Practical Machine Learning in R

Feature Engineering

Lars Kotthoff1,2
larisko@uwyo.edu

1with slides from Bernd Bischl and Michel Lang
2slides available at http://www.cs.uwyo.edu/~larisko/ml-fac
Why do we care?

▷ reduce dimensionality
▷ increase interpretability
▷ increase predictive performance
Feature Selection

Filter Preliminary step, independent of model
Embedded Learner has feature selection embedded, e.g. random forests
Wrapper iteratively and transparently find best features for particular learner
Feature Filters

- Numerical score that measures influence on prediction
- Often independent of learner
- Often fast to compute
- Can be used to rank features and select based on threshold
- Can be misleading
Filter Examples

- Correlation between feature and target in regression
- Mutual information between feature and target in classification

```r
## FilterValues:
## Task: iris-example
##
##     name       type information.gain
## 1 Sepal.Length numeric           0.4521286
## 2   Sepal.Width numeric           0.2672750
## 3  Petal.Length numeric           0.9402853
## 4  Petal.Width numeric           0.9554360
```
Filter Examples

iris-example (4 features), filter = information.gain
Embedded Feature Selection

- model-specific measure of feature importance
- requires support from learner implementation
- most useful for post-hoc feature analysis
Embedded Feature Selection

```r
## FeatureImportance:
## Task: iris-example
##
## Learner: classif.randomForest
## Measure: NA
## Contrast: NA
## Aggregation: function (x) x
## Replace: NA
## Number of Monte-Carlo iterations: NA
## Local: FALSE
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1    9.730877  2.530707  42.76649  44.22676
```
Feature Selection Wrapper

- Evaluate feature sets with learner, e.g. by cross-validation
- Measures probably what you are interested in
- Will be slow in very high-dimensional spaces
- Several methods available
Feature Selection Wrapper

Features : 1
Performance : mmce.test.mean=0.0467
Petal.Width
##
Path to optimum:
- Features: 0 Init : Perf = 0.7 Diff: NA *
- Features: 1 Add : Petal.Width Perf = 0.046667 Diff: 0.65333 *
##
Stopped, because no improving feature was found.
Principal Component Analysis

▷ project into lower-dimensional feature space
▷ dimensions are the uncorrelated principal components
▷ principal components are combinations of original features that account for variation
▷ first principal component accounts for most of the variance in the data
▷ helpful in visualization
▷ http://setosa.io/ev/principal-component-analysis/
Principal Component Analysis

Diagram showing scatter plot with principal components PC1 and PC2. Species are represented by different markers: setosa (red circles), versicolor (green triangles), and virginica (blue squares).
Feature Expansion

▷ add combinations of features (e.g. products) as new features
▷ consider pairs, triples... of features
▷ can allow linear model to learn non-linear relationships
▷ usually not necessary for complex models
Exercises

http://www.cs.uwyo.edu/~larsko/ml-fac/06-features-exercises.Rmd