Practical Machine Learning in R

Introduction

Lars Kotthoff1,2
larsko@uwyo.edu

1with slides from Bernd Bischl and Michel Lang
2slides available at http://www.cs.uwyo.edu/~larsko/ml-fac
What is Machine Learning?

▷ “gives computes the ability to learn without being explicitly programmed” (Wikipedia)
What is Machine Learning?

▷ “gives computes the ability to learn without being explicitly programmed” (Wikipedia)
▷ “A computer program is said to learn from experience \(E \) with respect to some class of tasks \(T \) and performance measure \(P \) if its performance at tasks in \(T \), as measured by \(P \), improves with experience \(E \).” (Tom Mitchell)
Examples
Examples
Examples

https://pythonprogramming.net/forecasting-predicting-machine-learning-tutorial/
Examples

Supervised Learning

- learn the relationship between input x and output y
- training data with labels available — y known for given x
- can see this as function approximation — find an f such that

$$y \approx f(x)$$
Supervised Learning

- x are features or attributes
- y is the ground truth
- denote predictions $f(x) = \hat{y}$
- loss function $L(y, \hat{y})$ measures how good predictions are, e.g.
 \[
 L(y, \hat{y}) = (y - \hat{y})^2
 \]
- want to minimize loss given training data $X_{\text{train}} = \{(x_i, y_i)\}^n$:
 \[
 \arg \min \sum_{i=1}^{n} L(y_i, \hat{y}_i)
 \]
Supervised Learning

▷ want to learn a general function that is predictive on new data
▷ second set X_{test} that is not used in training to test generalization performance:

$$\sum_{i=1}^{n} L(y_i, \hat{y}_i)$$

▷ usually full data set X is split into non-overlapping train and test sets:

$$X_{train} \cup X_{test} = X$$
$$X_{train} \cap X_{test} = \emptyset$$
Supervised Classification

Goal: Predict a class (discrete quantity), or membership probabilities
Supervised Regression

Goal: Predict a continuous quantity
Unsupervised Learning

- no ground truth y available
- determine group membership or assign labels
- loss function measures properties of groups, e.g. homogeneity wrt. features
- still want to minimize loss given training data and generalize
Unsupervised Clustering

Goal: Group data by similarity, or estimate membership probabilities
In this Course

▷ classification
▷ regression
▷ clustering
▷ data preprocessing (missing values, dimensionality reduction)
▷ performance evaluation
▷ parameter tuning
Not in this Course

- R tutorial
- details on particular methods
- deep learning
- time series
- Big Data
What you’ll need
Install RStudio

https://www.rstudio.com/products/rstudio/download/
Install mlr

▷ on the R console:

```r
install.packages("mlr")
```

▷ or see http://derekogle.com/IFAR/supplements/installations/InstallPackagesRStudio.html

Format

- meetings roughly every week
- half lecture, half practical exercises
- happy to discuss specific problems