∀T:U. ∀P:T → B. ∀L:T List. (∀x:T. ↑P[x]) ⇒ ↑∀x∈2L.P[x]

Fig. 43. Theorem list_all_2_if_all

Given these lemmata, the proof of ordered_flatten requires about 58 steps. The RecElimination
tactic is used for structural induction on B. The base case is then proved in about six steps simply by
unfolding definitions. Proving the case B = node(t, B1, B2) requires the use of the lemmata ordered_append,
flatten_all_2, list_all_2_implies_lemma and list_all_2_if_all.

We proved that mktree always creates an ordered tree, and that flatten flattens an ordered tree into an
ordered list. Given the quicksort_by_fusion theorem from Section 9, the proof that Quicksort always
returns an ordered list is quite simple now.

* THM ordered_quicksort

∀T:U.
∀≤:{≤:T → T → B| Trans(T;x,y.↑≤[x;y]) ∧ Connex(T;x,y.↑≤[x;y])} .

∀L:T List.

↑ordered(≤,quicksort(≤,L))

Fig. 44. Theorem ordered_quicksort



To prove the ordered_quicksort theorem shown in Figure 44, we first replace quicksort(≤, L) with
flatten(mktree(≤)(L)) using the quicksort_by_fusion theorem. After using the ordered_flatten lemma
then, we only have to prove that mktree(≤)(L) is ordered. This is proved by the ordered_mktree lemma.
All well-formedness goals are discharged by Nuprl’s Auto tactic, so the whole proof requires only three
steps.

10.2 Quicksort Returns a Permutation of its Input

In the previous subsection we proved that Quicksort always returns an ordered list. To prove that Quick-
sort is a sorting algorithm, it remains to show that the list returned by Quicksort is a permutation of the
input list.

Theorem 15. Suppose T is a type, eq : T × T → B is a function with eq(x, y) = true if and only if x = y
for all x, y ∈ T (in other words, equality in T is decidable), and ≤ : T ×T → B. Furthermore, suppose x ∈ T
and L ∈ List(T ). Then x occurs in quicksort(≤, L) exactly as often as in L.

The idea of counting the occurrences of an element in L and in quicksort(≤, L) is borrowed from [7].
Figure 45 shows the Nuprl theorem list_count_quicksort. We used the abstractions discrete_equality,
which can be found in the DISCRETE library, and list_count from the LIST_3 library to state the theorem.
We need a decidable equality on T in order to be able to count the occurrences of a given element x ∈ T in
the two lists L and quicksort(≤, L): If we could not tell whether two elements x, y ∈ T are equal, we could
not compare x to the elements in L and quicksort(≤, L).

* THM list_count_quicksort

∀T:U. ∀eq:{T=2}. ∀≤:T → T → B. ∀L:T List. ∀x:T.
|x∈quicksort(≤,L)| = |x∈L|

Fig. 45. Theorem list_count_quicksort

We do not prove this theorem directly. Instead, we prove three lemmata first. The first lemma, list_count_over_filter_lemma,
is shown in Figure 46. It proves that an element x occurs in the list filter(f ;L) exactly as often as in L if
f [x] is true, and zero times otherwise. The lemma is proved in about 33 steps using the ListInd tactic for
structural induction on L, combined with several applications of the IfThenElseCases tactic for case splits
on f [x] and—in the case L = u :: v—on f [u]. The fact that we can decide whether x is equal to u (via the
eq function) is crucial to the proof.

* THM list_count_over_filter_lemma

∀T:U. ∀eq:{T=2}. ∀f:T → B. ∀L:T List. ∀x:T.
|x∈filter(f;L)| = if f[x] then |x∈L| else 0 fi

Fig. 46. Theorem list_count_over_filter_lemma

The second lemma, shown in Figure 47, states that an element x occurs in L exactly as often as in the two
lists filter(f ;L) and filter(¬f ;L) together. It is proved in about 16 steps. We apply the list_count_over_filter_lemma
lemma twice in its proof: first to the list filter(f ;L), and then to the list filter(¬f ;L).

Figure 48 shows the third lemma. This lemma is an instance of list_count_over_filter_lemma that has
been specialized by the predicates below and above. The lemma is trivially proved by making the instantiation.



* THM list_count_filter_filter_lemma

∀T:U. ∀eq:{T=2}. ∀f:T → B. ∀L:T List. ∀x:T.
|x∈filter(f;L)| + |x∈filter((λz.¬bf[z]);L)| = |x∈L|

Fig. 47. Theorem list_count_filter_filter_lemma

* THM list_count_below_above

∀T:U. ∀eq:{T=2}. ∀≤:T → T → B. ∀L:T List. ∀u,x:T.
|x∈filter((λb.b below(≤) u);L)| + |x∈filter((λb.b above(≤) u);L)| = |x∈L|

Fig. 48. Theorem list_count_below_above

The proof of list_count_quicksort now requires about 55 steps. The ListLenInd tactic is used for
complete induction on the length of L, followed by the ListInd tactic two differentiate between the two possi-
ble cases L = [] and L = u :: v. The case L = [] is proved in a single step by the Auto tactic after unfolding the
definition of quicksort . For the case L = u :: v, we apply the list_count_over_append_lemma lemma from
the LIST_3 library to the two lists quicksort(≤,filter(· below(≤) u; v)) and u :: quicksort(≤,filter(· above(≤
) u; v)). The induction hypothesis is then applied to the lists quicksort(≤,filter(· below(≤) u; v)) and
quicksort(≤,filter(· above(≤) u; v)).
Finally list_count_below_above is used on the two lists filter(· below(≤) u; v) and
filter(· above(≤) u; v).

This does not only complete the proof that Quicksort returns a permutation of its input list, but it is
also the last step in our correctness proof for Quicksort. The next section presents an alternative approach
to proving that Quicksort returns a permutation of its input.

10.3 Quicksort Returns a Permutation of its Input: A Second Proof

To prove that Quicksort returns a permutation of its input in the previous section, we counted the number of
occurrences of elements in the lists L and quicksort(≤, L). We cannot do this unless equality on T is decidable.
This is not a real restriction if ≤ is a decidable order relation on T : Then x = y ⇐⇒ (x ≤ y ∧ y ≤ x) for
all x and y in T .4 However, all theorems that we proved in the previous section only required ≤ to be total
(i.e. x ≤ y∨ y ≤ x for all x, y ∈ T ) and transitive (i.e. (x ≤ y∧ y ≤ z)⇒x ≤ z for all x, y, z ∈ T ), and there is
a different approach to proving that Quicksort returns a permutation of its input—an approach that does
not require equality on T to be decidable.

This approach is based on the inductive definition of permutation shown in Figure 49. The definition
can be found in the LIST_3 library.

We also need two self-evident lemmata: that permutation is transitive, and that permutation distributes
over append. The former is shown in Figure 50, and the latter in Figure 51.

We now prove a lemma similar to the list_count_filter_filter_lemma lemma shown in Figure 47: L
is a permutation of filter(f ;L)@filter(¬f ;L). This lemma, which is shown in Figure 52, is proved in about
23 steps by structural induction on L.

The permutation_below_above lemma (see Figure 53) simply results from applying the permuta-
tion_filter_filter_lemma lemma to the two predicates below and above. It is proved in about three
steps.

We can now show that quicksort(≤, L) is a permutation of L. Figure 54 shows the corresponding Nuprl
theorem. It is proved by complete induction on the length of L using the ListLenInd tactic, followed by the
ListInd tactic to differentiate between L = [] and L = u :: v. The case L = [] is then proved in a single step

4 The ‘⇒’ direction follows from the reflexivity of ≤, and the antisymmetry of ≤ implies the ‘⇐’ direction.



* ABS permutation

perm(L,M) ==

(letrec perm(L)(M) =

case L of

[] => case M of

[] => True

| h::t => False

esac

| h::t => case M of

[] => False

| h’::t’ => ∃N,N’:T List. M = N @ (h::N’) ∧ perm t (N @ N’)

esac

esac )

L

M

Fig. 49. Abstraction permutation

* THM permutation_transitive

∀T:U. ∀L,M,N:T List. perm(L,M) ⇒ perm(M,N) ⇒ perm(L,N)

Fig. 50. Theorem permutation_transitive

* THM permutation_over_append_lemma

∀T:U. ∀A,B,X,Y:T List. perm(A,X) ∧ perm(B,Y) ⇒ perm(A @ B,X @ Y)

Fig. 51. Theorem permutation_over_append_lemma

* THM permutation_filter_filter_lemma

∀T:U. ∀f:T → B. ∀L:T List.

perm(L,filter(f;L) @ filter((λz.¬bf[z]);L))

Fig. 52. Theorem permutation_filter_filter_lemma

* THM permutation_below_above

∀T:U. ∀≤:T → T → B. ∀L:T List. ∀u:T.
perm(L,filter((λb.b below(≤) u);L) @ filter((λb.b above(≤) u);L))

Fig. 53. Theorem permutation_below_above

by unfolding definitions and the Auto tactic. Proving the case L = u :: v requires approximately 34 steps.
A number of lemmata are instantiated in this part of the proof. Altogether, the proof is about 39 steps long.

* THM permutation_quicksort

∀T:U. ∀≤:T → T → B. ∀L:T List. perm(L,quicksort(≤,L))

Fig. 54. Theorem permutation_quicksort



This completes our second proof that Quicksort returns a permutation of its input.

References

1. Richard S. Bird. Functional algorithm design. In Bernhard Moller, editor, Mathematics of Program Construction
’95, volume 947 of Lecture Notes in Computer Science, pages 2–17. Springer-Verlag, 1995.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2001.
3. M. Davis. Deforestation: Transformation of functional programs to eliminate intermediate trees. Master’s thesis,

Oxford University, 1987.
4. William F. Eddy and Mark J. Schervish. How many comparisons does Quicksort use? Journal of Algorithms,

19(3):402–431, November 1995.
5. A. Gill, Launchbury J., and Peyton Jones S.L. A short cut to deforestation. In Conference on Functional

Programming Languages and Computer Architecture, pages 223–232, June 1993.
6. C. A. R. Hoare. ACM Algorithm 64: Quicksort. Communications of the ACM, 4(7):321, July 1961.
7. Natarajan Shankar. Steps toward mechanizing program transformations using PVS. Science of Computer Pro-

gramming, 26(1-3):33–57, 1996.
8. P. Wadler. Deforestation: Transforming programs to eliminate trees. In ESOP ’88. European Symposium on

Programming, Nancy, France, 1988, volume 300 of Lecture Notes in Computer Science, pages 344–358. Berlin:
Springer-Verlag, 1988.


	Quicksort via Bird's Tree Fusion Transformation

