
Algorithm Selection for Search: A survey

Algorithm Selection for Combinatorial Search Problems:
A survey

Lars Kotthoff larsko@4c.ucc.ie

Abstract
The Algorithm Selection Problem is concerned with selecting the best algorithm to solve a

given problem on a case-by-case basis. It has become especially relevant in the last decade, as
researchers are increasingly investigating how to identify the most suitable existing algorithm
for solving a problem instead of developing new algorithms. This survey presents an overview
of this work focusing on the contributions made in the area of combinatorial search problems,
where Algorithm Selection techniques have achieved significant performance improvements. We
unify and organise the vast literature according to criteria that determine Algorithm Selection
systems in practice. The comprehensive classification of approaches identifies and analyses the
different directions from which Algorithm Selection has been approached. This paper contrasts
and compares different methods for solving the problem as well as ways of using these solutions.
It closes by identifying directions of current and future research.

1. Introduction

For many years, Artificial Intelligence research has been focusing on inventing new algorithms and
approaches for solving similar kinds of problems. In some scenarios, a new algorithm is clearly
superior to previous approaches. In the majority of cases however, a new approach will improve
over the current state of the art only for some problems. This may be because it employs a heuristic
that fails for problems of a certain type or because it makes other assumptions about the problem
or environment that are not satisfied in some cases. Selecting the most suitable algorithm for a
particular problem aims at mitigating these problems and has the potential to significantly increase
performance in practice. This is known as the Algorithm Selection Problem.

The Algorithm Selection Problem has, in many forms and with different names, cropped up in
many areas of Artificial Intelligence in the last few decades. Today there exists a large amount of
literature on it. Most publications are concerned with new ways of tackling this problem and solving
it efficiently in practice. Especially for combinatorial search problems, the application of Algorithm
Selection techniques has resulted in significant performance improvements that leverage the diversity
of systems and techniques developed in recent years. This paper surveys the available literature and
describes how research has progressed.

Researchers have long ago recognised that a single algorithm will not give the best performance
across all problems one may want to solve and that selecting the most appropriate method is likely
to improve the overall performance. Empirical evaluations have provided compelling evidence for
this (e.g. Aha, 1992; Wolpert & Macready, 1997).

The original description of the Algorithm Selection Problem was published in Rice (1976). The
basic model described in the paper is very simple – given a space of problems and a space of
algorithms, map each problem-algorithm pair to its performance. This mapping can then be used
to select the best algorithm for a given problem. The original figure that illustrates the model is
reproduced in Figure 1 on the following page. As Rice states,

“The objective is to determine S(x) [the mapping of problems to algorithms] so as to
have high algorithm performance.”

He identifies the following four criteria for the selection process.

1



Kotthoff

x ∈ P
Problem space

A ∈ A
Algorithm space

p ∈ Rn

Performance
measure space

‖p‖ = Algorithm
performance

S(x)

Selection
mapping

p(A,x)

Performance
mapping

Norm
mapping

Figure 1: Basic model for the Algorithm Selection Problem as published in Rice (1976).

1. Best selection for all mappings S(x) and problems x. For every problem, an algorithm is
chosen to give maximum performance.

2. Best selection for a subclass of problems. A single algorithm is chosen to apply to each of a
subclass of problems such that the performance degradation compared to choosing from all
algorithms is minimised.

3. Best selection from a subclass of mappings. Choose the selection mapping from a subset of all
mappings from problems to algorithms such that the performance degradation is minimised.

4. Best selection from a subclass of mappings and problems. Choose a single algorithm from a
subset of all algorithms to apply to each of a subclass of problems such that the performance
degradation is minimised.

The first case is clearly the most desirable one. In practice however, the other cases are more
common – we might not have enough data about individual problems or algorithms to select the
best mapping for everything.

Rice (1976) lists five main steps for solving the problem.

Formulation Determination of the subclasses of problems and mappings to be used.

Existence Does a best selection mapping exist?

Uniqueness Is there a unique best selection mapping?

Characterization What properties characterize the best selection mapping and serve to identify
it?

Computation What methods can be used to actually obtain the best selection mapping?

This framework is taken from the theory of approximation of functions. The questions for existence
and uniqueness of a best selection mapping are usually irrelevant in practice. As long as a good
performance mapping is found and improves upon the current state of the art, the question of
whether there is a different mapping with the same performance or an even better mapping is
secondary. While it is easy to determine the theoretically best selection mapping on a set of given
problems, casting this mapping into a generalisable form that will give good performance on new
problems or even into a form that can be used in practice is hard. Indeed, Guo (2003) shows that
the Algorithm Selection Problem in general is undecidable. It may be better to choose a mapping
that generalises well rather than the one with the best performance. Other considerations can be
involved as well. Guo and Hsu (2004) and Cook and Varnell (1997) compare different Algorithm

2



Algorithm Selection for Search: A survey

x ∈ P
Problem space

f(x) ∈ F = Rm

Feature space
A ∈ A

Algorithm space

p ∈ Rn

Performance
measure space

‖p‖ = Algorithm
performance

Feature
extraction

S(f(x))

Selection
mapping

p(A,x)

Performance
mapping

Figure 2: Refined model for the Algorithm Selection Problem with problem features (Rice, 1976).

selection models and select not the one with the best performance, but one with good performance
that is also easy to understand, for example. Vrakas, Tsoumakas, Bassiliades, and Vlahavas (2003)
select their method of choice for the same reason. Similarly, Xu, Hutter, Hoos, and Leyton-Brown
(2008) choose a model that is cheap to compute instead of the one with the best performance. They
note that,

“All of these techniques are computationally more expensive than ridge regression, and
in our previous experiments we found that they did not improve predictive performance
enough to justify this additional cost.”

Rice continues by giving practical examples of where his model applies. He refines the original
model to include features of problems that can be used to identify the selection mapping. The
original figure depicting the refined model is given in Figure 2. This model, or a variant of it, is
what is used in most practical approaches. Including problem features is the crucial difference that
often makes an approach feasible.

For each problem in a given set, the features are extracted. The aim is to use these features to
produce the mapping that selects the algorithm with the best performance for each problem. The
actual performance mapping for each problem-algorithm pair is usually of less interest as long as
the individual best algorithm can be identified.

Rice poses additional questions about the determination of features.

• What are the best features for predicting the performance of a specific algorithm?

• What are the best features for predicting the performance of a specific class of algorithms?

• What are the best features for predicting the performance of a subclass of selection mappings?

He also states that,

“The determination of the best (or even good) features is one of the most important, yet
nebulous, aspects of the algorithm selection problem.”

3



Kotthoff

He refers to the difficulty of knowing the problem space. Many problem spaces are not well known
and often a sample of problems is drawn from them to evaluate empirically the performance of the
given set of algorithms. If the sample is not representative, or the features do not facilitate a good
separation of the problem classes in the feature space, there is little hope of finding the best or even
a good selection mapping.

Vassilevska, Williams, and Woo (2006) note that,

“While it seems that restricting a heuristic to a special case would likely improve its
performance, we feel that the ability to partition the problem space of some NP-hard
problems by efficient selectors is mildly surprising.”

This sentiment was shared by many researchers and part of the great prominence of Algorithm
Selection systems especially for combinatorial search problems can probably be attributed to the
surprise that it actually works.

Most approaches employ Machine Learning to learn the performance mapping from problems to
algorithms using features extracted from the problems. This often involves a training phase, where
the candidate algorithms are run on a sample of the problem space to experimentally evaluate their
performance. This training data is used to create a performance model that can be used to predict
the performance on new, unseen problems. The term model is used only in the loosest sense here;
it can be as simple as a representation of the training data without any further analysis.

1.1 Practical motivation

Aha (1992) notes that in Machine Learning, researchers often perform experiments on a limited
number of data sets to demonstrate the performance improvements achieved and implicitly assume
that these improvements generalise to other data. He proposes a framework for better experimental
evaluation of such claims and deriving rules that determine the properties a data set must have in
order for an algorithm to have superior performance. His objective is

“. . . to derive rules of the form ‘this algorithm outperforms these other algorithms on these
dependent measures for databases with these characteristics’. Such rules summarize when
[. . . ] rather than why the observed performance difference occurred.”

Tsang, Borrett, and Kwan (1995) make similar observations and show that there is no algo-
rithm that is universally the best when solving constraint problems. They also demonstrate that
the best algorithm-heuristic combination is not what one might expect for some of the surveyed
problems. This provides an important motivation for research into performing Algorithm Selection
automatically. They close by noting that,

“. . . research should focus on how to retrieve the most efficient [algorithm-heuristic] com-
binations for a problem.”

The focus of Algorithm Selection is on identifying algorithms with good performance, not on
providing explanations for why this is the case. Most publications do not consider the question of
“Why?” at all. Rice’s framework does not address this question either. The simple reason for this
is that explaining the Why? is difficult and for most practical applications not particularly relevant
as long as improvements can be achieved. Research into what makes a problem hard, how this
affects the behaviour of specific algorithms and how to exploit this knowledge is a fruitful area, but
outside the scope of this paper. However, we present a brief exposition of one of the most important
concepts to illustrate its relevance.

The notion of a phase transition (Cheeseman, Kanefsky, & Taylor, 1991) refers to a sudden
change in the hardness of a problem as the value of a single parameter of the problem is changed.
Detecting such transitions is an obvious way to facilitate Algorithm Selection. Hogg, Huberman,
and Williams (1996) note that,

4



Algorithm Selection for Search: A survey

“In particular, the location of the phase transition point might provide a systematic basis
for selecting the type of algorithm to use on a given problem.”

While some approaches make use of this knowledge to generate challenging training problems for
their systems, it is hardly used at all to facilitate Algorithm Selection. Nudelman, Leyton-Brown,
Hoos, Devkar, and Shoham (2004) use a set of features that can be used to characterise a phase
transition and note that,

“It turns out that [. . . ] this group of features alone suffices to construct reasonably good
models.”

It remains unclear how relevant phase transitions are to Algorithm Selection in practice. On one
hand, their theoretical properties seem to make them highly suitable, but on the other hand almost
nobody has explored their use in actual Algorithm Selection systems.

1.1.1 No Free Lunch theorems

The question arises of whether, in general, the performance of a system can be improved by always
picking the best algorithm. The “No Free Lunch” (NFL) theorems (Wolpert & Macready, 1997) state
that no algorithm can be the best across all possible problems and that on average, all algorithms
perform the same. This seems to provide a strong motivation for Algorithm Selection – if, on average,
different algorithms are the best for different parts of the problem space, selecting them based on
the problem to solve has the potential to improve performance.

The theorems would apply to Algorithm Selection systems themselves as well though (in partic-
ular the version for supervised learning are relevant, see Wolpert, 2001). This means that although
performance improvements can be achieved by selecting the right algorithms on one part of the
problem space, wrong decisions will be made on other parts, leading to a loss of performance. On
average over all problems, the performance achieved by an Algorithm Selection meta-algorithm will
be the same as that of all other algorithms.

The NFL theorems are the source of some controversy however. Among the researchers to doubt
their applicability is the first proponent of the Algorithm Selection Problem (Rice & Ramakrishnan,
1999). Several other publications show that the assumptions underlying the NFL may not be
satisfied (Rao, Gordon, & Spears, 1995; Domingos, 1998). In particular, the distribution of the best
algorithms from the portfolio to problems is not random – it is certainly true that certain algorithms
are the best on a much larger number of problems than others.

A detailed assessment of the applicability of the NFL theorems to the Algorithm Selection Prob-
lem is outside the scope of this paper. However, a review of the literature suggests that, if the
theorems are applicable, the ramifications in practice may not be significant. Most of the many pub-
lications surveyed here do achieve performance improvements across a range of different problems
using Algorithm Selection techniques. As a research area, it is very active and thriving despite the
potentially negative implications of the NFL.

1.2 Scope and related work

Algorithm Selection is a very general concept that applies not only in almost all areas of Computer
Science, but also other disciplines. However, it is especially relevant in many areas of Artificial
Intelligence. This is a large field itself though and surveying all Artificial Intelligence publications
that are relevant to Algorithm Selection in a single paper is infeasible.

In this paper, we focus on Algorithm Selection for combinatorial search problems. This is a
large and important subfield of Artificial Intelligence where Algorithm Selection techniques have
become particularly prominent in recent years because of the impressive performance improvements
that have been achieved by some approaches. Combinatorial search problems include for example

5



Kotthoff

satisfiability (SAT), constraint problems, planning, quantified Boolean formulae (QBF), scheduling
and combinatorial optimisation.

A combinatorial search problem is one where an initial state is to be transformed into a goal
state by application of a series of operators, such as assignment of values to variables. The space of
possible states is usually exponential in the size of the input and finding a solution is NP-hard. A
common way of solving such problems is to use heuristics. A heuristic is a strategy that determines
which operators to apply when. Heuristics are not necessarily complete or deterministic, i.e. they
are not guaranteed to find a solution if it exists or to always make the same decision under the same
circumstances. The nature of heuristics makes them particularly amenable to Algorithm Selection –
choosing a heuristic manually is difficult even for experts, but choosing the correct one can improve
performance significantly.

Several doctoral dissertations with related work chapters that survey the literature on Algorithm
Selection have been produced. Examples of the more recent ones include Streeter (2007), Hutter
(2009), Carchrae (2009), Gagliolo (2010), Ewald (2010), Kotthoff (2012b), Malitsky (2012). Smith-
Miles (2008a) presents a survey with similar aims. It looks at the Algorithm Selection Problem
from the Machine Learning point of view and focuses on seeing Algorithm Selection as a learning
problem. As a consequence, great detail is given for aspects that are relevant to Machine Learning.
In this paper, we take a more practical point of view and focus on techniques that facilitate and
implement Algorithm Selection systems. We are furthermore able to take more recent work in this
fast-moving area into account.

In contrast to most other work surveying Algorithm Selection literature, we take an approach-
centric view instead of a literature-centric one. This means that instead of analysing a particular
publication or system according to various criteria, the different aspects of Algorithm Selection
are illustrated with appropriate references. A single publication may therefore appear in different
sections of this paper, giving details on different aspects of the authors’ approach.

There exists a large body of work that is relevant to Algorithm Selection in the Machine Learning
literature. Smith-Miles (2008a) presents a survey of many approaches. Repeating this here is
unnecessary and outside the scope of this paper, which focuses on the application of such techniques.
The most relevant area of research is that into ensembles, where several models are created instead of
one. Such ensembles are either implicitly assumed or explicitly engineered so that they complement
each other. Errors made by one model are corrected by another. Ensembles can be engineered by
techniques such as bagging (Breiman, 1996) and boosting (Schapire, 1990). Bauer and Kohavi (1999),
Opitz and Maclin (1999) present studies that compare bagging and boosting empirically. Dietterich
(2000) provides explanations for why ensembles can perform better than individual algorithms.

There is increasing interest in the integration of Algorithm Selection techniques with program-
ming language paradigms (e.g. Ansel, Chan, Wong, Olszewski, Zhao, Edelman, & Amarasinghe,
2009; Hoos, 2012). While these issues are sufficiently relevant to be mentioned here, exploring them
in detail is outside the scope of the paper. Similarly, technical issues arising from the computation,
storage and application of performance models, the integration of Algorithm Selection techniques
into complex systems, the execution of choices and the collection of experimental data to facilitate
Algorithm Selection are not surveyed here.

1.3 Terminology

Algorithm Selection is a widely applicable concept and as such has cropped up frequently in various
lines of research. Often, different terminologies are used.

Borrett, Tsang, and Walsh (1996) use the term algorithm chaining to mean switching from one
algorithm to another while the problem is being solved. Lobjois and Lemâıtre (1998) call Algorithm
Selection selection by performance prediction. Vassilevska et al. (2006) use the term hybrid algorithm
for the combination of a set of algorithms and an Algorithm Selection model (which they term
selector).

6



Algorithm Selection for Search: A survey

In Machine Learning, Algorithm Selection is usually referred to as meta-learning. This is because
Algorithm Selection models for Machine Learning learn when to use which method of Machine
Learning. The earliest approaches also spoke of hybrid approaches (e.g. Utgoff, 1988). Aha (1992)
proposes rules for selecting a Machine Learning algorithm that take the characteristics of a data
set into account. He uses the term meta-learning. Brodley (1993) introduces the notion of selective
superiority. This concept refers to a particular algorithm being best on some, but not all tasks.

In addition to the many terms used for the process of Algorithm Selection, researchers have also
used different terminology for the models of what Rice calls performance measure space. Allen and
Minton (1996) call them runtime performance predictors. Leyton-Brown, Nudelman, and Shoham
(2002), Hutter, Hamadi, Hoos, and Leyton-Brown (2006), Xu, Hoos, and Leyton-Brown (2007),
Leyton-Brown, Nudelman, and Shoham (2009) coined the term Empirical Hardness model. This
stresses the reliance on empirical data to create these models and introduces the notion of hardness
of a problem. The concept of hardness takes into account all performance considerations and does
not restrict itself to, for example, runtime performance. In practice however, the described empirical
hardness models only take runtime performance into account. In all cases, the predicted measures
are used to select an algorithm.

Throughout this paper, the term algorithm is used to refer to what is selected for solving a
problem. This is for consistency and to make the connection to Rice’s framework. An algorithm
may be a system, a programme, a heuristic, a classifier or a configuration. This is not made explicit
unless it is relevant in the particular context.

1.4 Organisation

An organisation of the Algorithm Selection literature is challenging, as there are many different
criteria that can be used to classify it. Each publication can be evaluated from different points of
view. The organisation of this paper follows the main criteria below.

What to select algorithms from
Section 2 describes how sets of algorithms, or portfolios, can be constructed. A portfolio
can be static, where the designer decides which algorithms to include, or dynamic, where the
composition or individual algorithms vary or change for different problems.

What to select and when
Section 3 describes how algorithms from portfolios are selected to solve problems. Apart from
the obvious approach of picking a single algorithm, time slots can be allocated to all or part of
the algorithms or the execution monitored and earlier decisions revised. We also distinguish
between selecting before the solving of the actual problem starts and while the problem is
being solved.

How to select
Section 4 surveys techniques used for making the choices described in Section 3. It details how
performance models can be built and what kinds of predictions they inform. Example pre-
dictions are the best algorithm in the portfolio and the runtime performance of each portfolio
algorithm.

How to facilitate the selection
Section 5 gives an overview of the types of analysis different approaches perform and what kind
of information is gathered to facilitate Algorithm Selection. This includes the past performance
of algorithms and structural features of the problems to be solved.

The order of the material follows a top-down approach. Starting with the high-level idea of
Algorithm Selection, as proposed by Rice (1976) and described in this introduction, more technical

7



Kotthoff

details are gradually explored. Earlier concepts provide motivation and context for later technical
details. For example, the choice of whether to select a single algorithm or monitor its execution
(Section 3) determines the types of predictions required and techniques suitable for making them
(Section 4) as well as the properties that need to be measured (Section 5).

The individual sections are largely self-contained. If the reader is more interested in a bottom-
up approach that starts with technical details on what can be observed and measured to facilitate
Algorithm Selection, Sections 2 through 5 may be read in reverse order.

Section 6 again illustrates the importance of the field by surveying the many different application
domains of Algorithm Selection techniques with a focus on combinatorial search problems. We close
by briefly discussing current and future research directions in Section 7 and summarising in Section 8.

2. Algorithm portfolios

For diverse sets of problems, it is unlikely that a single algorithm will be the most suitable one
in all cases. A way of mitigating this restriction is to use a portfolio of algorithms. This idea is
closely related to the notion of Algorithm Selection itself – instead of making an up-front decision
on what algorithm to use, it is decided on a case-by-case basis for each problem individually. In the
framework presented by Rice (1976), portfolios correspond to the algorithm space A.

Portfolios are a well-established technique in Economics. Portfolios of assets, securities or sim-
ilar products are used to reduce the risk compared to holding only a single product. The idea is
simple – if the value of a single security decreases, the total loss is less severe. The problem of
allocating funds to the different parts of the portfolio is similar to allocating resources to algorithms
in order to solve a computational problem. There are some important differences though. Most
significantly, the past performance of an algorithm can be a good indicator of future performance.
There are fewer factors that affect the outcome and in most cases, they can be measured directly.
In Machine Learning, ensembles (Dietterich, 2000) are instances of algorithm portfolios. In fact, the
only difference between algorithm portfolios and Machine Learning ensembles is the way in which
its constituents are used.

The idea of algorithm portfolios was first presented by Huberman, Lukose, and Hogg (1997).
They describe a formal framework for the construction and application of algorithm portfolios and
evaluate their approach on graph colouring problems. Within the Artificial Intelligence community,
algorithm portfolios were popularised by Gomes and Selman (1997a, 1997b) and a subsequent ex-
tended investigation (Gomes & Selman, 2001). The technique itself however had been described
under different names by other authors at about the same time in different contexts.

Tsang et al. (1995) experimentally show for a selection of constraint satisfaction algorithms and
heuristics that none is the best on all evaluated problems. They do not mention portfolios, but
propose that future research should focus on identifying when particular algorithms and heuristics
deliver the best performance. This implicitly assumes a portfolio to choose algorithms from. Allen
and Minton (1996) perform a similar investigation and come to similar conclusions. They talk about
selecting an appropriate algorithm from an algorithm family.

Beyond the simple idea of using a set of algorithms instead of a single one, there is a lot of scope
for different approaches. One of the first problems faced by researchers is how to construct the
portfolio. There are two main types. Static portfolios are constructed offline before any problems
are solved. While solving a problem, the composition of the portfolio and the algorithms within it do
not change. Dynamic portfolios change in composition, configuration of the constituent algorithms
or both during solving.

2.1 Static portfolios

Static portfolios are the most common type. The number of algorithms or systems in the portfolio
is fixed, as well as their parameters. In Rice’s notation, the algorithm space A is constant, finite

8



Algorithm Selection for Search: A survey

and known. This approach is used for example in SATzilla (Nudelman et al., 2004; Xu, Hutter,
Hoos, & Leyton-Brown, 2007; Xu et al., 2008), AQME (Pulina & Tacchella, 2007, 2009), CPhy-
dra (O’Mahony, Hebrard, Holland, Nugent, & O’Sullivan, 2008), ArgoSmArT (Nikolić, Marić, &
Janičić, 2009) and BUS (Howe, Dahlman, Hansen, Scheetz, & von Mayrhauser, 1999).

The vast majority of approaches composes static portfolios from different algorithms or different
algorithm configurations. Huberman et al. (1997) however use a portfolio that contains the same
randomised algorithm twice. They run the portfolio in parallel and as such essentially use the
technique to parallelise an existing sequential algorithm.

Some approaches use a large number of algorithms in the portfolio, such as ArgoSmArT, whose
portfolio size is 60. SATzilla uses 19 algorithms, although the authors use portfolios containing
only subsets of those for specific applications. BUS uses six algorithms and CPhydra five. Gent,
Jefferson, Kotthoff, Miguel, Moore, Nightingale, and Petrie (2010a) select from a portfolio of only two
algorithms. AQME has different versions with different portfolio sizes, one with 16 algorithms, one
with five and three algorithms of different types and one with two algorithms (Pulina & Tacchella,
2009). The authors compare the different portfolios and conclude that the one with eight algorithms
offers the best performance, as it has more variety than the portfolio with two algorithms and it is
easier to make a choice for eight than for 16 algorithms. There are also approaches that use portfolios
of variable size that is determined by training data (Kadioglu, Malitsky, Sellmann, & Tierney, 2010;
Xu, Hoos, & Leyton-Brown, 2010).

As the algorithms in the portfolio do not change, their selection is crucial for its success. Ideally,
the algorithms will complement each other such that good performance can be achieved on a wide
range of different problems. Hong and Page (2004) report that portfolios composed of a random
selection from a large pool of diverse algorithms outperform portfolios composed of the algorithms
with the best overall performance. They develop a framework with a mathematical model that
theoretically justifies this observation. Samulowitz and Memisevic (2007) use a portfolio of heuristics
for solving quantified Boolean formulae problems that have specifically been crafted to be orthogonal
to each other. Xu et al. (2010) automatically engineer a portfolio with algorithms of complementary
strengths. In Xu, Hutter, Hoos, and Leyton-Brown (2012), the authors analyse the contributions
of the portfolio constituents to the overall performance and conclude that not algorithms with the
best overall performance, but with techniques that set them apart from the rest contribute most.
Kadioglu et al. (2010) use a static portfolio of variable size that adapts itself to the training data.
They cluster the training problems and choose the best algorithm for each cluster. They do not
emphasise diversity, but suitability for distinct parts of the problem space. Xu et al. (2010) also
construct a portfolio with algorithms that perform well on different parts of the problem space, but
do not use clustering.

In financial theory, constructing portfolios can be seen as a quadratic optimisation problem. The
aim is to balance expected performance and risk (the expected variation of performance) such that
performance is maximised and risk minimised. Ewald, Schulz, and Uhrmacher (2010) solve this
problem for algorithm portfolios using genetic algorithms.

Most approaches make the composition of the portfolio less explicit. Many systems use portfolios
of solvers that have performed well in solver competitions with the implicit assumption that they
have complementing strengths and weaknesses and the resulting portfolio will be able to achieve
good performance.

2.2 Dynamic portfolios

Rather than relying on a priori properties of the algorithms in the portfolio, dynamic portfolios
adapt the composition of the portfolio or the algorithms depending on the problem to be solved.
The algorithm space A changes with each problem and is a subspace of the potentially infinite super
algorithm space A′. This space contains all possible (hypothetical) algorithms that could be used
to solve problems from the problem space. In static portfolios, the algorithms in the portfolio are

9



Kotthoff

selected from A′ once either manually by the designer of the portfolio or automatically based on
empirical results from training data.

One approach is to build a portfolio by combining algorithmic building blocks. An example of
this is the Adaptive Constraint Engine (ACE) (Epstein & Freuder, 2001; Epstein, Freuder, Wallace,
Morozov, & Samuels, 2002). The building blocks are so-called advisors, which characterise variables
of the constraint problem and give recommendations as to which one to process next. ACE combines
these advisors into more complex ones. Elsayed and Michel (2010, 2011) use a similar idea to
construct search strategies for solving constraint problems. Fukunaga (2002, 2008) proposes CLASS,
which combines heuristic building blocks to form composite heuristics for solving SAT problems. In
these approaches, there is no strong notion of a portfolio – the algorithm or strategy used to solve
a problem is assembled from lower level components.

Closely related is the concept of specialising generic building blocks for the problem to solve.
This approach is taken in the SAGE system (Strategy Acquisition Governed by Experimentation)
(Langley, 1983b, 1983a). It starts with a set of general operators that can be applied to a search
state. These operators are refined by making the preconditions more specific based on their utility
for finding a solution. The Multi-tac (Multi-tactic Analytic Compiler) system (Minton, 1993b,
1993a, 1996) specialises a set of generic heuristics for the constraint problem to solve.

There can be complex restrictions on how the building blocks are combined. RT-Syn (Smith
& Setliff, 1992) for example uses a preprocessing step to determine the possible combinations of
algorithms and data structures to solve a software specification problem and then selects the most
appropriate combination using simulated annealing. Balasubramaniam, Gent, Jefferson, Kotthoff,
Miguel, and Nightingale (2012) model the construction of a constraint solver from components as a
constraint problem whose solutions denote valid combinations of components.

Another approach is to modify the parameters of parameterised algorithms in the portfolio.
This is usually referred to as automatic tuning and not only applicable in the context of algorithm
portfolios, but also for single algorithms. The HAP system (Vrakas et al., 2003) automatically tunes
the parameters of a planning system depending on the problem to solve. Horvitz, Ruan, Gomes,
Kautz, Selman, and Chickering (2001) dynamically modify algorithm parameters during search based
on statistics collected during the solving process.

2.2.1 Automatic tuning

The area of automatic parameter tuning has attracted a lot of attention in recent years. This is
because algorithms have an increasing number of parameters that are difficult to tune even for
experts and because of research into dynamic algorithm portfolios that benefits from automatic
tuning. A survey of the literature on automatic tuning is outside the scope of this paper, but some
of the approaches that are particularly relevant to this survey are described below.

Automatic tuning and portfolio selection can be treated separately, as done in the Hydra portfolio
builder (Xu et al., 2010). Hydra uses ParamILS (Hutter, Hoos, & Stützle, 2007; Hutter, Hoos,
Leyton-Brown, & Stützle, 2009) to automatically tune algorithms in a SATzilla (Xu et al., 2008)
portfolio. ISAC (Kadioglu et al., 2010) uses GGA (Ansótegui, Sellmann, & Tierney, 2009) to
automatically tune algorithms for clusters of problem instances.

Minton (1996) first enumerates all possible rule applications up to a certain time or size bound.
Then, the most promising configuration is selected using beam search, a form of parallel hill climbing,
that empirically evaluates the performance of each candidate. Balasubramaniam et al. (2012) use
hill climbing to similarly identify the most efficient configuration for a constraint solver on a set
of problems. Terashima-Maŕın, Ross, and Valenzuela-Rendón (1999), Fukunaga (2002) use genetic
algorithms to evolve promising configurations.

The systems described in the previous paragraph are only of limited suitability for dynamic
algorithm portfolios. They either take a long time to find good configurations or are restricted in

10



Algorithm Selection for Search: A survey

the number or type of parameters. Interactions between parameters are only taken into account in
a limited way. More recent approaches have focused on overcoming these limitations.

The ParamILS system (Hutter et al., 2007, 2009) uses techniques based on local search to iden-
tify parameter configurations with good performance. The authors address over-confidence (overes-
timating the performance of a parameter configuration on a test set) and over-tuning (determining
a parameter configuration that is too specific). Ansótegui et al. (2009) use genetic algorithms to
discover favourable parameter configurations for the algorithms being tuned. The authors use a
racing approach to avoid having to run all generated configurations to completion. They also note
that one of the advantages of the genetic algorithm approach is that it is inherently parallel.

Both of these approaches are capable of tuning algorithms with a large number of parameters
and possible values as well as taking interactions between parameters into account. They are used
in practice in the Algorithm Selection systems Hydra and ISAC, respectively. In both cases, they
are only used to construct static portfolios however. More recent approaches focus on exploiting
parallelism (e.g. Hutter, Hoos, & Leyton-Brown, 2012).

Dynamic portfolios are in general a more fruitful area for Algorithm Selection research because
of the large space of possible decisions. Static portfolios are usually relatively small and the decision
space is amenable for human exploration. This is not a feasible approach for dynamic portfolios
though. Minton (1996) notes that

“Multi-tac turned out to have an unexpected advantage in this arena, due to the
complexity of the task. Unlike our human subjects, Multi-tac experimented with a
wide variety of combinations of heuristics. Our human subjects rarely had the inclination
or patience to try many alternatives, and on at least one occasion incorrectly evaluated
alternatives that they did try.”

3. Problem solving with portfolios

Once an algorithm portfolio has been constructed, the way in which it is to be used has to be
decided. There are different considerations to take into account. The two main issues are as follows.

What to select
Given the full set of algorithms in the portfolio, a subset has to be chosen for solving the
problem. This subset can consist of only a single algorithm that is used to solve the problem
to completion, the entire portfolio with the individual algorithms interleaved or running in
parallel or anything in between.

When to select
The selection of the subset of algorithms can be made only once before solving starts or
continuously during search. If the latter is the case, selections can be made at well-defined
points during search, for example at each node of a search tree, or when the system judges it
to be necessary to make a decision.

Rice’s model assumes that only a single algorithm A ∈ A is selected. It implicitly assumes that
this selection occurs only once and before solving the actual problem.

3.1 What to select

A common and the simplest approach is to select a single algorithm from the portfolio and use it
to solve the problem completely. This single algorithm has been determined to be the best for the
problem at hand. For example SATzilla (Nudelman et al., 2004; Xu et al., 2007, 2008), ArgoSmArT
(Nikolić et al., 2009), SALSA (Demmel, Dongarra, Eijkhout, Fuentes, Petitet, Vuduc, Whaley, &
Yelick, 2005) and Eureka (Cook & Varnell, 1997) do this. The disadvantage of this approach is

11



Kotthoff

that there is no way of mitigating a wrong selection. If an algorithm is chosen that exhibits bad
performance on the problem, the system is “stuck” with it and no adjustments are made, even if all
other portfolio algorithms would perform much better.

An alternative approach is to compute schedules for running (a subset of) the algorithms in
the portfolio. In some approaches, the terms portfolio and schedule are used synonymously – all
algorithms in the portfolio are selected and run according to a schedule that allocates time slices
to each of them. The task of Algorithm Selection becomes determining the schedule rather than to
select algorithms.

Roberts and Howe (2006) rank the portfolio algorithms in order of expected performance and
allocate time according to this ranking. Howe et al. (1999) propose a round-robin schedule that
contains all algorithms in the portfolio. The order of the algorithms is determined by the expected
run time and probability of success. The first algorithm is allocated a time slice that corresponds
to the expected time required to solve the problem. If it is unable to solve the problem during that
time, it and the remaining algorithms are allocated additional time slices until the problem is solved
or a time limit is reached.

Pulina and Tacchella (2009) determine a schedule according to three strategies. The first strategy
is to run all portfolio algorithms for a short time and if the problem has not been solved after this,
run the predicted best algorithm exclusively for the remaining time. The second strategy runs all
algorithms for the same amount of time, regardless of what the predicted best algorithm is. The third
variation allocates exponentially increasing time slices to each algorithm such that the total time is
again distributed equally among them. In addition to the three different scheduling strategies, the
authors evaluate four different ways of ordering the portfolio algorithms within a schedule that range
from ranking based on past performance to random. They conclude that ordering the algorithms
based on their past performance and allocating the same amount of time to all algorithms gives the
best overall performance.

O’Mahony et al. (2008) optimise the computed schedule with respect to the probability that
the problem will be solved. They use the past performance data of the portfolio algorithms for
this. However, they note that their approach of using a simple complete search procedure to find
this optimal schedule relies on small portfolio sizes and that “for a large number of solvers, a more
sophisticated approach would be necessary”.

Kadioglu, Malitsky, Sabharwal, Samulowitz, and Sellmann (2011) formulate the problem of com-
puting a schedule that solves most problems in a training set in the lowest amount of time as a
resource constrained set covering integer programme. They pursue similar aims as O’Mahony et al.
(2008) but note that their approach is more efficient and able to scale to larger schedules. However,
their evaluation concludes that the approach with the best overall performance is to run the pre-
dicted best algorithm for 90% of the total available time and distribute the remaining 10% across
the other algorithms in the portfolio according to a static schedule.

Petrik (2005) presents a framework for calculating optimal schedules. The approach is limited by
a number of assumptions about the algorithms and the execution environment, but is applicable to
a wide range of research in the literature. Petrik and Zilberstein (2006), Bougeret, Dutot, Goldman,
Ngoko, and Trystram (2009) compute an optimal static schedule for allocating fixed time slices
to each algorithm. Sayag, Fine, and Mansour (2006) propose an algorithm to efficiently compute
an optimal schedule for portfolios of fixed size and show that the problem of generating or even
approximating an optimal schedule is computationally intractable. Roberts and Howe (2007) explore
different strategies for allocating time slices to algorithms. In a serial execution strategy, each
algorithm is run once for an amount of time determined by the average time to find a solution on
previous problems or the time that was predicted for finding a solution on the current problem. A
round-robin strategy allocates increasing time slices to each algorithm. The length of a time slice is
based on the proportion of successfully solved training problems within this time. Gerevini, Saetti,
and Vallati (2009) compute round-robin schedules following a similar approach. Not all of their
computed schedules contain all portfolio algorithms. Streeter, Golovin, and Smith (2007a) compute

12



Algorithm Selection for Search: A survey

a schedule with the aim of improving the average-case performance. In later work, they compute
theoretical guarantees for the performance of their schedule (Streeter & Smith, 2008).

Wu and van Beek (2007) approach scheduling the chosen algorithms in a different way and assume
a fixed limit on the amount of resources an algorithm can consume while solving a problem. All
algorithms are run sequentially for this fixed amount of time. Similar to Gerevini et al. (2009), they
simulate the performance of different allocations and select the best one based on the results of these
simulations. (Fukunaga, 2000) estimates the performance of candidate allocations through bootstrap
sampling. Gomes and Selman (1997a, 2001) also evaluate the performance of different candidate
portfolios, but take into account how many algorithms can be run in parallel. They demonstrate
that the optimal schedule (in this case the number of algorithms that are being run) changes as
the number of available processors increases. Gagliolo and Schmidhuber (2008) investigate how to
allocate resources to algorithms in the presence of multiple CPUs that allow to run more than one
algorithm in parallel. Yun and Epstein (2012) craft portfolios with the specific aim of running the
algorithms in parallel.

Related research is concerned with the scheduling of restarts of stochastic algorithms – it also
investigates the best way of allocating resources. The paper that introduced algorithm portfolios
(Huberman et al., 1997) uses a portfolio of identical stochastic algorithms that are run with different
random seeds. There is a large amount of research on how to determine restart schedules for
randomised algorithms and a survey of this is outside the scope of this paper. A few approaches
that are particularly relevant to Algorithm Selection and portfolios are mentioned below.

Horvitz et al. (2001) determine the amount of time to allocate to a stochastic algorithm before
restarting it. They use dynamic policies that take performance predictions into account, showing
that it can outperform an optimal fixed policy.

Cicirello and Smith (2005) investigate a restart model model that allocates resources to an
algorithm proportional to the number of times it has been successful in the past. In particular,
they note that the allocated resources should grow doubly exponentially in the number of successes.
Allocation of fewer resources results in over-exploration (too many different things are tried and not
enough resources given to each) and allocation of more resources in over-exploitation (something is
tried for to too long before moving on to something different).

Streeter, Golovin, and Smith (2007b) compute restart schedules that take the runtime distribu-
tion of the portfolio algorithms into account. They present an approach that does so statically based
on the observed performance on a set of training problems as well as an approach that learns the
runtime distributions as new problems are solved without a separate training set.

3.2 When to select

In addition to whether they choose a single algorithm or compute a schedule, existing approaches
can also be distinguished by whether they operate before the problem is being solved (offline) or
while the problem is being solved (online). The advantage of the latter is that more fine-grained
decisions can be made and the effect of a bad choice of algorithm is potentially less severe. The price
for this added flexibility is a higher overhead however, as algorithms are selected more frequently.

Examples of approaches that only make offline decisions include Xu et al. (2008), Minton (1996),
Smith and Setliff (1992), O’Mahony et al. (2008). In addition to having no way of mitigating wrong
choices, often these will not even be detected. These approaches do not monitor the execution of
the chosen algorithms to confirm that they conform with the expectations that led to them being
chosen. Purely offline approaches are inherently vulnerable to bad choices. Their advantage however
is that they only need to select an algorithm once and incur no overhead while the problem is being
solved.

Moving towards online systems, the next step is to monitor the execution of an algorithm or a
schedule to be able to intervene if expectations are not met. Fink (1997, 1998) investigates setting
a time bound for the algorithm that has been selected based on the predicted performance. If the

13



Kotthoff

time bound is exceeded, the solution attempt is abandoned. More sophisticated systems furthermore
adjust their selection if such a bound is exceeded. Borrett et al. (1996) try to detect behaviour during
search that indicates that the algorithm is performing badly, for example visiting nodes in a subtree
of the search that clearly do not lead to a solution. If such behaviour is detected, they propose
switching the currently running algorithm according to a fixed replacement list.

Sakkout, Wallace, and Richards (1996) explore the same basic idea. They switch between two
algorithms for solving constraint problems that achieve different levels of consistency. The level
of consistency refers to the amount of search space that is ruled out by inference before actually
searching it. Their approach achieves the same level of search space reduction as the more expensive
algorithm at a significantly lower cost. This is possible because doing more inference does not
necessarily result in a reduction of the search space in all cases. The authors exploit this fact by
detecting such cases and doing the cheaper inference. Stergiou (2009) also investigates switching
propagation methods during solving. Yu, Zhang, and Rauchwerger (2004), Yu and Rauchwerger
(2006) do not monitor the execution of the selected algorithm, but instead the values of the features
used to select it. They re-evaluate the selection function when its inputs change.

Further examples of approaches that monitor the execution of the selected algorithm are Pulina
and Tacchella (2009), Gagliolo, Zhumatiy, and Schmidhuber (2004), but also Horvitz et al. (2001)
where the offline selection of an algorithm is combined with the online selection of a restart strategy.
An interesting feature of Pulina and Tacchella (2009) is that the authors adapt the model used for
the offline algorithm selection if the actual run time is much higher than the predicted runtime. In
this way, they are not only able to mitigate bad choices during execution, but also prevent them
from happening again.

The approaches that make decisions during search, for example at every node of the search tree,
are necessarily online systems. Arbelaez, Hamadi, and Sebag (2009) select the best search strategy
at checkpoints in the search tree. Similarly, Brodley (1993) recursively partitions the classification
problem to be solved and selects an algorithm for each partition. In this approach, a lower-level
decision can lead to changing the decision at the level above. This is usually not possible for
combinatorial search problems, as decisions at a higher level cannot be changed easily.

Closely related is the work by Lagoudakis and Littman (2000, 2001), which partitions the search
space into recursive subtrees and selects the best algorithm from the portfolio for every subtree. They
specifically consider recursive algorithms. At each recursive call, the Algorithm Selection procedure
is invoked. This is a more natural extension of offline systems than monitoring the execution of the
selected algorithms, as the same mechanisms can be used. Samulowitz and Memisevic (2007) also
select algorithms for recursively solving sub-problems.

The PRODIGY system (Carbonell, Etzioni, Gil, Joseph, Knoblock, Minton, & Veloso, 1991)
selects the next operator to apply in order to reach the goal state of a planning problem at each
node in the search tree. Similarly, Langley (1983a) learn weights for operators that can be applied
at each search state and select from among them accordingly.

Most approaches rely on an offline element that makes a decision before search starts. In the case
of recursive calls, this is no different from making a decision during search however. Gagliolo et al.
(2004), Gagliolo and Schmidhuber (2005, 2006b) on the other hand learn the Algorithm Selection
model only dynamically while the problem is being solved. Initially, all algorithms in the portfolio
are allocated the same (small) time slice. As search progresses, the allocation strategy is updated,
giving more resources to algorithms that have exhibited better performance. The expected fastest
algorithm receives half of the total time, the next best algorithm half of the remaining time and so
on. Armstrong, Christen, McCreath, and Rendell (2006) also rely exclusively on a selection model
trained online in a similar fashion. They evaluate different strategies of allocating resources to
algorithms according to their progress during search. All of these strategies converge to allocating
all resources to the algorithm with the best observed performance.

14



Algorithm Selection for Search: A survey

4. Portfolio selectors

Research on how to select from a portfolio in an Algorithm Selection system has generated the largest
number of different approaches within the framework of Algorithm Selection. In Rice’s framework,
it roughly corresponds to the performance mapping p(A, x), although only few approaches use this
exact formulation. Rice assumes that the performance of a particular algorithm on a particular
problem is of interest. While this is true in general, many approaches only take this into account
implicitly. Selecting the single best algorithm for a problem for example has no explicit mapping
into Rice’s performance measure space Rn at all. The selection mapping S(f(x)) is also related to
the problem of how to select.

There are many different ways a mechanism to select from a portfolio can be implemented. Apart
from accuracy, one of the main requirements for such a selector is that it is relatively cheap to run – if
selecting an algorithm for solving a problem is more expensive than solving the problem, there is no
point in doing so. Vassilevska et al. (2006) explicitly define the selector as “an efficient (polynomial
time) procedure”.

There are several challenges associated with making selectors efficient. Algorithm Selection
systems that analyse the problem to be solved, such as SATzilla, need to take steps to ensure that
the analysis does not become too expensive. Two such measures are the running of a pre-solver and
the prediction of the time required to analyse a problem (Xu et al., 2008). The idea behind the pre-
solver is to choose an algorithm with reasonable general performance from the portfolio and use it
to start solving the problem before starting to analyse it. If the problem happens to be very easy, it
will be solved even before the results of the analysis are available. After a fixed time, the pre-solver is
terminated and the results of the Algorithm Selection system are used. Pulina and Tacchella (2009)
use a similar approach and run all algorithms for a short time in one of their strategies. Only if the
problem has not been solved after that, they move on to the algorithm that was actually selected.

Predicting the time required to analyse a problem is a closely related idea. If the predicted
required analysis time is too high, a default algorithm with reasonable performance is chosen and
run on the problem. This technique is particularly important in cases where the problem is hard
to analyse, but easy to solve. As some systems use information that comes from exploring part of
the search space (cf. Section 5), this is a very relevant concern in practice. On some problems, even
probing just a tiny part of the search space may take a very long time.

Gent et al. (2010a), Gent, Kotthoff, Miguel, and Nightingale (2010b) report that using the
misclassification penalty as a weight for the individual problems during training improves the quality
of the predictions. The misclassification penalty quantifies the “badness” of a wrong prediction; in
this case as the additional time required to solve a problem. If an algorithm was chosen that is only
slightly worse than the best one, it has less impact than choosing an algorithm that is orders of
magnitude worse. Using the penalty during training is a way of guiding the learned model towards
the problems where the potential performance improvement is large.

There are many different approaches to how portfolio selectors operate. The selector is not
necessarily an explicit part of the system. Minton (1996) compiles the Algorithm Selection system
into a Lisp programme for solving the original constraint problem. The selection rules are part of
the programme logic. Fukunaga (2008), Garrido and Riff (2010) evolve selectors and combinators of
heuristic building blocks using genetic algorithms. The selector is implicit in the evolved programme.

4.1 Performance models

The way the selector operates is closely linked to the way the performance model of the algorithms
in the portfolio is built. In early approaches, the performance model was usually not learned but
given in the form of human expert knowledge. Borrett et al. (1996), Sakkout et al. (1996) use hand-
crafted rules to determine whether to switch the algorithm during solving. Allen and Minton (1996)
also have hand-crafted rules, but estimate the runtime performance of an algorithm. More recent

15



Kotthoff

approaches sometimes use only human knowledge as well. Wei, Li, and Zhang (2008) select a local
search heuristic for solving SAT problems by a hand-crafted rule that considers the distribution of
clause weights. Tolpin and Shimony (2011) model the performance space manually using statistical
methods and use this hand-crafted model to select a heuristic for solving constraint problems. Vrakas
et al. (2003) learn rules automatically, but then filter them manually.

A more common approach today is to automatically learn performance models using Machine
Learning on training data. The portfolio algorithms are run on a set of representative problems and
based on these experimental results, performance models are built. This approach is used by Xu
et al. (2008), Pulina and Tacchella (2007), O’Mahony et al. (2008), Kadioglu et al. (2010), Guerri
and Milano (2004), to name but a few examples. A drawback of this approach is that the training
time is usually large. Gagliolo and Schmidhuber (2006a) investigate ways of mitigating this problem
by using censored sampling, which introduces an upper bound on the runtime of each experiment
in the training phase. Kotthoff, Gent, and Miguel (2012) also investigate censored sampling where
not all algorithms are run on all problems in the training phase. Their results show that censored
sampling may not have a significant effect on the performance of the learned model.

Models can also be built without a separate training phase, but while the problem is solved. This
approach is used by Gagliolo and Schmidhuber (2006b), Armstrong et al. (2006) for example. While
this significantly reduces the time to build a system, it can mean that the result is less effective
and efficient. At the beginning, when no performance models have been built, the decisions of the
selector might be poor. Furthermore, creating and updating performance models why the problem
is being solved incurs an overhead.

The choice of Machine Learning technique is affected by the way the portfolio selector operates.
Some techniques are more amenable to offline approaches (e.g. linear regression models used by Xu
et al., 2008), while others lend themselves to online methods (e.g. reinforcement learning used by
Armstrong et al., 2006).

Performance models can be categorised by the type of entity whose performance is modelled
– the entire portfolio or individual algorithms within it. There are publications that use both of
those categories however (e.g. Smith-Miles, 2008b). In some cases, no performance models as such
are used at all. Caseau, Laburthe, and Silverstein (1999), Minton (1996), Balasubramaniam et al.
(2012) run the candidates on a set of test problems and select the one with the best performance
that way for example. Gomes and Selman (1997a), Wu and van Beek (2007), Gerevini et al. (2009)
simulate the performance of different selections on training data.

4.1.1 Per-portfolio models

One automated approach is to learn a performance model of the entire portfolio based on training
data. Usually, the prediction of such a model is the best algorithm from the portfolio for a particular
problem. There is only a weak notion of an individual algorithm’s performance. In Rice’s notation
for the performance mapping P (A, x), A is the (subset of the) portfolio instead of an individual
algorithm, i.e. A ⊆ A instead of Rice’s A ∈ A.

This is used for example by O’Mahony et al. (2008), Cook and Varnell (1997), Pulina and
Tacchella (2007), Nikolić et al. (2009), Guerri and Milano (2004). Again there are different ways of
doing this. Lazy approaches do not learn an explicit model, but use the set of training examples
as a case base. For new problems, the closest problem or the set of n closest problems in the case
base is determined and decisions made accordingly. Wilson, Leake, and Bramley (2000), Pulina and
Tacchella (2007), O’Mahony et al. (2008), Nikolić et al. (2009), Gebruers, Guerri, Hnich, and Milano
(2004), Malitsky, Sabharwal, Samulowitz, and Sellmann (2011) use nearest-neighbour classifiers to
achieve this. Apart from the conceptual simplicity, such an approach is attractive because it does
not try to abstract from the examples in the training data. The problems that Algorithm Selection
techniques are applied to are usually complex and factors that affect the performance are hard to

16



Algorithm Selection for Search: A survey

understand. This makes it hard to assess whether a learned abstract model is appropriate and what
its requirements and limitations are.

Explicitly-learned models try to identify the concepts that affect performance for a given problem.
This acquired knowledge can be made explicit to improve the understanding of the researchers of the
problem domain. There are several Machine Learning techniques that facilitate this, as the learned
models are represented in a form that is easy to understand by humans. Carbonell et al. (1991),
Gratch and DeJong (1992), Brodley (1993), Vrakas et al. (2003) learn classification rules that guide
the selector. Vrakas et al. (2003) note that the decision to use a classification rule leaner was not so
much guided by the performance of the approach, but the easy interpretability of the result. Langley
(1983a), Epstein et al. (2002), Nareyek (2001) learn weights for decision rules to guide the selector
towards the best algorithms. Cook and Varnell (1997), Guerri and Milano (2004), Guo and Hsu
(2004), Roberts and Howe (2006), Bhowmick, Eijkhout, Freund, Fuentes, and Keyes (2006), Gent
et al. (2010a) go one step further and learn decision trees. Guo and Hsu (2004) again note that the
reason for choosing decision trees was not primarily the performance, but the understandability of
the result. Pfahringer, Bensusan, and Giraud-Carrier (2000) show the set of learned rules in the
paper to illustrate its compactness. Similarly, Gent et al. (2010a) show their final decision tree in
the paper.

Some approaches learn probabilistic models that take uncertainty and variability into account.
Gratch and DeJong (1992) use a probabilistic model to learn control rules. The probabilities for
candidate rules being beneficial are evaluated and updated on a training set until a threshold is
reached. This methodology is used to avoid having to evaluate candidate rules on larger training
sets, which would show their utility more clearly but be more expensive. Demmel et al. (2005) learn
multivariate Bayesian decision rules. Carchrae and Beck (2004) learn a Bayesian classifier to predict
the best algorithm after a certain amount of time. Stern, Samulowitz, Herbrich, Graepel, Pulina, and
Tacchella (2010) learn Bayesian models that incorporate collaborative filtering. Domshlak, Karpas,
and Markovitch (2010) learn decision rules using näıve Bayes classifiers. Lagoudakis and Littman
(2000), Petrik (2005) learn performance models based on Markov Decision Processes. Kotthoff et al.
(2012) use statistical relational learning to predict the ranking of the algorithms in the portfolio on
a particular problem. None of these approaches make explicit use of the uncertainty attached to a
decision though.

Other approaches include support vector machines (Hough & Williams, 2006; Arbelaez et al.,
2009), reinforcement learning (Armstrong et al., 2006), neural networks (Gagliolo & Schmidhuber,
2005), decision tree ensembles (Hough & Williams, 2006), ensembles of general classification algo-
rithms (Kotthoff, Miguel, & Nightingale, 2010), boosting (Bhowmick et al., 2006), hybrid approaches
that combine regression and classification (Kotthoff, 2012a), multinomial logistic regression (Samu-
lowitz & Memisevic, 2007), self-organising maps (Smith-Miles, 2008b) and clustering (Stamatatos
& Stergiou, 2009; Stergiou, 2009; Kadioglu et al., 2010). Sayag et al. (2006), Streeter et al. (2007a)
compute schedules for running the algorithms in the portfolio based on a statistical model of the
problem instance distribution and performance data for the algorithms. This is not an exhaustive
list, but focuses on the most prominent approaches and publications. Within a single family of
approaches, such as decision trees, there are further distinctions that are outside the scope of this
paper, such as the type of decision tree inducer.

Arbelaez et al. (2009) discuss a technical issue related to the construction of per-portfolio per-
formance models. A particular algorithm often exhibits much better performance in general than
other algorithms on a particular instance distribution. Therefore, the training data used to learn
the performance model will be skewed towards that algorithm. This can be a problem for Machine
Learning, as always predicting this best algorithm might have a very high accuracy already, mak-
ing it very hard to improve on. The authors mention two means of mitigating this problem. The
training set can be under-sampled, where examples where the best overall algorithm performs best
are deliberately omitted. Alternatively, the set can be over-sampled by artificially increasing the
number of examples where another algorithm is better.

17



Kotthoff

4.1.2 Per-algorithm models

A different approach is to learn performance models for the individual algorithms in the portfolio.
The predicted performance of an algorithm on a problem can be compared to the predicted perfor-
mance of the other portfolio algorithms and the selector can proceed based on this. The advantage
of this approach is that it is easier to add and remove algorithms from the portfolio – instead of
having to retrain the model for the entire portfolio, it suffices to train a model for the new algorithm
or remove one of the trained models. Most approaches only rely on the order of predictions being
correct. It does not matter if the prediction of the performance itself is wildly inaccurate as long as
it is correct relative to the other predictions.

This is the approach that is implicitly assumed in Rice’s framework. The prediction is the
performance mapping P (A, x) for an algorithm A ∈ A on a problem x ∈ P. Models for each
algorithm in the portfolio are used for example by Xu et al. (2008), Howe et al. (1999), Allen and
Minton (1996), Lobjois and Lemâıtre (1998), Gagliolo and Schmidhuber (2006b).

A common way of doing this is to use regression to directly predict the performance of each
algorithm. This is used by Xu et al. (2008), Howe et al. (1999), Leyton-Brown et al. (2002), Haim
and Walsh (2009), Roberts and Howe (2007). The performance of the algorithms in the portfolio is
evaluated on a set of training problems, and a relationship between the characteristics of a problem
and the performance of an algorithm derived. This relationship usually has the form of a simple
formula that is cheap to compute at runtime.

Silverthorn and Miikkulainen (2010) on the other hand learn latent class models of unobserved
variables to capture relationships between solvers, problems and run durations. Based on the pre-
dictions, the expected utility is computed and used to select an algorithm. Sillito (2000) surveys
sampling methods to estimate the cost of solving constraint problems. Watson (2003) models the
behaviour of local search algorithms with Markov chains.

Another approach is to build statistical models of an algorithm’s performance based on past
observations. Weerawarana, Houstis, Rice, Joshi, and Houstis (1996) use Bayesian belief propagation
to predict the runtime of a particular algorithm on a particular problem. Bayesian inference is used
to determine the class of a problem and the closest case in the knowledge base. A performance profile
is extracted from that and used to estimate the runtime. The authors also propose an alternative
approach that uses neural nets. Fink (1997, 1998) computes the expected gain for time bounds
based on past success times. The computed values are used to choose the algorithm and the time
bound for running it. Brazdil and Soares (2000) compare algorithm rankings based on different
past performance statistics. Similarly, Leite, Brazdil, Vanschoren, and Queiros (2010) maintain a
ranking based on past performance. Cicirello and Smith (2005) propose a bandit problem model that
governs the allocation of resources to each algorithm in the portfolio. Wang and Tropper (2007) also
use a bandit model, but furthermore evaluate a Q-learning approach, where in addition to bandit
model rewards, the states of the system are taken into account. Gomes and Selman (1997a), Wu
and van Beek (2007), Gerevini et al. (2009) use the past performance of algorithms to simulate the
performance of different algorithm schedules and use statistical tests to select one of the schedules.

4.1.3 Hierarchical models

There are some approaches that combine several models into a hierarchical performance model.
There are two basic types of hierarchical models. One type predicts additional properties of the
problem that cannot be measured directly or are not available without solving the problem. The
other type makes intermediate predictions that do not inform Algorithm Selection directly, but
rather the final predictions.

Xu et al. (2007) use sparse multinomial logistic regression to predict whether a SAT problem
instance is satisfiable and, based on that prediction, use a logistic regression model to predict the
runtime of each algorithm in the portfolio. Haim and Walsh (2009) also predict the satisfiability
of a SAT instance and then choose an algorithm from a portfolio. Both report that being able

18



Algorithm Selection for Search: A survey

to distinguish between satisfiable and unsatisfiable problems enables performance improvements.
The satisfiability of a problem is a property that needs to be predicted in order to be useful for
Algorithm Selection. If the property is computed (i.e. the problem is solved), there is no need to
perform Algorithm Selection anymore.

Gent et al. (2010b) use classifiers to first decide on the level of consistency a constraint propagator
should achieve and then on the actual implementation of the propagator that achieves the selected
level of consistency. A different publication that uses the same data set does not make this distinction
however (Kotthoff et al., 2010), suggesting that the performance benefits are not significant in
practice.

Such hierarchical models are only applicable in a limited number of scenarios, which explains
the comparatively small amount of research into them. For many application domains, only a single
property needs to be predicted and can be predicted without intermediate steps with sufficient
accuracy. Kotthoff (2012a) proposes a hierarchical approach that is domain-independent. He uses
the performance predictions of regression models as input to a classifier that decides which algorithm
to choose and demonstrates performance improvements compared to selecting an algorithm directly
based on the predicted performance. The idea is very similar to that of stacking in Machine Learning
Wolpert (1992).

4.1.4 Selection of model learner

Apart from the different types of performance models, there are different Machine Learning algo-
rithms that can be used to learn a particular kind of model. While most of the approaches mentioned
here rely on a single way of doing this, some of the research compares different methods.

Xu et al. (2008) mention that, in addition to the chosen ridge regression for predicting the
runtime, they explored using lasso regression, support vector machines and Gaussian processes.
They chose ridge regression not because it provided the most accurate predictions, but the best
trade-off between accuracy and cost to make the prediction. Weerawarana et al. (1996) propose
an approach that uses neural networks in addition to the Bayesian belief propagation approach
they describe initially. Cook and Varnell (1997) compare different decision tree learners, a Bayesian
classifier, a nearest neighbour approach and a neural network. They chose the C4.5 decision tree
inducer because even though it may be outperformed by a neural network, the learned trees are
easily understandable by humans and may provide insight into the problem domain. Leyton-Brown
et al. (2002) compare several versions of linear and non-linear regression. Hutter et al. (2006)
report having explored support vector machine regression, multivariate adaptive regression splines
(MARS) and lasso regression before deciding to use the linear regression approach of Leyton-Brown
et al. (2002). They also report experimental results with sequential Bayesian linear regression and
Gaussian Process regression. Guo (2003), Guo and Hsu (2004) explore using decision trees, näıve
Bayes rules, Bayesian networks and meta-learning techniques. They also chose the C4.5 decision tree
inducer because it is one of the top performers and creates models that are easy to understand and
quick to execute. Gebruers, Hnich, Bridge, and Freuder (2005) compare nearest neighbour classifiers,
decision trees and statistical models. They show that a nearest neighbour classifier outperforms all
the other approaches on their data sets.

Hough and Williams (2006) use decision tree ensembles and support vector machines. Bhowmick
et al. (2006) investigate alternating decision trees and various forms of boosting, while Pulina and
Tacchella (2007) use decision trees, decision rules, logistic regression and nearest neighbour ap-
proaches. They do not explicitly choose one of these methods in the paper, but their Algorithm
Selection system AQME uses a nearest neighbour classifier by default. Roberts and Howe (2007)
use 32 different Machine Learning algorithms to predict the runtime of algorithms and probability
of success. They attempt to provide explanations for the performance of the methods they have
chosen in Roberts, Howe, Wilson, and desJardins (2008). Silverthorn and Miikkulainen (2010) com-
pare the performance of different latent class models. Gent et al. (2010b) evaluate the performance

19



Kotthoff

of 19 different Machine Learning classifiers on an Algorithm Selection problem in constraint pro-
gramming. The investigation is extended to include more Machine Learning algorithms as well as
different performance models and more problem domains in Kotthoff et al. (2012). They identify
several Machine Learning algorithms that show particularly good performance across different prob-
lem domains, namely linear regression and alternating decision trees. They do not consider issues
such as how easy the models are to understand or how efficient they are to compute.

Only Guo and Hsu (2004), Gebruers et al. (2005), Hough and Williams (2006), Pulina and
Tacchella (2007), Silverthorn and Miikkulainen (2010), Gent et al. (2010b), Kotthoff et al. (2012)
quantify the differences in performance of the methods they used. The other comparisons give only
qualitative evidence. Not all comparisons choose one of the approaches over the other or provide
sufficient detail to enable the reader to do so. In cases where a particular technique is chosen,
performance is often not the only selection criterion. In particular, the ability to understand a
learned model plays a significant role.

4.2 Types of predictions

The way of creating the performance model of a portfolio or its algorithms is not the only choice
researchers face. In addition, there are different predictions the performance model can make to
inform the decision of the selector of a subset of the portfolio algorithms. The type of decision is
closely related to the learned performance model however. The prediction can be a single categorical
value – the algorithm to choose. This type of prediction is usually the output of per-portfolio models
and used for example in Gent et al. (2010a), Cook and Varnell (1997), Pulina and Tacchella (2007),
Nikolić et al. (2009), Guerri and Milano (2004). The advantage of this simple prediction is that
it determines the choice of algorithm without the need to compare different predictions or derive
further quantities. One of its biggest disadvantages however is that there is no flexibility in the way
the system runs or even the ability to monitor the execution for unexpected behaviour.

A different approach is to predict the runtime of the individual algorithms in the portfolio. This
requires per-algorithm models. For example Horvitz et al. (2001), Petrik (2005), Silverthorn and
Miikkulainen (2010) do this. Xu et al. (2008) do not predict the runtime itself, but the logarithm
of the runtime. They note that,

“In our experience, we have found this log transformation of runtime to be very important
due to the large variation in runtimes for hard combinatorial problems.”

Kotthoff et al. (2012) also compare predicting the runtime itself and the log thereof, but find no
significant difference between the two. Kotthoff (2012a) however also reports better results with the
logarithm.

Allen and Minton (1996) estimate the runtime by proxy by predicting the number of constraint
checks. Lobjois and Lemâıtre (1998) estimate the runtime by predicting the number of search nodes
to explore and the time per node. Lagoudakis and Littman (2000) talk of the cost of selecting a
particular algorithm, which is equal to the time it takes to solve the problem. Nareyek (2001) uses
the utility of a choice to make his decision. The utility is an abstract measure of the “goodness” of
an algorithm that is adapted dynamically. Tolpin and Shimony (2011) use the value of information
of selecting an algorithm, defined as the amount of time saved by making this choice. Xu, Hutter,
Hoos, and Leyton-Brown (2009) predict the penalized average runtime score, a measure that com-
bines runtime with possible timeouts. This approach aims to provide more realistic performance
predictions when runtimes are capped.

More complex predictions can be made, too. In most cases, these are made by combining simple
predictions such as the runtime performance. Brazdil and Soares (2000), Soares, Brazdil, and Kuba
(2004), Leite et al. (2010) produce rankings of the portfolio algorithms. Kotthoff et al. (2012)
use statistical relational learning to directly predict the ranking instead of deriving it from other
predictions. Howe et al. (1999), Gagliolo et al. (2004), Gagliolo and Schmidhuber (2006b), Roberts

20



Algorithm Selection for Search: A survey

and Howe (2006), O’Mahony et al. (2008) predict resource allocations for the algorithms in the
portfolios. Gebruers et al. (2005), Little, Gebruers, Bridge, and Freuder (2002), Borrett and Tsang
(2001) consider selecting the most appropriate formulation of a constraint problem. Smith and Setliff
(1992), Brewer (1995), Wilson et al. (2000), Balasubramaniam et al. (2012) select algorithms and
data structures to be used in a software system.

Some types of predictions require online approaches that make decisions during search. Borrett
et al. (1996), Sakkout et al. (1996), Carchrae and Beck (2004), Armstrong et al. (2006) predict when
to switch the algorithm used to solve a problem. Horvitz et al. (2001) predict whether to restart an
algorithm. Lagoudakis and Littman (2000, 2001) predict the cost to solve a sub-problem. However,
most online approaches make predictions that can also be used in offline settings, such as the best
algorithm to proceed with.

The primary selection criteria and prediction for Soares et al. (2004) and Leite et al. (2010) is the
quality of the solution an algorithm produces rather than the time it takes the algorithm to find that
solution. In addition to the primary selection criteria, a number of approaches predict secondary
criteria. Howe et al. (1999), Fink (1998), Roberts and Howe (2007) predict the probability of success
for each algorithm. Weerawarana et al. (1996) predict the quality of a solution.

In Rice’s model, the prediction of an Algorithm Selection system is the performance p ∈ Rn of an
algorithm. This abstract notion does not rely on time and is applicable to many approaches. It does
not fit techniques that predict the portfolio algorithm to choose or more complex measures such as a
schedule however. As Rice developed his approach long before the advent of algorithm portfolios, it
should not be surprising that the notion of the performance of individual algorithms as opposed to
sets of algorithms dominates. The model is sufficiently general to be able to accommodate algorithm
portfolios with only minor modifications to the overall framework however.

5. Features

The different types of performance models described in the previous sections usually use features to
inform their predictions. Features are an integral part of systems that do Machine Learning. They
characterise the inputs, such as the problem to be solved or the algorithm employed to solve it, and
facilitate learning the relationship between the inputs and the outputs, such as the time it will take
the algorithm to solve the problem. In Rice’s model, features f(x) for a particular problem x are
extracted from the feature space F .

The selection of the most suitable features is an important part of the design of Algorithm
Selection systems. There are different types of features researchers can use and different ways of
computing these. They can be categorised according to two main criteria.

First, they can be categorised according to how much background knowledge a researcher needs
to have to be able to use them. Features that require no or very little knowledge of the application
domain are usually very general and can be applied to new Algorithm Selection problems with
little or no modification. Features that are specific to a domain on the other hand may require
the researcher building the Algorithm Selection system to have a thorough understanding of the
domain. These features usually cannot be applied to other domains, as they may be non-existent or
uninformative in different contexts.

The second way of distinguishing different classes of features is according to when and how
they are computed. Features can be computed statically, i.e. before the search process starts, or
dynamically, i.e. during search. These two categories roughly align with the offline and online
approaches to portfolio problem solving described in Section 3.

Smith-Miles and Lopes (2012) present a survey that focuses on what features can be used for
Algorithm Selection. This paper categorises the features used in the literature.

21



Kotthoff

5.1 Low and high-knowledge features

In some cases, researchers use a large number of features that are specific to the particular problem
domain they are interested in, but there are also publications that only use a single, general feature
– the performance of a particular algorithm on past problems. Gagliolo et al. (2004), Petrik (2005),
Cicirello and Smith (2005), Streeter et al. (2007a), Silverthorn and Miikkulainen (2010), to name
but a few examples, use this approach to build statistical performance models of the algorithms
in their portfolios. The underlying assumption is that all problems are similar with respect to the
relative performance of the algorithms in the portfolio – the algorithm that has done best in the
past has the highest chance of performing best in the future.

Approaches that build runtime distribution models for the portfolio algorithms usually do not
select a single algorithm for solving a problem, but rather use the distributions to compute re-
source allocations for the individual portfolio algorithms. The time allocated to each algorithm is
proportional to its past performance.

Other sources of features that are not specific to a particular problem domain are more fine-
grained measures of past performance or measures that characterise the behaviour of an algorithm
during search. Langley (1983b) for example determines whether a search step performed by a
particular algorithm is good, i.e. leading towards a solution, or bad, i.e. straying from the path to
a solution if the solution is known or revisiting an earlier search state if the solution is not known.
Gomes and Selman (1997a, 2001) use the runtime distributions of algorithms over the size of a
problem, as measured by the number of backtracks. Fink (1998) uses the past success times of an
algorithm as candidate time bounds on new problems. Brazdil and Soares (2000) do not consider
the runtime, but the error rate of algorithms. Gerevini et al. (2009) use both computation time and
solution quality.

Beck and Freuder (2004), Carchrae and Beck (2004, 2005) evaluate the performance also during
search. They explicitly focus on features that do not require a lot of domain knowledge. Beck and
Freuder (2004) note that,

“While existing algorithm selection techniques have shown impressive results, their knowl-
edge-intensive nature means that domain and algorithm expertise is necessary to develop
the models. The overall requirement for expertise has not been reduced: it has been
shifted from algorithm selection to predictive model building.”

They do, like several other approaches, assume anytime algorithms – after search has started, the
algorithm is able to return the best solution found so far at any time. The features are based on
how search progresses and how the quality of solutions is improved by algorithms. While this does
not require any knowledge about the application domain, it is not applicable in cases when only a
single solution is sought.

Most approaches learn models for the performance on particular problems and do not use past
performance as a feature, but to inform the prediction to be made. Considering problem features
facilitates a much more nuanced approach than a broad-brush general performance model. This is
the classic supervised Machine Learning approach – given the correct prediction derived from the
behaviour on a set of training problems, learn a model that enables to make this prediction.

The features that are considered to learn the model are specific to the problem domain or even
a subset of the problem domain to varying extents. For combinatorial search problems, the most
commonly used basic features include,

• the number of variables,

• properties of the variable domains, i.e. the list of possible assignments,

• the number of clauses in SAT, the number of constraints in constraint problems, the number
of goals in planning,

22



Algorithm Selection for Search: A survey

• the number of clauses/constraints/goals of a particular type (for example the number of
alldifferent constraints, Gent et al., 2010b),

• ratios of several of the above features and summary statistics.

Such features are used for example in O’Mahony et al. (2008), Pulina and Tacchella (2007), Weer-
awarana et al. (1996), Howe et al. (1999), Xu et al. (2008).

Other sources of features include the generator that produced the problem to be solved (Horvitz
et al., 2001), the runtime environment (Armstrong et al., 2006), structures derived from the problem
such as the primal graph of a constraint problem (Gebruers et al., 2004; Guerri & Milano, 2004;
Gent et al., 2010a), specific parts of the problem model such as variables (Epstein & Freuder, 2001),
the algorithms in the portfolio themselves (Hough & Williams, 2006) or the domain of the problem
to be solved (Carbonell et al., 1991), Gerevini et al. (2009) rely on the problem domain as the only
problem-specific feature and select based on past performance data for the particular domain. Beck
and Fox (2000) consider not only the values of properties of a problem, but the changes of those
values while the problem is being solved. Smith and Setliff (1992) consider features of abstract
representations of the algorithms. Yu et al. (2004), Yu and Rauchwerger (2006) use features that
represent technical details of the behaviour of an algorithm on a problem, such as the type of
computations done in a loop.

Most approaches use features that are applicable to all problems of the application domain
they are considering. However, Horvitz et al. (2001) use features that are not only specific to their
application domain, but also to the specific family of problems they are tackling, such as the variance
of properties of variables in different columns of Latin squares. They note that,

“. . . the inclusion of such domain-specific features was important in learning strongly
predictive models.”

5.2 Static and dynamic features

In most cases, the approaches that use a large number of domain-specific features compute them
offline, i.e. before the solution process starts (cf. Section 3.2). Examples of publications that only
use such static features are Leyton-Brown et al. (2002), Pulina and Tacchella (2007), Guerri and
Milano (2004).

An implication of using static features is that the decisions of the Algorithm Selection system
are only informed by the performance of the algorithms on past problems. Only dynamic features
allow to take the performance on the current problem into account. This has the advantage that
remedial actions can be taken if the problem is unlike anything seen previously or the predictions
are wildly inaccurate for another reason.

A more flexible approach than to rely purely on static features is to incorporate features that can
be determined statically, but try to estimate the performance on the current problem. Such features
are computed by probing the search space. This approach relies on the performance probes being
sufficiently representative of the entire problem and sufficiently equal across the different evaluated
algorithms. If an algorithm is evaluated on a part of the search space that is much easier or harder
than the rest, a misleading impression of its true performance may result.

Examples of systems that combine static features of the problem to be solved with features
derived from probing the search space are Xu et al. (2008), Gent et al. (2010a), O’Mahony et al.
(2008). There are also approaches that use only probing features. We term this semi-static feature
computation because it happens before the actual solving of the problem starts, but parts of the
search space are explored during feature extraction. Examples include Allen and Minton (1996),
Beck and Freuder (2004), Lobjois and Lemâıtre (1998).

The idea of probing the search space is related to landmarking (Pfahringer et al., 2000), where
the performance of a set of initial algorithms (the landmarkers) is linked to the performance of
the set of algorithms to select from. The main consideration when using this technique is to select

23



Kotthoff

landmarkers that are computationally cheap. Therefore, they are usually versions of the portfolio
algorithms that have either been simplified or are run only on a subset of the data the selected
algorithm will run on.

While the work done during probing explores part of the search space and could be used to
speed search up subsequently by avoiding to revisit known areas, almost no research has been done
into this. Beck and Freuder (2004) run all algorithms in their (small) portfolio on a problem for a
fixed time and select the one that has made the best progress. The chosen algorithm resumes its
earlier work, but no attempt is made to avoid duplicating work done by the other algorithms. To
the best of our knowledge, there exist no systems that attempt to avoid redoing work performed by
a different algorithm during the probing stage.

For successful systems, the main source of performance improvements is the selection of the right
algorithm using the features computed through probing. As the time to compute the features is
usually small compared to the runtime improvements achieved by Algorithm Selection, using the
results of probing during search to avoid duplicating work does not have the potential to achieve
large additional performance improvements.

The third way of computing features is to do so online, i.e. while search is taking place. These
dynamic features are computed by an execution monitor that adapts or changes the algorithm during
search based on its performance. Approaches that rely purely on dynamic features are for example
Borrett et al. (1996), Nareyek (2001), Stergiou (2009).

There are many different features that can be computed during search. Minton (1996) determines
how closely a generated heuristic approximates a generic target heuristic by checking the heuristic
choices at random points during search. He selects the one with the closest match. Similarly,
Nareyek (2001) learn how to select heuristics during the search process based on their performance.
Armstrong et al. (2006) use an agent-based model that rewards good actions and punishes bad
actions based on computation time. Kuefler and Chen (2008) follow a very similar approach that
also takes success or failure into account.

Carchrae and Beck (2004, 2005) monitor the solution quality during search. They decide whether
to switch the current algorithm based on this by changing the allocation of resources. Wei et al.
(2008) monitor a feature that is specific to their application domain, the distribution of clause
weights in SAT, during search and use it to decide whether to switch a heuristic. Stergiou (2009)
monitors propagation events in a constraint solver to a similar aim. Caseau et al. (1999) evaluate the
performance of candidate algorithms in terms of number of calls to a specific high-level procedure.
They note that in contrast to using the runtime, their approach is machine-independent.

5.3 Feature selection

The features used for learning the Algorithm Selection model are crucial to its success. Uninformative
features might prevent the model learner from recognising the real relation between problem and
performance or the most important feature might be missing. Many researchers have recognised this
problem.

Howe et al. (1999) manually select the most important features. They furthermore take the
unique approach of learning one model per feature for predicting the probability of success and com-
bine the predictions of the models. Leyton-Brown et al. (2002), Xu et al. (2008) perform automatic
feature selection by greedily adding features to an initially empty set. In addition to the basic fea-
tures, they also use the pairwise products of the features. Pulina and Tacchella (2007) also perform
automatic greedy feature selection, but do not add the pairwise products. Kotthoff et al. (2012)
automatically select the most important subset of the original set of features, but conclude that
in practice the performance improvement compared to using all features is not significant. Wilson
et al. (2000) use genetic algorithms to determine the importance of the individual features. Petrovic
and Qu (2002) evaluate subsets of the features they use and learn weights for each of them. Roberts
et al. (2008) consider using a single feature and automatic selection of a subset of all features. Guo

24



Algorithm Selection for Search: A survey

and Hsu (2004) and Kroer and Malitsky (2011) also use techniques for automatically determining
the most predictive subset of features. Kotthoff (2012a) compares the performance of ten different
sets of features.

It is not only important to use informative features, but also features that are cheap to compute. If
the cost of computing the features and making the decision is too high, the performance improvement
from selecting the best algorithm might be eroded. Xu et al. (2009) predict the feature computation
time for a given problem and fall back to a default selection if it is too high to avoid this problem.
They also limit the computation time for the most expensive features as well as the total time
allowed to compute features. Bhowmick, Toth, and Raghavan (2009) consider the computational
complexity of calculating problem features when selecting the features to use. They show that while
achieving comparable accuracy to the full set of features, the subset of features selected by their
method is significantly cheaper to compute. Gent et al. (2010a) explicitly exclude features that are
expensive to compute.

6. Application domains

The approaches for solving the Algorithm Selection Problem that have been surveyed here are usually
not specific to a particular application domain, within combinatorial search problems or otherwise.
Nevertheless this survey would not be complete without a brief exposition of the various contexts
in which Algorithm Selection techniques have been applied.

Over the years, Algorithm Selection systems have been used in many different application do-
mains. These range from Mathematics, e.g. differential equations (Kamel, Enright, & Ma, 1993;
Weerawarana et al., 1996), linear algebra (Demmel et al., 2005) and linear systems (Bhowmick
et al., 2006; Kuefler & Chen, 2008), to the selection of algorithms and data structures in software
design (Smith & Setliff, 1992; Cahill, 1994; Brewer, 1995; Wilson et al., 2000). A very common
application domain are combinatorial search problems such as SAT (Xu et al., 2008; Lagoudakis &
Littman, 2001; Silverthorn & Miikkulainen, 2010), constraints (Minton, 1996; Epstein et al., 2002;
O’Mahony et al., 2008), Mixed Integer Programming (Xu, Hutter, Hoos, & Leyton-Brown, 2011),
Quantified Boolean Formulae (Pulina & Tacchella, 2009; Stern et al., 2010), planning (Carbonell
et al., 1991; Howe et al., 1999; Vrakas et al., 2003), scheduling (Beck & Fox, 2000; Beck & Freuder,
2004; Cicirello & Smith, 2005), combinatorial auctions (Leyton-Brown et al., 2002; Gebruers et al.,
2004; Gagliolo & Schmidhuber, 2006b), Answer Set Programming (Gebser, Kaminski, Kaufmann,
Schaub, Schneider, & Ziller, 2011), the Travelling Salesperson Problem (Fukunaga, 2000) and general
search algorithms (Langley, 1983b; Cook & Varnell, 1997; Lobjois & Lemâıtre, 1998).

Other domains include Machine Learning (Soares et al., 2004; Leite et al., 2010), the most
probable explanation problem (Guo & Hsu, 2004), parallel reduction algorithms Yu et al. (2004), Yu
and Rauchwerger (2006) and simulation (Wang & Tropper, 2007; Ewald et al., 2010). It should be
noted that a significant part of Machine Learning research is concerned with developing Algorithm
Selection techniques; the publications listed in this paragraph are the most relevant that use the
specific techniques and framework surveyed here.

Some publications consider more than one application domain. Stern et al. (2010) choose the
best algorithm for Quantified Boolean Formulae and combinatorial auctions. Allen and Minton
(1996), Kroer and Malitsky (2011) look at SAT and constraints. Gomes and Selman (2001) consider
SAT and Mixed Integer Programming. In addition to these two domains, Kadioglu et al. (2010) also
investigate set covering problems. Streeter and Smith (2008) apply their approach to SAT, Integer
Programming and planning. Gagliolo and Schmidhuber (2011), Kotthoff et al. (2012), Kotthoff
(2012a) compare the performance across Algorithm Selection problems from constraints, Quantified
Boolean Formulae and SAT.

In most cases, researchers take some steps to adapt their approaches to the application domain.
This is usually done by using domain-specific features, such as the number of constraints and vari-
ables in constraint programming. In principle, this is not a limitation of the proposed techniques as

25



Kotthoff

those features can be exchanged for ones that are applicable in other application domains. While
the overall approach remains valid, the question of whether the performance would be acceptable
arises. Kotthoff et al. (2012) investigate how specific techniques perform across several domains
with the aim of selecting the one with the best overall performance. There are approaches that have
been tailored to a specific application domain to such an extent that the technique cannot be used
for other applications. This is the case for example in the case of hierarchical models for SAT (Xu
et al., 2007; Haim & Walsh, 2009).

7. Current and future directions

Research into the Algorithm Selection Problem is ongoing. Many aspects of Algorithm Selection
in various contexts have been explored already. Current research is extending and refining existing
approaches, as well as exploring new directions. Some of them are listed below, in no particular
order.

7.1 Use of more sophisticated Machine Learning techniques

Most of the research to date has focused on predicting either the best algorithm in a portfolio or the
performance of an algorithm on a particular problem. In some cases, these simple predictions are
used to generate more complex outputs, such as a schedule according to which to run the algorithms.
Kotthoff et al. (2012) have started exploring Machine Learning techniques to predict such complex
outputs more directly, but their results are not competitive with other approaches.

A related direction is to explore the use of generic Machine Learning techniques that can be
applied to many approaches to improve performance. Kotthoff (2012a) for example explores this.
Xu et al. (2012) analyse the performance of a portfolio and the contributions of its constituent
algorithms. The results of such an analysis could be used to inform the choice of suitable Machine
Learning techniques. Smith-Miles and Lopes (2012) focus on identifying features that are suitable
for Machine Learning in Algorithm Selection.

This raises the question of what type of Machine Learning to use in general. While this has long
been a research topic in Machine Learning research, there is almost no research that applies such
knowledge to Algorithm Selection. This problem is in particular interesting as the authors of the
SATzilla system decided to fundamentally change the type of Machine Learning they use in a recent
publication (Xu et al., 2011).

7.2 Exploitation of parallelism

Many researchers acknowledge at least implicitly that their approaches can be parallelised across
the many cores that modern computers provide. Current research has started to focus on explicitly
exploiting parallelism (e.g. Gagliolo & Schmidhuber, 2008; Yun & Epstein, 2012; Hutter et al.,
2012). Apart from technical considerations, one of the main issues is that the composition of a good
algorithm portfolio changes with the number of processors available to run those algorithms.

There remain challenges that have been largely ignored so far however. As an example, some
portfolio algorithms may be able to take advantage of specialised processing units such as GPUs
while others are not. This would place restrictions on how the algorithms can be run in parallel.
Given the current trend to have more powerful GPUs with increasing numbers of processing elements
in off-the-shelf computers, we expect this direction of research to become more prominent.

7.3 Application to new domains

Even though Algorithm Selection techniques have been applied to many domains, especially in
Artificial Intelligence, there remain many more that might benefit from its research. Recently,
Algorithm Selection techniques have been applied to Answer Set Programming for example (Gebser

26



Algorithm Selection for Search: A survey

et al., 2011). An increasing number of research communities are becoming aware of Algorithm
Selection techniques and the potential benefits for their domain.

Related research explores how Algorithm Selection techniques can be used in the construction
of software (Balasubramaniam et al., 2012; Hoos, 2012). This is not just the application in a new
problem domain, but the deployment of techniques in a new context that has the potential for much
higher performance improvements. While at the moment Algorithm Selection is somewhat of a
specialised subject, the integration of relevant techniques into mainstream programming languages
and software development systems will stimulate further research in this direction.

8. Summary

Over the years, there have been many approaches to solving the Algorithm Selection Problem. Es-
pecially in Artificial Intelligence and for combinatorial search problems, researchers have recognised
that using Algorithm Selection techniques can provide significant performance improvements with
relatively little effort. Most of the time, the approaches involve some kind of Machine Learning that
attempts to learn the relation between problems and the performance of algorithms automatically.
This is not a surprise, as the relationship between an algorithm and its performance is often complex
and hard to describe formally. In many cases, even the designer of an algorithm does not have a
general model of its performance.

Despite the theoretical difficulty of Algorithm Selection, dozens of systems have demonstrated
that it can be done in practice with great success. In some sense, this mirrors achievements in other
areas of Artificial Intelligence. Satisfiability is formally a problem that cannot be solved efficiently,
yet researchers have come up with ways of solving very large instances of satisfiability problems
with very few resources. Similarly, some Algorithm Selection systems have come very close to
always choosing the best algorithm.

This survey presented an overview of the Algorithm Selection research that has been done to
date with a focus on combinatorial search problems. A categorisation of the different approaches
with respect to fundamental criteria that determine Algorithm Selection systems in practice was
introduced. This categorisation abstracts from many of the low level details and additional consid-
erations that are presented in most publications to give a clear view of the underlying principles. We
furthermore gave details of the many different ways that can be used to tackle Algorithm Selection
and the many techniques that have been used to solve it in practice.

On a high level, the approaches surveyed here can be summarised as follows.

• Algorithms are chosen from portfolios, which can be statically constructed or dynamically
augmented with newly constructed algorithms as problems are being solved. Portfolios can
be engineered such that the algorithms in it complement each other (i.e. are as diverse as
possible), by automatically tuning algorithms on a set of training problems or by using a
set of algorithms from the literature or competitions. Dynamic portfolios can be composed
of algorithmic building blocks that are combined into complete algorithms by the selection
system. Compared to tuning the parameters of algorithms, the added difficulty is that not all
combinations of building blocks may be valid.

• A single algorithm can be selected from a portfolio to solve a problem to completion or a set of
larger size can be selected that is run in parallel or according to a schedule. Another approach
is to select a single algorithm to start with and then decide if and when to switch to another
algorithm. Some approaches always select the entire portfolio and vary the resource allocation
to the algorithms.

• Algorithm Selection can happen offline, without any interaction with the Algorithm Selection
system after solving starts, or online. Some approaches monitor the performance of the selected
algorithm and take action if it does not conform to the expectations or some other criteria.

27



Kotthoff

Others repeat the selection process at specific points during the search (e.g. every node in
the search tree), skew a computed schedule towards the best performers or decide whether to
restart stochastic algorithms.

• Performance can be modelled and predicted either for a portfolio as a whole (i.e. the pre-
diction is the best algorithm) or for each algorithm independently (i.e. the prediction is the
performance). A few approaches use hierarchical models that make a series of predictions
to facilitate selection. Some publications make secondary predictions (e.g. the quality of a
solution) that are taken into account when selecting the most suitable algorithm, while oth-
ers make predictions that the desired output is derived from instead of predicting it directly.
The performance models are usually learned automatically using Machine Learning, but a few
approaches use hand-crafted models and rules. Models can be learned from separate training
data or incrementally while a problem is being solved.

• Learning and using performance models is facilitated by features of the algorithms, problems
or runtime environment. Features can be domain-independent or specific to a particular set
of problems. Similarly, features can be computed by inspecting the problem before solving or
while it is being solved. The use of feature selection techniques that automatically determine
the most important and relevant features is quite common.

Given the amount of relevant literature, it is infeasible to discuss every approach in detail. The
scope of this survey is necessarily limited to the detailed description of high-level details and a
summary overview of low-level traits. Work in related areas that is not immediately relevant to
Algorithm Selection for combinatorial search problems has been pointed to, but cannot be explored
in more detail.

A tabular summary of the literature organised according to the criteria introduced here can be
found at http://4c.ucc.ie/~larsko/assurvey/.

Acknowledgments

Ian Miguel and Ian Gent provided valuable feedback that helped shape this paper. We also
thank the anonymous reviewers of a previous version of this paper whose detailed comments helped
to greatly improve it. This work was supported by an EPSRC doctoral prize.

References

Aha, D. W. (1992). Generalizing from case studies: A case study. In Proceedings of the 9th Interna-
tional Workshop on Machine Learning, pp. 1–10, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Allen, J. A., & Minton, S. (1996). Selecting the right heuristic algorithm: Runtime performance
predictors. In The 11th Biennial Conference of the Canadian Society for Computational Studies
of Intelligence, pp. 41–53. Springer-Verlag.

Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman, A., & Amarasinghe, S. (2009).
PetaBricks: a language and compiler for algorithmic choice. SIGPLAN Not., 44 (6), 38–49.

Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A Gender-Based genetic algorithm for the
automatic configuration of algorithms. In CP, pp. 142–157.

Arbelaez, A., Hamadi, Y., & Sebag, M. (2009). Online heuristic selection in constraint programming.
In Symposium on Combinatorial Search.

28



Algorithm Selection for Search: A survey

Armstrong, W., Christen, P., McCreath, E., & Rendell, A. P. (2006). Dynamic algorithm selection
using reinforcement learning. In International Workshop on Integrating AI and Data Mining,
pp. 18–25.

Balasubramaniam, D., Gent, I. P., Jefferson, C., Kotthoff, L., Miguel, I., & Nightingale, P. (2012). An
automated approach to generating efficient constraint solvers. In 34th International Conference
on Software Engineering, pp. 661–671.

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning, 36 (1-2), 105–139.

Beck, J. C., & Fox, M. S. (2000). Dynamic problem structure analysis as a basis for constraint-
directed scheduling heuristics. Artificial Intelligence, 117 (1), 31–81.

Beck, J. C., & Freuder, E. C. (2004). Simple rules for low-knowledge algorithm selection. In CPAIOR,
pp. 50–64. Springer.

Bhowmick, S., Eijkhout, V., Freund, Y., Fuentes, E., & Keyes, D. (2006). Application of machine
learning in selecting sparse linear solvers. Tech. rep., Columbia University.

Bhowmick, S., Toth, B., & Raghavan, P. (2009). Towards Low-Cost, High-Accuracy classifiers for
linear solver selection. In Proceedings of the 9th International Conference on Computational
Science, ICCS ’09, pp. 463–472, Berlin, Heidelberg. Springer-Verlag.

Borrett, J. E., & Tsang, E. P. K. (2001). A context for constraint satisfaction problem formulation
selection. Constraints, 6 (4), 299–327.

Borrett, J. E., Tsang, E. P. K., & Walsh, N. R. (1996). Adaptive constraint satisfaction: The quickest
first principle. In ECAI, pp. 160–164.

Bougeret, M., Dutot, P., Goldman, A., Ngoko, Y., & Trystram, D. (2009). Combining multiple
heuristics on discrete resources. In IEEE International Symposium on Parallel & Distributed
Processing, pp. 1–8, Washington, DC, USA. IEEE Computer Society.

Brazdil, P., & Soares, C. (2000). A comparison of ranking methods for classification algorithm
selection. In Proceedings of the 11th European Conference on Machine Learning, ECML ’00,
pp. 63–74, London, UK. Springer-Verlag.

Breiman, L. (1996). Bagging predictors. Mach. Learn., 24 (2), 123–140.

Brewer, E. A. (1995). High-level optimization via automated statistical modeling. In Proceedings
of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP ’95, pp. 80–91, New York, NY, USA. ACM.

Brodley, C. E. (1993). Addressing the selective superiority problem: Automatic Algorithm/Model
class selection. In ICML, pp. 17–24.

Cahill, E. (1994). Knowledge-based algorithm construction for real-world engineering PDEs. Math-
ematics and Computers in Simulation, 36 (4-6), 389–400.

Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., & Veloso, M. (1991).
PRODIGY: an integrated architecture for planning and learning. SIGART Bull., 2, 51–55.

Carchrae, T. (2009). Low Knowledge Algorithm Control for Constraint-Based Scheduling. Ph.D.
thesis, National University of Ireland.

Carchrae, T., & Beck, J. C. (2004). Low-Knowledge algorithm control. In AAAI, pp. 49–54.

Carchrae, T., & Beck, J. C. (2005). Applying machine learning to Low-Knowledge control of opti-
mization algorithms. Computational Intelligence, 21 (4), 372–387.

Caseau, Y., Laburthe, F., & Silverstein, G. (1999). A Meta-Heuristic factory for vehicle routing
problems. In Proceedings of the 5th International Conference on Principles and Practice of
Constraint Programming, pp. 144–158, London, UK. Springer-Verlag.

29



Kotthoff

Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are. In
12th International Joint Conference on Artificial Intelligence, pp. 331–337, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Cicirello, V. A., & Smith, S. F. (2005). The max k-armed bandit: A new model of exploration applied
to search heuristic selection. In Proceedings of the 20th National Conference on Artificial
Intelligence, pp. 1355–1361. AAAI Press.

Cook, D. J., & Varnell, R. C. (1997). Maximizing the benefits of parallel search using machine
learning. In Proceedings of the 14th National Conference on Artificial Intelligence, pp. 559–
564. AAAI Press.

Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Whaley, R. C., &
Yelick, K. (2005). Self-Adapting linear algebra algorithms and software. Proceedings of the
IEEE, 93 (2), 293–312.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Proceedings of the 1st Inter-
national Workshop on Multiple Classifier Systems, Vol. 1857 of Lecture Notes In Computer
Science, pp. 1–15. Springer-Verlag.

Domingos, P. (1998). How to get a free lunch: A simple cost model for machine learning applications.
In AAAI98/ICML98 Workshop on the Methodology of Applying Machine Learning, pp. 1–7.
AAAI Press.

Domshlak, C., Karpas, E., & Markovitch, S. (2010). To max or not to max: Online learning for
speeding up optimal planning. In AAAI.

Elsayed, S. A. M., & Michel, L. (2010). Synthesis of search algorithms from high-level CP models.
In Proceedings of the 9th International Workshop on Constraint Modelling and Reformulation.

Elsayed, S. A. M., & Michel, L. (2011). Synthesis of search algorithms from high-level CP models.
In 17th International Conference on Principles and Practice of Constraint Programming, pp.
256–270, Berlin, Heidelberg. Springer-Verlag.

Epstein, S. L., & Freuder, E. C. (2001). Collaborative learning for constraint solving. In Proceedings
of the 7th International Conference on Principles and Practice of Constraint Programming,
pp. 46–60, London, UK. Springer-Verlag.

Epstein, S. L., Freuder, E. C., Wallace, R., Morozov, A., & Samuels, B. (2002). The adaptive con-
straint engine. In Principles and Practice of Constraint Programming, pp. 525–540. Springer.

Ewald, R. (2010). Automatic Algorithm Selection for Complex Simulation Problems. Ph.D. thesis,
University of Rostock.

Ewald, R., Schulz, R., & Uhrmacher, A. M. (2010). Selecting simulation algorithm portfolios by
genetic algorithms. In IEEE Workshop on Principles of Advanced and Distributed Simulation,
PADS ’10, pp. 1–9, Washington, DC, USA. IEEE Computer Society.

Fink, E. (1997). Statistical selection among Problem-Solving methods. Tech. rep. CMU-CS-97-101,
Carnegie Mellon University.

Fink, E. (1998). How to solve it automatically: Selection among Problem-Solving methods. In
Proceedings of the 4th International Conference on Artificial Intelligence Planning Systems,
pp. 128–136. AAAI Press.

Fukunaga, A. S. (2000). Genetic algorithm portfolios. In IEEE Congress on Evolutionary Compu-
tation, Vol. 2, pp. 1304–1311.

Fukunaga, A. S. (2002). Automated discovery of composite SAT variable-selection heuristics. In 18th
National Conference on Artificial Intelligence, pp. 641–648, Menlo Park, CA, USA. American
Association for Artificial Intelligence.

30



Algorithm Selection for Search: A survey

Fukunaga, A. S. (2008). Automated discovery of local search heuristics for satisfiability testing.
Evol. Comput., 16, 31–61.

Gagliolo, M. (2010). Online Dynamic Algorithm Portfolios – Minimizing the computational cost of
problem solving. Ph.D. thesis, University of Lugano.

Gagliolo, M., & Schmidhuber, J. (2005). A neural network model for Inter-Problem adaptive online
time allocation. In 15th International Conference on Artificial Neural Networks: Formal Models
and Their Applications, pp. 7–12. Springer.

Gagliolo, M., & Schmidhuber, J. (2006a). Impact of censored sampling on the performance of restart
strategies. In CP, pp. 167–181.

Gagliolo, M., & Schmidhuber, J. (2006b). Learning dynamic algorithm portfolios. Ann. Math. Artif.
Intell., 47 (3-4), 295–328.

Gagliolo, M., & Schmidhuber, J. (2008). Towards distributed algorithm portfolios. In International
Symposium on Distributed Computing and Artificial Intelligence, Advances in Soft Computing.
Springer.

Gagliolo, M., & Schmidhuber, J. (2011). Algorithm portfolio selection as a bandit problem with
unbounded losses. Annals of Mathematics and Artificial Intelligence, 61 (2), 49–86.

Gagliolo, M., Zhumatiy, V., & Schmidhuber, J. (2004). Adaptive online time allocation to search
algorithms. In ECML, pp. 134–143. Springer.

Garrido, P., & Riff, M. (2010). DVRP: a hard dynamic combinatorial optimisation problem tackled
by an evolutionary hyper-heuristic. Journal of Heuristics, 16, 795–834.

Gebruers, C., Guerri, A., Hnich, B., & Milano, M. (2004). Making choices using structure at the
instance level within a case based reasoning framework. In CPAIOR, pp. 380–386.

Gebruers, C., Hnich, B., Bridge, D., & Freuder, E. (2005). Using CBR to select solution strategies
in constraint programming. In Proc. of ICCBR-05, pp. 222–236.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T., & Ziller, S. (2011). A
portfolio solver for answer set programming: preliminary report. In 11th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning, pp. 352–357, Berlin, Heidelberg.
Springer-Verlag.

Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., & Petrie, K. (2010a).
Learning when to use lazy learning in constraint solving. In 19th European Conference on
Artificial Intelligence, pp. 873–878.

Gent, I., Kotthoff, L., Miguel, I., & Nightingale, P. (2010b). Machine learning for constraint solver
design - a case study for the alldifferent constraint. In 3rd Workshop on Techniques for
implementing Constraint Programming Systems (TRICS), pp. 13–25.

Gerevini, A. E., Saetti, A., & Vallati, M. (2009). An automatically configurable portfolio-based
planner with macro-actions: PbP. In Proceedings of the 19th International Conference on
Automated Planning and Scheduling, pp. 350–353.

Gomes, C. P., & Selman, B. (1997a). Algorithm portfolio design: Theory vs. practice. In UAI, pp.
190–197.

Gomes, C. P., & Selman, B. (1997b). Practical aspects of algorithm portfolio design. In Proc. of 3rd
ILOG International Users Meeting.

Gomes, C. P., & Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126 (1-2), 43–62.

Gratch, J., & DeJong, G. (1992). COMPOSER: a probabilistic solution to the utility problem in
Speed-Up learning. In AAAI, pp. 235–240.

31



Kotthoff

Guerri, A., & Milano, M. (2004). Learning techniques for automatic algorithm portfolio selection.
In ECAI, pp. 475–479.

Guo, H. (2003). Algorithm Selection for Sorting and Probabilistic Inference: A Machine Learning-
Based Approach. Ph.D. thesis, Kansas State University.

Guo, H., & Hsu, W. H. (2004). A Learning-Based algorithm selection meta-reasoner for the Real-
Time MPE problem. In Australian Conference on Artificial Intelligence, pp. 307–318.

Haim, S., & Walsh, T. (2009). Restart strategy selection using machine learning techniques. In
Proceedings of the 12th International Conference on Theory and Applications of Satisfiability
Testing, pp. 312–325, Berlin, Heidelberg. Springer-Verlag.

Hogg, T., Huberman, B. A., & Williams, C. P. (1996). Phase transitions and the search problem.
Artif. Intell., 81 (1-2), 1–15.

Hong, L., & Page, S. E. (2004). Groups of diverse problem solvers can outperform groups of high-
ability problem solvers. Proceedings of the National Academy of Sciences of the United States
of America, 101 (46), 16385–16389.

Hoos, H. H. (2012). Programming by optimization. Commun. ACM, 55 (2), 70–80.

Horvitz, E., Ruan, Y., Gomes, C. P., Kautz, H. A., Selman, B., & Chickering, D. M. (2001). A
bayesian approach to tackling hard computational problems. In Proceedings of the 17th Con-
ference in Uncertainty in Artificial Intelligence, pp. 235–244, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Hough, P. D., & Williams, P. J. (2006). Modern machine learning for automatic optimization
algorithm selection. In Proceedings of the INFORMS Artificial Intelligence and Data Mining
Workshop.

Howe, A. E., Dahlman, E., Hansen, C., Scheetz, M., & von Mayrhauser, A. (1999). Exploiting
competitive planner performance. In Proceedings of the 5th European Conference on Planning,
pp. 62–72. Springer.

Huberman, B. A., Lukose, R. M., & Hogg, T. (1997). An economics approach to hard computational
problems. Science, 275 (5296), 51–54.

Hutter, F. (2009). Automated Configuration of Algorithms for Solving Hard Computational Problems.
Ph.D. thesis, University of British Columbia, Department of Computer Science, Vancouver,
Canada.

Hutter, F., Hamadi, Y., Hoos, H. H., & Leyton-Brown, K. (2006). Performance prediction and
automated tuning of randomized and parametric algorithms. In CP, pp. 213–228.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2012). Parallel algorithm configuration. In Proc. of
LION-6.

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: an automatic algorithm
configuration framework. J. Artif. Int. Res., 36 (1), 267–306.

Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic algorithm configuration based on local
search. In Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1152–
1157. AAAI Press.

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algorithm
selection and scheduling. In 17th International Conference on Principles and Practice of
Constraint Programming, pp. 454–469.

Kadioglu, S., Malitsky, Y., Sellmann, M., & Tierney, K. (2010). ISAC Instance-Specific algorithm
configuration. In 19th European Conference on Artificial Intelligence, pp. 751–756. IOS Press.

Kamel, M. S., Enright, W. H., & Ma, K. S. (1993). ODEXPERT: an expert system to select numerical
solvers for initial value ODE systems. ACM Trans. Math. Softw., 19 (1), 44–62.

32



Algorithm Selection for Search: A survey

Kotthoff, L. (2012a). Hybrid regression-classification models for algorithm selection. In 20th Euro-
pean Conference on Artificial Intelligence, pp. 480–485.

Kotthoff, L. (2012b). On Algorithm Selection, with an Application to Combinatorial Search Problems.
Ph.D. thesis, University of St Andrews.

Kotthoff, L., Gent, I. P., & Miguel, I. (2012). An evaluation of machine learning in algorithm
selection for search problems. AI Communications, 25 (3), 257–270.

Kotthoff, L., Miguel, I., & Nightingale, P. (2010). Ensemble classification for constraint solver
configuration. In 16th International Conference on Principles and Practices of Constraint
Programming, pp. 321–329.

Kroer, C., & Malitsky, Y. (2011). Feature filtering for Instance-Specific algorithm configuration. In
Proceedings of the 23rd International Conference on Tools with Artificial Intelligence.

Kuefler, E., & Chen, T. (2008). On using reinforcement learning to solve sparse linear systems.
In Proceedings of the 8th International Conference on Computational Science, ICCS ’08, pp.
955–964, Berlin, Heidelberg. Springer-Verlag.

Lagoudakis, M. G., & Littman, M. L. (2000). Algorithm selection using reinforcement learning.
In Proceedings of the 17th International Conference on Machine Learning, pp. 511–518, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Lagoudakis, M. G., & Littman, M. L. (2001). Learning to select branching rules in the DPLL
procedure for satisfiability. In LICS/SAT, pp. 344–359.

Langley, P. (1983a). Learning effective search heuristics. In IJCAI, pp. 419–421.

Langley, P. (1983b). Learning search strategies through discrimination.. International Journal of
Man-Machine Studies, 513–541.

Leite, R., Brazdil, P., Vanschoren, J., & Queiros, F. (2010). Using active testing and Meta-Level
information for selection of classification algorithms. In 3rd PlanLearn Workshop.

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2002). Learning the empirical hardness of opti-
mization problems: The case of combinatorial auctions. In Proceedings of the 8th International
Conference on Principles and Practice of Constraint Programming, pp. 556–572, London, UK.
Springer-Verlag.

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2009). Empirical hardness models: Methodology
and a case study on combinatorial auctions. J. ACM, 56, 22:1–22:52.

Little, J., Gebruers, C., Bridge, D., & Freuder, E. (2002). Capturing constraint programming expe-
rience: A Case-Based approach. In Modref.

Lobjois, L., & Lemâıtre, M. (1998). Branch and bound algorithm selection by performance predic-
tion. In Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative
Applications of Artificial Intelligence, pp. 353–358, Menlo Park, CA, USA. American Associ-
ation for Artificial Intelligence.

Malitsky, Y. (2012). Instance-Specific Algorithm Configuration. Ph.D. thesis, Brown University.

Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Non-model-based algorithm
portfolios for SAT. In Theory and Applications of Satisfiability Testing (SAT), pp. 369–370.

Minton, S. (1993a). An analytic learning system for specializing heuristics. In IJCAI’93: Proceedings
of the 13th International Joint Conference on Artifical Intelligence, pp. 922–928, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Minton, S. (1993b). Integrating heuristics for constraint satisfaction problems: A case study. In
AAAI: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 120–126.

33



Kotthoff

Minton, S. (1996). Automatically configuring constraint satisfaction programs: A case study. Con-
straints, 1, 7–43.

Nareyek, A. (2001). Choosing search heuristics by Non-Stationary reinforcement learning. In Meta-
heuristics: Computer Decision-Making, pp. 523–544. Kluwer Academic Publishers.

Nikolić, M., Marić, F., & Janičić, P. (2009). Instance-Based selection of policies for SAT solvers. In
Proceedings of the 12th International Conference on Theory and Applications of Satisfiability
Testing, SAT ’09, pp. 326–340, Berlin, Heidelberg. Springer-Verlag.

Nudelman, E., Leyton-Brown, K., Hoos, H. H., Devkar, A., & Shoham, Y. (2004). Understanding
random SAT: beyond the Clauses-to-Variables ratio. In Wallace, M. (Ed.), Principles and
Practice of Constraint Programming CP 2004, Vol. 3258 of Lecture Notes in Computer Science,
pp. 438–452. Springer Berlin / Heidelberg.

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., & O’Sullivan, B. (2008). Using case-based
reasoning in an algorithm portfolio for constraint solving. In Proceedings of the 19th Irish
Conference on Artificial Intelligence and Cognitive Science.

Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of Artificial
Intelligence Research, 11, 169–198.

Petrik, M. (2005). Statistically optimal combination of algorithms. In Local Proceedings of SOFSEM
2005.

Petrik, M., & Zilberstein, S. (2006). Learning parallel portfolios of algorithms. Annals of Mathematics
and Artificial Intelligence, 48 (1-2), 85–106.

Petrovic, S., & Qu, R. (2002). Case-Based reasoning as a heuristic selector in Hyper-Heuristic for
course timetabling problems. In KES, pp. 336–340.

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. G. (2000). Meta-Learning by landmarking various
learning algorithms. In 17th International Conference on Machine Learning, ICML ’00, pp.
743–750, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Pulina, L., & Tacchella, A. (2007). A multi-engine solver for quantified boolean formulas. In
Proceedings of the 13th International Conference on Principles and Practice of Constraint
Programming, CP’07, pp. 574–589, Berlin, Heidelberg. Springer-Verlag.

Pulina, L., & Tacchella, A. (2009). A self-adaptive multi-engine solver for quantified boolean for-
mulas. Constraints, 14 (1), 80–116.

Rao, R. B., Gordon, D., & Spears, W. (1995). For every generalization action, is there really an
equal and opposite reaction? Analysis of the conservation law for generalization performance.
In Proceedings of the 12th International Conference on Machine Learning, pp. 471–479. Morgan
Kaufmann.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.

Rice, J. R., & Ramakrishnan, N. (1999). How to get a free lunch (at no cost). Tech. rep. 99-014,
Purdue University.

Roberts, M., & Howe, A. E. (2006). Directing a portfolio with learning. In AAAI 2006 Workshop
on Learning for Search.

Roberts, M., & Howe, A. E. (2007). Learned models of performance for many planners. In ICAPS
2007 Workshop AI Planning and Learning.

Roberts, M., Howe, A. E., Wilson, B., & desJardins, M. (2008). What makes planners predictable?.
In ICAPS, pp. 288–295.

Sakkout, H. E., Wallace, M. G., & Richards, E. B. (1996). An instance of adaptive constraint
propagation. In Proc. of CP96, pp. 164–178. Springer Verlag.

34



Algorithm Selection for Search: A survey

Samulowitz, H., & Memisevic, R. (2007). Learning to solve QBF. In Proceedings of the 22nd National
Conference on Artificial Intelligence, pp. 255–260. AAAI Press.

Sayag, T., Fine, S., & Mansour, Y. (2006). Combining multiple heuristics. In STACS, Vol. 3884,
pp. 242–253, Berlin, Heidelberg. Springer.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5 (2), 197–227.

Sillito, J. (2000). Improvements to and estimating the cost of solving constraint satisfaction problems.
Master’s thesis, University of Alberta.

Silverthorn, B., & Miikkulainen, R. (2010). Latent class models for algorithm portfolio methods. In
Proceedings of the 24th AAAI Conference on Artificial Intelligence.

Smith, T. E., & Setliff, D. E. (1992). Knowledge-based constraint-driven software synthesis. In
Knowledge-Based Software Engineering Conference, pp. 18–27.

Smith-Miles, K., & Lopes, L. (2012). Measuring instance difficulty for combinatorial optimization
problems. Comput. Oper. Res., 39 (5), 875–889.

Smith-Miles, K. A. (2008a). Cross-disciplinary perspectives on meta-learning for algorithm selection.
ACM Comput. Surv., 41, 6:1–6:25.

Smith-Miles, K. A. (2008b). Towards insightful algorithm selection for optimisation using Meta-
Learning concepts. In IEEE International Joint Conference on Neural Networks, pp. 4118–
4124.

Soares, C., Brazdil, P. B., & Kuba, P. (2004). A Meta-Learning method to select the kernel width
in support vector regression. Mach. Learn., 54 (3), 195–209.

Stamatatos, E., & Stergiou, K. (2009). Learning how to propagate using random probing. In
Proceedings of the 6th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, pp. 263–278, Berlin, Hei-
delberg. Springer-Verlag.

Stergiou, K. (2009). Heuristics for dynamically adapting propagation in constraint satisfaction
problems. AI Commun., 22 (3), 125–141.

Stern, D. H., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., & Tacchella, A. (2010). Collab-
orative expert portfolio management. In AAAI, pp. 179–184.

Streeter, M. J. (2007). Using Online Algorithms to Solve NP-Hard Problems More Efficiently in
Practice. Ph.D. thesis, Carnegie Mellon University.

Streeter, M. J., Golovin, D., & Smith, S. F. (2007a). Combining multiple heuristics online. In
Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1197–1203. AAAI
Press.

Streeter, M. J., Golovin, D., & Smith, S. F. (2007b). Restart schedules for ensembles of problem
instances. In Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1204–
1210. AAAI Press.

Streeter, M. J., & Smith, S. F. (2008). New techniques for algorithm portfolio design. In UAI, pp.
519–527.

Terashima-Maŕın, H., Ross, P., & Valenzuela-Rendón, M. (1999). Evolution of constraint satisfac-
tion strategies in examination timetabling. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 635–642. Morgan Kaufmann.

Tolpin, D., & Shimony, S. E. (2011). Rational deployment of CSP heuristics. In IJCAI, pp. 680–686.

Tsang, E. P. K., Borrett, J. E., & Kwan, A. C. M. (1995). An attempt to map the performance of a
range of algorithm and heuristic combinations. In Proc. of AISB’95, pp. 203–216. IOS Press.

35



Kotthoff

Utgoff, P. E. (1988). Perceptron trees: A case study in hybrid concept representations. In National
Conference on Artificial Intelligence, pp. 601–606.

Vassilevska, V., Williams, R., &Woo, S. L. M. (2006). Confronting hardness using a hybrid approach.
In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’06,
pp. 1–10, New York, NY, USA. ACM.

Vrakas, D., Tsoumakas, G., Bassiliades, N., & Vlahavas, I. (2003). Learning rules for adaptive
planning. In Proceedings of the 13th International Conference on Automated Planning and
Scheduling, pp. 82–91.

Wang, J., & Tropper, C. (2007). Optimizing time warp simulation with reinforcement learning
techniques. In Proceedings of the 39th conference on Winter simulation, WSC ’07, pp. 577–
584, Piscataway, NJ, USA. IEEE Press.

Watson, J. (2003). Empirical modeling and analysis of local search algorithms for the job-shop
scheduling problem. Ph.D. thesis, Colorado State University, Fort Collins, CO, USA.

Weerawarana, S., Houstis, E. N., Rice, J. R., Joshi, A., & Houstis, C. E. (1996). PYTHIA: a
knowledge-based system to select scientific algorithms. ACM Trans. Math. Softw., 22 (4),
447–468.

Wei, W., Li, C. M., & Zhang, H. (2008). Switching among Non-Weighting, clause weighting, and
variable weighting in local search for SAT. In Proceedings of the 14th International Confer-
ence on Principles and Practice of Constraint Programming, pp. 313–326, Berlin, Heidelberg.
Springer-Verlag.

Wilson, D., Leake, D., & Bramley, R. (2000). Case-Based recommender components for scientific
Problem-Solving environments. In Proc. of the 16th International Association for Mathematics
and Computers in Simulation World Congress.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241–259.

Wolpert, D. H. (2001). The supervised learning No-Free-Lunch theorems. In Proceedings of the 6th
Online World Conference on Soft Computing in Industrial Applications, pp. 25–42.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1 (1), 67–82.

Wu, H., & van Beek, P. (2007). On portfolios for backtracking search in the presence of deadlines.
In Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence,
pp. 231–238, Washington, DC, USA. IEEE Computer Society.

Xu, L., Hoos, H. H., & Leyton-Brown, K. (2007). Hierarchical hardness models for SAT. In CP, pp.
696–711.

Xu, L., Hoos, H. H., & Leyton-Brown, K. (2010). Hydra: Automatically configuring algorithms
for Portfolio-Based selection. In 24th Conference of the Association for the Advancement of
Artificial Intelligence (AAAI-10), pp. 210–216.

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2007). SATzilla-07: the design and analysis
of an algorithm portfolio for SAT. In CP, pp. 712–727.

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: portfolio-based algorithm
selection for SAT. J. Artif. Intell. Res. (JAIR), 32, 565–606.

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2009). SATzilla2009: an automatic algorithm
portfolio for SAT. In 2009 SAT Competition.

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Hydra-MIP: automated algorithm
configuration and selection for mixed integer programming. In RCRA Workshop on Exper-
imental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the
International Joint Conference on Artificial Intelligence (IJCAI).

36



Algorithm Selection for Search: A survey

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2012). Evaluating component solver con-
tributions to Portfolio-Based algorithm selectors. In International Conference on Theory and
Applications of Satisfiability Testing (SAT’12), pp. 228–241.

Yu, H., & Rauchwerger, L. (2006). An adaptive algorithm selection framework for reduction paral-
lelization. IEEE Transactions on Parallel and Distributed Systems, 17 (10), 1084–1096.

Yu, H., Zhang, D., & Rauchwerger, L. (2004). An adaptive algorithm selection framework. In
Proceedings of the 13th International Conference on Parallel Architectures and Compilation
Techniques, pp. 278–289, Washington, DC, USA. IEEE Computer Society.

Yun, X., & Epstein, S. L. (2012). Learning algorithm portfolios for parallel execution. In Proceedings
of the 6th International Conference Learning and Intelligent Optimisation LION. Springer.

37


