
Maribel Fernandez (Ed.): 24th International Workshop on
Unification (UNIF2010).
EPTCS 42, 2010, pp. 24–38, doi:10.4204/EPTCS.42.3

A Machine Checked Model of Idempotent MGU Axioms For
Lists of Equational Constraints

Sunil Kothari, James Caldwell
Department of Computer Science,

University of Wyoming, USA

We present formalized proofs verifying that the first-order unification algorithm defined over lists of
satisfiable constraints generates a most general unifier (MGU), which also happens to be idempotent.
All of our proofs have been formalized in the Coq theorem prover. Our proofs show that finite
maps produced by the unification algorithm provide a model of the axioms characterizing idempotent
MGUs of lists of constraints. The axioms that serve as the basis for our verification are derived from
a standard set by extending them to lists of constraints. For us, constraints are equalities between
terms in the language of simple types. Substitutions are formally modeled as finite maps using
the Coq library Coq.FSets.FMapInterface. Coq’s method of functional induction is the main proof
technique used in proving many of the axioms.

1 Introduction

We present formalized proofs verifying that the first-order unification algorithm defined over lists of
satisfiable constraints generates a most general unifier (MGU), which also happens to be idempotent. All
of our proofs have been formalized in the Coq theorem prover [6]. Our proofs show that substitutions
produced by the unification algorithm provide a model of the axioms characterizing the idempotent
MGUs of lists of constraints.

The formalization and verification presented here was motivated by our work on to verifying Wand’s
constraint based type inference algorithm [26] (and to verify our extension of Wand’s algorithm to include
polymorphic let [15]). In the recent literature on machine certified proof of correctness of type inference
algorithms [13, 20, 25], most general unifiers are characterized by four axioms.

Recall that τ and τ ′ (in some language) are unifiable if there exists a substitution ρ mapping variables
to terms in the language such that ρ(τ) = ρ(τ ′). In such a case, ρ is called a unifier. A unifier ρ is a
most general unifier if for any other unifier ρ ′′ there is a substitution ρ ′ such that ρ ◦ρ ′ = ρ ′′.

We consider the MGU axioms given by Nipkow and Urban [25]. Let ρ,ρ ′,ρ ′′ denote substitutions i.e.
functions mapping type variables to terms, constraints are of the form τ

e
= τ ′ where τ and τ ′ are simple

types and the symbol FTV is overloaded to denote the free type variables of substitutions, constraints and
types and the notation. Composition of substitutions1 is denoted ρ ◦ρ ′. With these notational conventions
in mind, the MGU axioms are presented as follows:

(i) mgu ρ (τ1
e
= τ2)⇒ ρ(τ1) = ρ(τ2)

(ii) mgu ρ (τ1
e
= τ2) ∧ ρ ′(τ1) = ρ ′(τ2)⇒∃ρ ′′.ρ ′ = ρ ◦ρ ′′

(iii) mgu ρ (τ1
e
= τ2)⇒ FTV(ρ)⊆ FTV(τ1

e
= τ2)

(iv) ρ(τ1) = ρ(τ2)⇒∃ρ ′. mgu ρ ′ (τ1
e
= τ2)

1The reader should note that in this paper, composition of functions is characterized by the equation (ρ ◦ρ ′)(x) = ρ ′(ρ(x)).

http://dx.doi.org/10.4204/EPTCS.42.3

S. Kothari & J. Caldwell 25

These axioms, modeling MGUs, have proved useful in verifying substitution-based type inference
algorithms where the constraints are solved as they are generated, one at a time. In constraint-based type
inference algorithms like Wand’s, the constraints are generated before they are solved. Thus, for use in
the constraint based setting, we lift the MGU axioms to lists of constraints. To do so, we restate the
standard axioms to apply to constraint lists, add two new axioms which characterize MGUs of lists of
constraints; one axiom for the empty list and another for lists constructed by appends. Also, reasoning
about Wand’s type inference algorithm requires the MGUs be idempotent, so we add another axiom
for idempotency. Idempotent MGUs have the nice property that their domain and range elements are
disjoint.

We proceed by characterizing idempotent MGUs for lists of equational constraints by presenting
seven axioms. Then we show that the first order unification algorithm models those axioms. The the-
orems and supporting lemmas mentioned in this paper have been formalized and verified in Coq [23] -
a theorem prover based on calculus of inductive constructions [12]. In the formalization, we represent
substitutions using Coq’s finite map library [1].

To start, we generalize the standard MGU axioms to constraint lists. In addition to the notations in-
troduced above, if C is a list of constraints, ρ |=C (read ρ satisfies C) means that ρ unifies all constrains
in C. Let C denote a constraint list, then the MGU axioms (for a list of constraints) are:

(i) mgu ρ C ⇒ ρ |=C
(ii) mgu ρ C ∧ ρ ′ |=C⇒∃ρ ′′. ρ ′ = ρ ◦ρ ′′

(iii) mgu ρ C ⇒ FTV (ρ)⊆ FTV (C)
(iv) ρ |= C ⇒∃ρ ′. mgu ρ ′C

To the axioms just mentioned we add three more axioms that characterize idempotent MGUs for a list of
equational constraints. List append is denoted by ++.

(v) mgu ρ C ⇒ ρ ◦ρ = ρ

(vi) mgu ρ []⇒ ρ = Id
(vii) mgu ρ ′ C′ ∧ mgu ρ ′′ (ρ ′(C′′))∧mgu ρ (C′ ++C′′)⇒ ρ = ρ ′ ◦ρ ′′

These additional axioms are mentioned elsewhere in the unification literature, namely [14, 17]. The
statement of axiom vii is convenient in proofs where constraint lists are constructed by combining lists
of constraints rather than adding them one at a time. A lemma characterizing lists constructed by conses
is easily proved from this axiom.

Formalizing substitutions as finite maps in Coq, we show that first-order unification (unify) is a model
of the MGU axioms. To distinguish the formal representation of substitutions as finite maps from math-
ematical functions, we denote finite maps by σ , σ ′, σ1, etc. Mathematical functions enjoy extensional
equality while finite maps do not (more about this later). We write ρ ≈ ρ ′ to denote extensional equality
for finite maps; i.e. that under application they agree pointwise on all inputs. With these considerations
in mind, we have proved the following in Coq:

26 A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

(i) unify(C) = σ ⇒ σ |=C
(ii) (unify(C) = σ ∧σ ′ |=C)⇒∃σ ′′. σ ′ ≈ σ ◦σ ′′

(iii) unify(C) = σ ⇒ FTV(σ)⊆ FTV(C)
(iv) σ |=C ⇒∃σ ′. unify(C) = σ ′

(v) unify(C) = σ ⇒ σ ◦σ ≈ σ

(vi) unify([]) = σ ⇒ σ = σE
(vii) (unify(C′) = σ ′ ∧unify(σ ′(C′′)) = σ ′′∧unify(C′ ++C′′) = σ)⇒ σ ≈ σ ′ ◦σ ′′

The rest of this paper is organized as follows: Section 2 introduces a number of formal definitions
and terminologies needed for this paper. It also includes more discussion about substitutions represented
as finite functions. Section 3 describes the formalization of a first-order unification algorithm and the
termination argument. Section 4 describes the functional induction tactic and the theorems and lemmas
proved in the verification that unify models the idempotent MGU axioms. Finally, Section 5 mentions
related work and also summarizes our current work.

2 Types and Substitutions

Unification is implemented here over a language of simple types given by the following grammar:
τ ::= α | τ1→ τ2

where α is a type variable, and τ1,τ2 ∈ τ are type terms.
Thus, a type is either a type variable or a function type. We define the list of free2 variables of a type
(FTV) as:

FTV(α)
def
= [α]

FTV(τ → τ ′)
def
= FTV(τ) ++ FTV(τ ′)

We also have equational constraints of the form τ
e
= τ ′, where τ,τ ′ are types. The list of free variables

of a constraint list, also denoted by FTV, is given as:
FTV([])

def
= []

FTV((τ1
e
= τ2) :: C)

def
= FTV(τ1) ++ FTV(τ2) ++ FTV(C)

Substitutions are formally represented as finite maps where the domain of the map is the collection
of type variables and the codomain is the simple types. Application of a finite map to a type is defined
as:

σ(α)
def
=

{
τ if 〈α,τ〉 ∈ σ

α otherwise

σ(τ1→ τ2)
def
= σ(τ1)→ σ(τ2)

Application of a finite map to a constraint is defined similarly as:
σ(τ1

e
= τ2)

def
= σ(τ1)

e
= σ(τ2)

Since Coq’s finite maps are not extensional, we define extensionality (≈) as a relation on finite maps as
follows:

σ ≈ σ ′
def
= ∀α.σ(α) = σ ′(α)

Moreover, the equality can be extended to all types as given by the following lemma:

Lemma 1. ∀α.σ(α) = σ ′(α)⇔∀τ.σ(τ) = σ ′(τ)

2Strictly speaking, since we have no binding operators in the language of simple types the modifier “free” is unnecessary,
we include it here anticipating a more complex language of types in future developments.

S. Kothari & J. Caldwell 27

2.1 Implementing Substitutions as Finite Maps

The representation of substitutions and the libraries available to a user plays a very important role in the
formalization. In the verification literature, substitutions have been represented as functions [25], as lists
of pairs [13], and as sets of pairs [21]. We represent substitutions as finite functions (a.k.a finite maps
in Coq). We use the Coq finite map library Coq.FSets.FMapInterface [1], which provides an axiomatic
presentation of finite maps and a number of supporting implementations. However, it does not provide
an induction principle for finite maps, and forward reasoning is often needed to use the library. We found
we did not need induction to reason on finite maps, though there are natural induction principles we
might have proved [11, 18]. The fact that the library does not provide for extensional equality of finite
maps means that, for example, the following simple lemma does not hold:
Lemma 2. σE ◦σE = σE

But the following is easily proved:
Lemma 3. ∀τ.(σE ◦σE)(τ) = σE(τ)

To give a feel of the Coq’s finite map library, we define free type variables of a substitution, and
the substitution composition operator using the finite map library functions. In the definitions below, we
follow Coq’s namespace conventions; every library function has a qualifier which denotes the library it
belongs to. For example, M.map is a function from the finite maps library (M) which maps a function
over the range elements of a finite map, whereas List.map is a function from the list library.
First, we define the list of free type variables of a substitution:

FTV(σ)
def
= dom subst(σ) ++ range subst(σ)

To consider the domain and range elements of a finite function (and this is the key feature of the
function being finite), we use the finite map library function M.elements. M.elements(σ) returns a
list of pairs (key-value pairs) corresponding to the finite map σ . The domain and range elements of a
substitution are defined as:

dom subst(σ)
def
= List.map (λ t.fst (t)) (M.elements(σ))

range subst(σ)
def
= List.flat map (λ t.FTV (snd (t))) (M.elements(σ))

The function List.flat map is also known as mapcan in LISP and concatMap in Haskell. Next, we
define a few utility functions to help us define the composition operator ◦. Applying a substitution σ ′ to
a substitution σ means applying σ ′ to the range elements of σ .

σ ′(σ)
def
= M.map (λτ.σ ′(τ)) σ

The function subst diff is used to define composition of finite maps, and is defined as:

subst diff σ σ ′
def
= M.map2 choose subst σ σ ′

In this definition, M.map2 is defined in Coq library as the function that takes two maps σ and σ ′,
and creates a map whose binding belongs to either σ or σ ′ based on the function choose subst, which
determines the presence and value for a key (absence of a value is denoted by None). The values in the
first map are preferred over the values in the second map for a particular key. The function choose subst
is defined as:

choose subst (Someτ1) (Someτ2)
def
= Some τ1

choose subst (Someτ1) None
def
= Some τ1

choose subst None (Someτ2)
def
= Someτ2

choose subst None None
def
= None

Finally, the composition of finite maps (◦) is defined as:

σ ◦σ ′
def
= subst diff σ ′(σ) σ ′

28 A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

Substitution composition application to a type has the following property:

Theorem 1. ∀σ . ∀σ ′. ∀τ.(σ ◦σ ′)(τ) = σ ′(σ(τ))

Proof. By induction on the type τ followed by case analysis on the binding’s occurrence in the composed
substitution and in the individual substitutions.

Interestingly, the base case (when τ is a type variable) is more difficult than the inductive case (when τ is
a compound type). Incidentally, the same theorem has been formalized in Coq [13], where substitutions
are represented as lists of pairs, but the proof there required 600 proof steps. We proved Theorem 1 in
about 100 proof steps.

3 First-Order Unification

We use the following standard presentation of the first-order unification algorithm:
unify []

def
= Id

unify ((α
e
= β) :: C)

def
= if α = β then unify(C) else {α 7→ β}◦unify ({α 7→ β}(C))

unify ((α
e
= τ) :: C)

def
= if α occurs in τ then Fail else {α 7→ τ}◦unify ({α 7→ τ}(C))

unify((τ
e
= α) :: C)

def
= if α occurs in τ then Fail else {α 7→ τ}◦unify ({α 7→ τ}(C))

unify ((τ1→ τ2
e
= τ3→ τ4) :: C)

def
= unify((τ1

e
= τ3) :: (τ2

e
= τ4) :: C)

This specification is written in a functional style. It would also have been possible to formalize unify in a
relational style. A discussion of the trade-offs between these two styles of formalization Coq can be found
in [5]. Since Coq’s type theory requires functions to be total, the functional style carries an overhead; we
need a value to represent failure. We used Coq’s option type to make first-order unification total. The
option type (maybe in Haskell) is defined in Coq as follows:

Inductive option (A : Set) : Set := Some (: A) | None.
The constructor None indicates failure and the term Some(σ) indicates success (with σ as the result). In
the presentation here, we omit the None and Some constructors. In virtually all theorems proved here,
the None case is trivial.

The presentation of the unification algorithm given here is general recursive, i.e., the recursive call
is not necessarily on a structurally smaller argument. Various papers have discussed the non-structural
recursion used in the standard first-order unification algorithm. McBride has given a structurally recur-
sive unification algorithm [19]. Bove [9] gives an algorithm similar to ours and proves termination in
Alf [2]. We believe our presentation of the algorithm is more perspicuous than Bove’s although a similar
termination argument works here. To allow Coq to accept our definition of unification, we have to either
give a measure that shows that recursive argument is smaller or give a well-founded ordering relation.
We chose the latter. We use the standard lexicographic ordering on the triple: <|CFVC |, |C→ |, |C |>,
where

|CFVC | is the number of unique free variables in a constraint list;
|C→ | is the total number of arrows in the constraint list;
|C | is the length of the constraint list.

Our triple is similar to the triple proposed by others [9, 4, 3], but a little simpler.
Table 1 shows how these components vary depending on the constraint at the head of the constraint

list. The table closely follows the reasoning we used to satisfy the proof obligations generated by the
above specification [16]. We use -, ↑, ↓ to denote whether the component is unchanged, increased or

S. Kothari & J. Caldwell 29

Original call Recursive call Conditions, if any |CFVC | |C→ | |C |
(α

e
= α) :: C C α ∈ FVC(C) - - ↓

(α
e
= α) :: C C α /∈ FVC(C) ↓ - ↓

(α
e
= β) :: C {α 7→ β}(C) α 6= β ↓ - ↓

(α
e
= τ) :: C {α 7→ τ}(C) α /∈ FTV(τ) ∧ α /∈ FVC(C) ↓ ↓ ↓

(α
e
= τ) :: C {α 7→ τ}(C) α /∈ (FTV(τ) ∧ α ∈ FVC(C) ↓ ↑ ↓

(τ
e
= α) :: C {α 7→ τ}(C) α /∈ FTV(τ) ∧ α /∈ FVC(C) ↓ ↓ ↓

(τ
e
= α) :: C {α 7→ τ}(C) α /∈ FTV(τ) ∧ α ∈ FVC(C) ↓ ↑ ↓

((τ1→ τ2) ((τ1
e
= τ3) None - ↓ ↑

e
= (τ3→ τ4)) :: C :: (τ2

e
= τ4) :: C)

Table 1: Properties of the termination measure components on the recursive call

decreased, respectively. We might have used finite sets here (for counting the unique free variables of a
constraint list), but we used lists because of our familiarity with the list library. We found the existing
Coq list library offers excellent support for reasoning about lists in general, and unique lists in particular.
Coq also provides a library to reason about sets as lists modulo permutation.

We found the following lemma mentioned in the formalization of Sudoku puzzles by Laurent Théry
[24] very useful in our termination proofs.

Lemma 4.

∀l, l′ : list D, NoDup l ⇒ NoDup l′⇒ List.incl l l′⇒¬List.incl l′ l⇒ (List.length l) < (List.length l′)

This lemma nicely relates list inclusion to length.

4 Verification of the Model

Now we present the proofs of the theorems verifying our model of the idempotent MGU axioms. The
underlying theme in almost all of the proofs presented below is the use of the functional induction tactic
[5] in Coq. This tactic is available to us because we have specified first-order unification in a functional
style rather than the relational style. The functional induction technique generates an induction princi-
ple for definitions defined using the Function keyword. Given a general recursive algorithm known to
terminate (termination requires a separate proof), the induction principle generated for that particular
algorithm allows a symbolic unfolding of the computation with induction hypotheses for all recursive
calls. This technique is featured in other theorem provers and was pioneered in Nqthm by Boyer and
Moore [10].

Functional induction is obviously stronger than the normal list induction, it closely follows the syntax
of the definition and tends to generate induction hypotheses of exactly the right form needed. The actual
induction principle is available in [16]. The induction principle for the unification algorithm itself is
rather long because of the number of cases involved; there are five cases - three of which have three
sub-cases each.

In the next few sections, we present the formal statements of the most important lemmas involved in
the proofs of each of the axioms. For many of these lemmas, we describe the main technique involved
in the proofs. Due to limitations on space, lemmas stated without comment on their proofs should be
assumed to follow by structural induction on a constraint list or type.

30 A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

4.1 Axiom i

Lemma 5. ∀α.∀C. ∀σ . ∀τ. σ |= {α 7→ τ}(C)⇒ ({α 7→ τ}◦σ) |=C

Theorem 2. ∀C. ∀σ . unify(C) = σ ⇒ σ |=C

Proof. Choose an arbitrary C. By functional induction on unify C, there are two main cases:

Case C = []. Follows trivially since any substitution satisfies an empty constraint list.

Case C 6= []. We consider the various cases based on the constraint at the head of the constraint list.

1. Case (α
e
= α) :: C′. This case follows from the induction hypothesis.

2. Case (α
e
= β) :: C′ and α 6= β . The reasoning is similar to case 3 below.

3. Case (α e
= τ1→ τ2) :: C′ and α /∈ FTV(τ1→ τ2). We know unify({α 7→ τ1→ τ2}(C′)) = σ ′

and the induction hypothesis is
∀σ .unify({α 7→ τ1→ τ2}(C′)) = σ ⇒ σ |= {α 7→ τ1→ τ2}(C′).
We have to show
∀σ .σ = ({α 7→ τ1 → τ2} ◦σ ′)⇒ σ |= (α

e
= τ1 → τ2) :: C′. Pick an arbitrary σ . Assume

σ = {α 7→ τ1 → τ2} ◦ σ ′. We must show ({α 7→ τ1 → τ2} ◦ σ ′) |= (α
e
= τ1 → τ2) :: C′.

Since we know unify({α 7→ τ1 → τ2}(C′)) = σ ′, so by the induction hypothesis we know
σ ′ |= {α 7→ τ1→ τ2}(C′). We must show ({α 7→ τ1→ τ2}◦σ ′) |= (α

e
= τ1→ τ2) :: C′. By

the definition of satisfiability, we must show:
(a) ({α 7→ τ1→ τ2}◦σ ′) |= (α

e
= τ1→ τ2).

By Theorem 1 and the definition of satisfiability, we must show σ ′({α 7→ τ1→ τ2}(α))
= σ ′({α 7→ τ1 → τ2}(τ1 → τ2)). Since we know α /∈ FTV(τ1 → τ2), so {α 7→ τ1 →
τ2}(τ1→ τ2) = τ1→ τ2 and the proof follows.

(b) ({α 7→ τ1→ τ2}◦σ ′) |=C′.
Since we know σ ′ |= {α 7→ τ1→ τ2}(C′), so by Lemma 5 we know ({α 7→ τ1→ τ2}◦
σ ′) |=C′ as was to be shown.

4. Case (τ1→ τ2
e
= α) :: C′ and α /∈ FTV(τ1→ τ2). Same as case 3 above.

5. Case (τ1→ τ2
e
= τ3→ τ4) :: C′. The induction hypothesis is

∀σ . unify((τ1
e
= τ3) :: (τ2

e
= τ4) :: C′) = σ ⇒ σ |= ((τ1

e
= τ3) :: (τ2

e
= τ4) :: C′).

We have to show
∀σ ′. unify((τ1

e
= τ3) :: (τ2

e
= τ4) :: C′) = σ ′⇒ σ ′ |= ((τ1→ τ2

e
= τ3→ τ4) :: C′).

Pick an arbitrary σ ′ and assume unify ((τ1
e
= τ3) :: (τ2

e
= τ4) :: C′) = σ ′. Since we know

unify ((τ1
e
= τ3) :: (τ2

e
= τ4) :: C′) = σ ′, so by the induction hypothesis we know

σ ′ |= ((τ1
e
= τ3) :: (τ2

e
= τ4) :: C′). But by the definition of satisfiability, we know

σ ′(τ1) = σ ′(τ3), σ ′(τ2) = σ ′(τ4) and σ ′ |=C′.
To show σ ′ |= ((τ1→ τ2

e
= τ3→ τ4) :: C′), we must show:

(a) σ ′ |= τ1→ τ2
e
= τ3→ τ4. By the definition of satisfiability, we must show

σ ′(τ1→ τ2) = σ ′(τ3→ τ4). But we assumed σ ′(τ1) = σ ′(τ3) and σ ′(τ2) = σ ′(τ4), so
this case holds.

(b) σ ′ |=C′. But that we already know.

S. Kothari & J. Caldwell 31

4.2 Axiom ii

Lemma 6. ∀C.∀σ .∀α.∀τ. (σ |=C ∧ α /∈ FTV(τ) ∧ σ(α) = σ(τ)) ⇒ σ |= {α 7→ τ}(C)

Proof. By induction on the constraint list C, followed by induction on the structure of the type τ .

Theorem 3. ∀C. ∀σ .∀σ ′. (unify(C) = σ ∧ σ ′ |=C)⇒∃σ ′′. σ ′ ≈ σ ◦σ ′′

Proof. Choose an arbitrary constraint list C. By the definition of extensional equality on finite maps, we
must show ∀σ .∀σ ′. (unify(C) = σ ∧ σ ′ |=C)⇒∃σ ′′. ∀α. σ ′(α) = (σ ◦σ ′′)(α).
By functional induction on unify(C), there are two main cases:

Case C = []. Choose an arbitrary σ and σ ′. Assume unify([]) = σ and σ ′ |= []. By the definition
of unify, we know σ = σE. So we must show ∃σ ′′.∀α.σ ′(α) = (σE ◦ σ ′′)(α). Let σ ′ be the
witness for σ ′′ in ∃σ ′′.∀α.σ ′(α) = (σE ◦σ ′′)(α). Choose an arbitrary α . Then we must show
σ ′(α) = (σE ◦σ ′)(α). But by Theorem 1, we have (σE ◦σ ′)(α) = σ ′(σE(α)). So we must show
σ ′(σE(α)) = σ ′(α). But that follows since σE(α) = α .

Case C 6= []. We consider the various cases based on the constraint at the head of the constraint list:

1. Case (α
e
= α) :: C′. Apply the induction hypothesis and then this case is trivial.

2. Case (α
e
= β) :: C′ and α 6= β . Reasoning is similar to case 3 below.

3. Case (α e
= τ1→ τ2) :: C′ and α /∈ FTV(τ1→ τ2). We know unify({α 7→ τ1→ τ2}(C′)) = σ1

and the induction hypothesis is
∀σ . ∀σ ′. (unify({α 7→ τ1→ τ2}(C′)) = σ ∧ σ ′ |= ({α 7→ τ1→ τ2}(C′)))

⇒∃σ ′′. ∀α ′. σ ′(α ′) = (σ ◦σ ′′)(α ′).
We must show
∀σp. ∀σ2. σp = ({α 7→ τ1→ τ2}◦σ1)∧σ2 |= ((α

e
= τ1→ τ2) :: C′)

⇒∃σ3. ∀α ′′. σ2(α
′′) = (σp ◦σ3)(α

′′).
Pick an arbitrary σp and σ2.
Assume σp = {α 7→ τ1→ τ2}◦σ1 and σ2 |= ((α

e
= τ1→ τ2) :: C′). We must show

∃σ3. ∀α ′′. σ2(α
′′) = (({α 7→ τ1 → τ2} ◦σ1) ◦σ3)(α

′′). Since σ2 |= ((α
e
= τ1 → τ2) :: C′)

so, by the definition of constraint satisfiability, we know σ2(α) = σ2(τ1→ τ2) and σ2 |=C′.
Then, by Lemma 6 and by our assumptions, we know σ2 |= ({α 7→ τ1 → τ2}(C′)). Since
we also know unify({α 7→ τ1 → τ2}(C′)) = σ1, so, by the induction hypothesis, we know
∃σ ′′. ∀α ′. σ2(α

′) = (σ1 ◦σ ′′)(α ′). We assume ∀α ′. σ2(α
′) = (σ1 ◦σ4)(α

′), where σ4 is
fresh. Then, to show ∃σ3.∀α ′′.σ2(α

′′) = (({α 7→ τ1 → τ2} ◦σ1) ◦σ3)(α
′′), we choose the

witness σ4 and show ∀α ′′.σ2(α
′′) = (({α 7→ τ1→ τ2}◦σ1)◦σ4)(α

′′). Pick an arbitrary α ′′

and show σ2(α
′′) = (({α 7→ τ1→ τ2}◦σ1)◦σ4)(α

′′). By Theorem 1, we must show
σ2(α

′′) = σ4(σ1({α 7→ τ1→ τ2}(α ′′)). There are two cases to consider:
(a) Case α 6= α ′′. Then we must show σ2(α

′′) = σ4(σ1(α
′′)). But that follows our assump-

tions and Theorem 1.
(b) Case α = α ′′. Then we must show σ2(α) = σ4(σ1(τ1→ τ2)). Since we know

σ2(α) = σ2(τ1 → τ2), so we must show σ2(τ1 → τ2) = σ4(σ1(τ1 → τ2)). But that
follows from our assumptions and Lemma 1 and Theorem 1.

4. Case (τ1→ τ2
e
= α) :: C and α /∈ FTV(τ1→ τ2). Same as case 3 above.

5. Case (τ1→ τ2
e
= τ3→ τ4) :: C. Apply the induction hypothesis and then this case is trivial.

32 A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

4.3 Axiom iii

Lemma 7. ∀α,α ′.∀τ.∀σ .α ′ ∈ dom subst({α 7→ τ}◦σ)⇒
α ′ ∈ dom subst({α 7→ τ}) ∨ α ′ ∈ dom subst(σ)

Lemma 8. ∀α,α ′.∀τ.∀σ . (α /∈ FTV(τ) ∧ α ′ ∈ range subst({α 7→ τ}◦σ))⇒
α ′ ∈ range subst({α 7→ τ}) ∨ α ′ ∈ range subst(σ)

Without going into the details, the following lemma helps us in proving Lemma 8. Note that the definition
of ◦ contains references to higher order functions M.map2 and this lemma helps in not having to reason
about M.map2 function but instead we use Theorem 1 to reason about substitution composition.

Lemma 9. ∀α.∀σ . α ∈ range subst(σ)⇔∃α ′.α ′ ∈ dom subst(σ) ∧ α ∈ FTV(σ(α ′))

Lemma 10. ∀α,α ′. ∀τ. ∀C. (α ′ /∈ FTV(τ)∧α ′ ∈ FTV({α 7→ τ}(C)))⇒ α ′ ∈ FTV(C).

Lemma 11. ∀C. ∀σ . unify(C) = σ ⇒ dom subst(σ)⊆ FTV(C)

Proof. By functional induction on unify(C) and Lemma 7.

We focus on the proof of the most involved lemma.

Lemma 12. ∀C. ∀σ . unify(C) = σ ⇒ range subst(σ)⊆ FTV(C)

Proof. Choose an arbitrary C. Unfolding the definition of ⊆, we must show
∀σ . unify(C) = σ ⇒ ∀α ′. α ′ ∈ range subst(σ)⇒ α ′ ∈ FTV(C). By functional induction on unify(C),
there are two main cases:

Case C = []. Then, by the definition of unify, we know σ = σE. So we must show
range subst(σE)⊆ FTV([]). The proof follows from the definition of range subst and the defini-
tion of FTV.

Case C 6= []. We consider the various cases based on the constraint at the head of the constraint list:

1. Case (α
e
= α) :: C′. The induction hypothesis is:

∀σ . unify(C′) = σ ⇒∀α ′′.α ′′ ∈ range subst(σ)⇒ α ′′ ∈ FTV(C′)
and we must show
∀σ . unify(C′) = σ ⇒∀α ′.α ′ ∈ range subst(σ)⇒ α ′ ∈ FTV((α

e
= α) :: C′).

Pick an arbitrary σ and assume unify(C′) = σ . Pick an arbitrary α ′.
Assume α ′ ∈ range subst(σ) and show α ′ ∈ FTV((α

e
= α) :: C′).

Since we know unify(C′) = σ , so, by the induction hypothesis, we know
∀α ′′. α ′′ ∈ range subst(σ)⇒ α ′′ ∈ FTV(C′). Since we also know α ′ ∈ range subst(σ), so
we know α ′ ∈ FTV(C′). That also means α ′ ∈ FTV((α

e
= α) :: C′) as was to be shown.

2. Case (α
e
= β) :: C′ and α 6= β . Reasoning is similar to case 3 below.

3. Case (α e
= τ1→ τ2) :: C′ and α /∈ FTV(τ1→ τ2). We know unify({α 7→ τ1→ τ2}(C′)) = σ1,

and the induction hypothesis is
∀σ ′. unify({α 7→ τ1→ τ2}(C′)) = σ ′⇒

∀α ′.α ′ ∈ range subst(σ ′)⇒ α ′ ∈ FTV({α 7→ τ1→ τ2}(C′)).
We must show
∀α ′′.α ′′ ∈ range subst({α 7→ τ1→ τ2}◦σ1)⇒ α ′′ ∈ FTV((α

e
= τ1→ τ2) :: C′).

Pick an arbitrary α ′′ and assume α ′′ ∈ range subst({α 7→ τ1 → τ2} ◦σ1). We must show
α ′′ ∈ FTV({α e

= τ1→ τ2} :: C′). There are two cases:

S. Kothari & J. Caldwell 33

(a) Case α ′′ = α . Then clearly α ′′ ∈ FTV({α e
= τ1→ τ2}(C′)) as was to be shown.

(b) Case α ′′ 6= α . Then we have two cases:
i. α ′′ ∈ FTV(τ1 → τ2). Then clearly α ′′ ∈ FTV({α e

= τ1 → τ2} :: C′) as was to be
shown.

ii. α ′′ /∈ FTV(τ1→ τ2). Then we must show α ′′ ∈ FTV(C′). Since we know
unify({α 7→ τ1→ τ2}(C′)) = σ1, so by the induction hypothesis we know
∀α ′.α ′ ∈ range subst(σ1)⇒ α ′ ∈ FTV({α 7→ τ1→ τ2}(C′)).
Since α ′′ ∈ range subst({α 7→ τ1 → τ2} ◦ σ1) so, by Lemma 8, we know either
α ′′ ∈ range subst({α 7→ τ1→ τ2}) or α ′′ ∈ range subst(σ1). Again, there are two
cases:

A. Case α ′′ ∈ range subst({α 7→ τ1→ τ2}). Then α ′′ ∈ FTV(τ1→ τ2) - a contra-
diction.

B. Case α ′′ ∈ range subst(σ1). Then from the induction hypothesis we know
α ′′ ∈ FTV({α 7→ τ1→ τ2}(C′)). Then by Lemma 10, α ′′ ∈ FTV(C′) as was to
be shown.

4. Case (τ1→ τ2
e
= α) :: C and α /∈ FTV(τ1→ τ2). Same as case 3 above.

5. Case (τ1→ τ2
e
= τ3→ τ4) :: C. Apply the induction hypothesis and then this case is trivial.

Theorem 4. ∀C. ∀σ . unifyC = σ ⇒ FTV(σ)⊆ FTV(C)

Proof. By the definition of FTV and by Lemma 11 and Lemma 12.

4.4 Axiom iv

This axiom requires the notion of subterms, which we define below:

subterms(α)
def
= []

subterms(τ1→ τ2)
def
= τ1 :: τ2 :: (subterms τ1) ++ (subterms τ2)

Then we can define what it means to for a term to be contained in another term.

Lemma 13. ∀τ,τ ′. τ ∈ subterms(τ ′) ⇒ ∀τ ′′. τ ′′ ∈ subterms(τ)⇒ τ ′′ ∈ subterms(τ ′)

A somewhat related lemma is used to show well foundedness of types.

Lemma 14. ∀τ.¬ τ ∈ subterms(τ)

Proof. By induction on the structure of the type τ and by Lemma 13.

The following obvious but powerful lemma helps in proving the axiom:

Lemma 15. ∀σ .∀α.∀τ.α ∈ subterms(τ)⇒ σ(α) 6= σ(τ)

Proof. By induction on the structure of the type τ and by Lemma 14.

Lemma 16. ∀σ .∀α.∀τ1,τ2.α ∈ FTV(τ1)∨α ∈ FTV(τ2)⇒ α ∈ subterms(τ1→ τ2)

Proof. By induction on τ1, followed by induction on τ2.

A corollary from the above two gives us the required lemma.

34 A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

Corollary 1. ∀σ .∀α.∀τ1,τ2.α ∈ FTV(τ1)∨α ∈ FTV(τ2)⇒ σ(α) 6= σ(τ1→ τ2)

Proof. By Lemma 15 and 16.

This is the only theorem where the failure cases are interesting. So in the following theorem we carry
along the constructor that shows success or failure of unify function call.

Theorem 5. ∀C. ∀σ . σ |=C ⇒∃σ ′. unify(C) = Some σ ′

Proof. Choose an arbitrary C and σ . By functional induction on unify(C), there are two main cases:

Case C = []. Assume σ |= []. Then we must show ∃σ ′. unify([]) = Some σ ′. Let σE be the witness for
σ ′ in ∃σ ′. unify([]) = Some σ ′. So we must show unify [] = Some σE but that follows from the
definition of unify.

Case C 6= []. We consider the various cases based on the constraint at the head of the constraint list:

1. Case (α
e
= α) :: C′. Apply the induction hypothesis and then this case is trivial.

2. Case (α
e
= β) :: C′ and α 6= β . Reasoning is similar to case 3 below.

3. Case (α
e
= τ1→ τ2) :: C′ and α /∈ FTV(τ1→ τ2). We know

unify({α 7→ τ1→ τ2}(C′)) = None and the induction hypothesis is:
σ ′ |= ({α 7→ τ1→ τ2}(C′))⇒∃σ ′′. unify({α 7→ τ1→ τ2}(C′)) = Some σ ′′.
We must show
σ ′ |= ((α

e
= τ1→ τ2) :: C′)⇒∃σ3. None = Some σ3.

Assume σ ′ |= ((α
e
= τ1→ τ2) :: C′), i.e., σ ′(α) = σ ′(τ1→ τ2) and σ ′ |=C′.

We must show ∃σ3. None = Some σ3. By Lemma 6 and by our assumptions, we know
σ ′ |=({α 7→ τ1→ τ2}(C′)). So, by the induction hypothesis, we know ∃σ ′′.None=Some σ ′′.
Since we know ∃σ ′′. None = Some σ ′′, so assume None = Some σ ′′′, where σ ′′′ is fresh, but
that is a contradiction and so this case holds.

4. Case (α
e
= τ1→ τ2) :: C′ and α ∈ FTV(τ1→ τ2).

Then, we must show σ ′ |= ((α
e
= τ1→ τ2) :: C′)⇒∃σ3.None = Some σ3.

Assume σ ′ |= ((α
e
= τ1→ τ2) :: C′), i.e., σ ′(α) = σ ′(τ1→ τ2) and σ ′ |=C′. Since we know

α ∈ FTV(τ1→ τ2), i.e., either α ∈ FTV(τ1) or α ∈ FTV(τ2), so by Corollary 1
σ ′(α) 6= σ ′(τ1→ τ2), which is a contradiction. Thus the proof follows trivially.

5. Case (τ1→ τ2
e
= α) :: C and α /∈ FTV(τ1→ τ2). Similar to case 3.

6. Case (τ1→ τ2
e
= α) :: C and α ∈ FTV(τ1→ τ2). Similar to case 4.

7. Case (τ1→ τ2
e
= τ3→ τ4) :: C. Apply the induction hypothesis and then this case is trivial.

4.5 Axiom v

The following lemmas are needed for the main proof, the first two follow by induction on the structure
of the type τ and the third by induction on C.

Lemma 17. ∀σ . ∀α. ∀τ. α /∈ FTV(τ)∧α /∈ FTV(σ)⇒ α /∈ FTV (σ(τ))

Lemma 18. ∀α. ∀τ,τ ′. α /∈ FTV(τ)⇒{α 7→ τ ′}(τ) = τ

Lemma 19. ∀α. ∀τ. ∀C. α /∈ FTV(τ)⇒ α /∈ FTV({α 7→ τ}(C))

The theorem we must prove is:

S. Kothari & J. Caldwell 35

Theorem 6. ∀C. ∀σ . unify(C) = σ ⇒ (σ ◦σ)≈ σ .

Proof. Pick an arbitrary C. Unfolding the definition of ≈, and by Theorem 1, we must show:
∀σ . unify(C) = σ ⇒∀α. σ(σ(α)) = σ(α).
By functional induction on unify C, there are two main cases:

Case C = []. This case follows since ∀α. σE(α) = α .

Case C 6= []. We consider the various cases based on the constraint at the head of the constraint list:

1. Case (α
e
= α) :: C′. Apply the induction hypothesis and then this case is trivial.

2. Case (α
e
= β) :: C′. Reasoning is similar to case 3 below.

3. Case (α e
= τ1→ τ2) :: C′ and α /∈ FTV(τ1→ τ2). We know unify ({α 7→ τ1→ τ2}(C′)) = σ

and the induction hypothesis is:
∀σ ′.unify {α 7→ τ1→ τ2}(C′) = σ ′⇒∀α ′.σ ′(α ′) = σ ′(σ ′(α ′))
And we must show:
σ({α 7→ τ1→ τ2}(α ′′)) = (σ({α 7→ τ1→ τ2}(σ({α 7→ τ1→ τ2}(α ′′))))).
There are two cases:
(a) Case α =α ′′. Then we must show σ(τ1→ τ2)=σ({α 7→ τ1→ τ2}(σ(τ1→ τ2))). From

Lemma 19 and Theorem 4, we know that α /∈ FTV(σ). Since α /∈ FTV(τ1→ τ2) and
α /∈ FTV(σ), so by Lemma 17, α /∈ FTV(σ(τ1→ τ2)). By Lemma 18 (choosing τ ′ to
be τ1→ τ2), we get σ(τ1→ τ2) = {α 7→ τ1→ τ2}(σ(τ1→ τ2)). So now we must show
σ(τ1→ τ2) = σ(σ(τ1→ τ2)). Then, by Lemma 1, we must show ∀β . σ(β) = σ(σ(β))
. Choose an arbitrary β and show σ(β) = σ(σ(β)), but that follows from the induction
hypothesis (by choosing σ ′ to be σ and α ′ to be β) and our assumptions.

(b) Case α 6= α ′′. Then we must show σ(α ′′) = σ({α 7→ τ1→ τ2}(σ(α ′′))). From Lemma
19 and Theorem 4, we know that α /∈ FTV(σ). Since α /∈ FTV(α ′′) and α /∈ FTV(σ),
so by Lemma 17, α /∈ FTV(σ(α ′′)). By Lemma 18 and using τ ′ to be τ1→ τ2 we get
σ(α ′′) = ({α 7→ τ1 → τ2}(σ(α ′′))). So now we must show σ(α ′′) = σ(σ(α ′′)), but
that follows from the induction hypothesis (by choosing σ ′ to be σ and α ′ to be α ′′) and
our assumptions.

4. Case (τ1→ τ2
e
= α) :: C′ and α /∈ FTV(τ1→ τ2). Same as Case 3.

5. Case (τ1→ τ2
e
= τ3→ τ4) :: C′. Apply the induction hypothesis and then this case is trivial.

4.6 Axiom vi

The theorem we must prove is:

Theorem 7. ∀σ .unify [] = σ ⇒ σ = σE

Proof. Choose an arbitrary σ . Assume unify [] = σ . Unfold the definition of unify. Then we know
σ = σE as was to be shown.

4.7 Axiom vii

The main proof requires a lemma, which we mention next.

Lemma 20. ∀C,C′. ∀α. ∀τ. {α 7→ τ}(C) ++ {α 7→ τ}(C′) = {α 7→ τ}(C ++C′)

36 A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

The theorem we must prove is:

Theorem 8. ∀C,C2. ∀σ ′,σ ′′,σ ′′′. (unify(C) = σ ′ ∧ unify(σ ′(C2)) = σ ′′ ∧ unify(C ++C2) = σ ′′′)
⇒ σ ′′′ ≈ (σ ′ ◦σ ′′)

Proof. Pick an arbitrary C. By Theorem 1 and unfolding the definition of ≈, we must show:
∀C2. ∀σ ′,σ ′′,σ ′′′. (unify(C) = σ ′ ∧ unify(σ ′(C2)) = σ ′′ ∧ unify(C++C2) = σ ′′′)

⇒∀α ′.σ ′′′(α ′) = σ ′′(σ ′(α ′)).
By functional induction on unify(C), there are two main cases:

Case C = []. Follows from Theorem 7 and the assumptions.

Case C 6= []. Consider the various cases based on the constraint at the head of the constraint list.

1. Case (α
e
= α) :: C′. This case follows from the induction hypothesis and the definition of

append.
2. Case (α

e
= β) :: C′ and α 6= β . Similar to case 3 below.

3. Case (α e
= τ1→ τ2) :: C′ and α /∈ FTV(τ1→ τ2). We know unify({α 7→ τ1→ τ2}(C′)) = σ .

The induction hypothesis is:
∀C1. ∀σ1,σ2,σ3.

(unify({α 7→ τ1→ τ2}(C′)) = σ1 ∧
unify(σ1(C1)) = σ2 ∧
unify(({α 7→ τ1→ τ2}(C′))++C1) = σ3)

⇒∀α ′′. σ3(α
′′) = σ2(σ1(α

′′)).
We must show:
∀C2. ∀σ ′,σ ′′,σ ′′′.

({α 7→ τ1→ τ2}◦σ = σ ′∧
unify(σ ′(C2)) = σ ′′∧
unify(((α

e
= τ1→ τ2) :: C′)++C2) = σ ′′′)

⇒∀α ′. σ ′′′(α ′) = σ ′′(σ ′(α ′)).
Pick an arbitrary C2,σ

′,σ ′′ and σ ′′′. Assume {α 7→ τ1→ τ2}◦σ = σ ′ and
unify(σ ′(C2)) = σ ′′ and unify(((α

e
= τ1→ τ2) :: C′)++C2) = σ ′′′. By the definition of ap-

pend, the last assumption is unify((α
e
= τ1→ τ2) :: (C′++C2)) = σ ′′′.

Unfolding the unify definition once, we know unify({α 7→ τ1 → τ2}(C′ ++ C2)) = σT ,
where σ ′′′ = {α 7→ τ1 → τ2} ◦ σT . Also, since σ ′ = {α 7→ τ1 → τ2} ◦ σ , so we know
unify(({α 7→ τ1 → τ2} ◦ σ)(C2)) = σ ′′. Since we know σ ′′′ = {α 7→ τ1 → τ2} ◦ σT , so
we must show ∀α ′. ({α 7→ τ1 → τ2} ◦σT)(α

′) = σ ′′(({α 7→ τ1 → τ2} ◦σ)(α ′)). Pick an
arbitrary α ′. By Theorem 1, we must show
σT ({α 7→ τ1→ τ2}(α ′)) = σ ′′(σ({α 7→ τ1→ τ2}(α ′))). There are two cases:
(a) Case α = α ′. Then we must show σT (τ1→ τ2) = σ ′′(σ(τ1→ τ2)). But by Lemma 1,

we must show ∀α ′′′. σT (α
′′′) = σ ′′(σ(α ′′′)). Pick an arbitrary α ′′′ and so we must show

σT (α
′′′) = σ ′′(σ(α ′′′)). But that follows from the induction hypothesis (by choosing C1

to be {α 7→ τ1→ τ2}(C2), σ1 to be σ , σ2 to be σ ′′ and σ3 to be σT) and the definition
of substitution composition and Lemma 20 and the assumptions.

(b) Case α 6= α ′. Then we must show σT (α
′) = σ ′′(σ(α ′)). But that follows from the

induction hypothesis (by choosing C1 to be {α 7→ τ1→ τ2}(C2), σ1 to be σ , σ2 to be σ ′′

and σ3 to be σT) and the definition of substitution composition and Lemma 20 and the
assumptions.

S. Kothari & J. Caldwell 37

4. Case (τ1→ τ2
e
= α) :: C and α /∈ FTV(τ1→ τ2). Same as the above case.

5. Case (τ1→ τ2
e
= τ3→ τ4) :: C. Apply the induction hypothesis.

5 Related Work and Conclusions

Unification is fundamentally used in type inference. There are formalizations of the unification algorithm
in a number of different theorem provers [8, 21, 22]. We comment on the implementation in the CoLoR
library [7]. CoLoR is an extensive and very successful library supporting reasoning about termination
and rewriting. A Coq implementation of the unification algorithm was recently released [8]. Our im-
plementation differs from theirs in a number of ways. Perhaps the most significant difference is that we
represent substitutions as finite maps, whereas in CoLoR the substitutions are represented by functions
from type variables to a generalized term structure. The axioms verified here are not explicitly verified in
CoLoR, however their library could serve as a basis for doing so. We believe that the lemmas supporting
our verification could be translated into their more general framework but that the proofs would be signif-
icantly different because we use functional induction which follows the structure of our algorithm. The
unification algorithm in CoLoR is specified in a significantly different style (as an iterated step function).

Though many lemmas were simple, many others required generalization in order for the proof to
go through. Our choice of finite maps library to represent substitutions helped us significantly. Coq’s
finite maps library is expressive enough to specify complicated definitions (substitution composition,
range elements) yet the reasoning with them is simple if we abstract away from the actual definition
and look at the extensional behavior instead. Since we used an interface, we could not really argue
about the normal substitution equality. Our specification of unification was in a functional style but the
definition was general recursive. This meant that we had to show the termination using a well-founded
ordering. Once termination was established, the functional induction tactic helped us immensely
in reasoning about the first-order unification algorithm.

The entire formalization (all seven axioms) is done in Coq 8.1.pl3 version in around 5000 lines of
specifications and tactics, and is available online at http://www.cs.uwyo.edu/~skothari.

We would like to thank Santiago Zanella (INRIA - Sophia Antipolis) for showing us how to encode
lexicographic ordering for 3-tuples in Coq. We thank Frederic Blanqui for answering our queries regard-
ing the new release of CoLoR library, Laurent Théry for making his Coq formulation of Sudoku [24]
available on the web, Stéphane Lescuyer and other Coq-club members for answering our queries on the
Coq-club mailing list, and Christian Urban (TU Munich) for discussing at length the MGU axioms used
in their verification of Algorithm W [25]. Finally, we want to thank anonymous referees for their detailed
comments and suggestions (on an earlier draft of this paper), which greatly improved the presentation of
this paper.

References
[1] The Coq proof assistant reference manual version 8.1.3: Finite Map Interface.

http://coq.inria.fr/V8.1/stdlib/Coq.FSets.FMapInterface.html.
[2] Thorsten Altenkirch, Veronica Gaspes, Bengt Nordström & Björn von Sydow (1994). A user’s guide to ALF.
[3] Krzysztof R. Apt (2003): Principles of Constraint Programming. Cambridge University Press.
[4] F. Baader & W. Snyder (2001): Unification Theory. In: A. Robinson & A. Voronkov, editors: Handbook of

Automated Reasoning, I, chapter 8, Elsevier Science, pp. 445–532.

http://www.cs.uwyo.edu/~skothari

38 A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

[5] Gilles Barthe & Pierre Courtieu (2002): Efficient Reasoning about Executable Specifications in Coq. In:
TPHOLs ’02:15th International Conference on Theorem Proving in Higher Order Logics, pp. 31–46.

[6] Yves Bertot & Pierre Castran (2004): Interactive Theorem Proving and Program Development Coq’Art: The
Calculus of Inductive Constructions. Springer.

[7] F. Blanqui, W. Delobel, S. Coupet-Grimal, S. Hinderer & A. Koprowski (2006): CoLoR, a Coq Library on
Rewriting and termination. In: 8th International Workshop on Termination (WST ’06), pp. 69–73.

[8] Frederic Blanqui (2008). CoLoR, a Coq library on rewriting and termination.
http://color.inria.fr/doc/CoLoR.Term.WithArity.AUnif.html.

[9] Ana Bove (2001): Simple General Recursion in Type Theory. Nordic J. of Computing 8(1), pp. 22–42.
[10] Robert S. Boyer & J. Strother Moore (1988): A Computational Logic Handbook. Academic Press Profes-

sional, Inc.
[11] Graham Collins & Don Syme (1995): A Theory of Finite Maps. In: Proceedings of the 8th International

Workshop on Higher Order Logic Theorem Proving and Its Applications, Springer-Verlag, pp. 122–137.
[12] Thierry Coquand & Gerard Huet (1988): The Calculus of Constructions. Inf. Comput. 76(2-3), pp. 95–120.
[13] C. Dubois & V. M. Morain (1999): Certification of a Type Inference Tool for ML: Damas–Milner within Coq.

J. Autom. Reason. 23(3), pp. 319–346.
[14] Elmar Eder (1985): Properties of substitutions and unifications. J. Symb. Comput. 1(1), pp. 31–46.
[15] Sunil Kothari & James Caldwell (2008): On Extending Wand’s Type Reconstruction Algorithm to Handle

Polymorphic Let. In: Logic and Theory of Algorithms, Fourth Conference on Computability in Europe, CiE
2008, University of Athens, pp. 254–263.

[16] Sunil Kothari & James L. Caldwell (2009): A Machine Checked Model of MGU Axioms: Applications of
Finite Maps and Functional Induction. In: UNIF’09, pp. 17–31.

[17] J. L. Lassez, M. J. Maher & K. Marriott (1988): Unification revisited. Foundations of deductive databases
and logic programming , pp. 587–625.

[18] Zohar Manna & Richard Waldinger (1985): The logical basis for computer programming. Volume 1: deduc-
tive reasoning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[19] Conor McBride (2003): First-order unification by structural recursion. J. Funct. Program. 13(6), pp. 1061–
1075.

[20] Wolfgang Naraschewski & Tobias Nipkow (1999): Type Inference Verified: Algorithm W in Isabelle/HOL. J.
Autom. Reason. 23(3), pp. 299–318.

[21] L. C. Paulson (1985): Verifying the Unification Algorithm in LCF. Sci. of Comp. Prog. 5, pp. 143–169.
[22] J. Rouyer (1994): Developpement d’Algorithmes dans le Calcul des Constructions. Ph.D. thesis, Institut

National Polytechnique de Lorraine, Nancy, France.
[23] The Coq development team (2007): The Coq proof assistant reference manual. INRIA, LogiCal Project.

Version 8.1.3.
[24] Laurent Théry (2006). Sudoku in Coq.
[25] Christian Urban & Tobias Nipkow (2009): From Semantics to Computer Science, chapter Nominal verifica-

tion of algorithm W. Cambridge University Press.
[26] M. Wand (1987): A Simple Algorithm and Proof for Type Inference. Fundamenta Informaticae 10, pp. 115–

122.

	1 Introduction
	2 Types and Substitutions
	2.1 Implementing Substitutions as Finite Maps

	3 First-Order Unification
	4 Verification of the Model
	4.1 Axiom i
	4.2 Axiom ii
	4.3 Axiom iii
	4.4 Axiom iv
	4.5 Axiom v
	4.6 Axiom vi
	4.7 Axiom vii

	5 Related Work and Conclusions

