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Abstract
The Algorithm Selection Problem is concerned with selecting the best algorithm to solve a given

problem instance on a case-by-case basis. It has become especially relevant in the last decade,
with researchers increasingly investigating how to identify the most suitable existing algorithm for
solving a problem instance instead of developing new algorithms. This survey presents an overview
of this work focusing on the contributions made in the area of combinatorial search problems,
where algorithm selection techniques have achieved significant performance improvements. We
unify and organise the vast literature according to criteria that determine algorithm selection
systems in practice. The comprehensive classification of approaches identifies and analyses the
different directions from which algorithm selection has been approached. This paper contrasts and
compares different methods for solving the problem as well as ways of using these solutions.

1. Introduction

For many years, Artificial Intelligence research has been focusing on inventing new algorithms and
approaches for solving similar kinds of problem instances. In some scenarios, a new algorithm is
clearly superior to previous approaches. In the majority of cases however, a new approach will
improve over the current state of the art for only some problem instances. This may be because it
employs a heuristic that fails for instances of a certain type or because it makes other assumptions
about the instance or environment that are not satisfied in some cases. Selecting the most suitable
algorithm for a particular problem instance aims to mitigate these problems and has the potential
to significantly increase performance in practice. This is known as the Algorithm Selection Problem.

The Algorithm Selection Problem has, in many forms and with different names, cropped up in
many areas of Artificial Intelligence in the last few decades. Today there exists a large amount of
literature on it. Most publications are concerned with new ways of tackling this problem and solving
it efficiently in practice. Especially for combinatorial search problems, the application of algorithm
selection techniques has resulted in significant performance improvements that leverage the diversity
of systems and techniques developed in recent years. This paper surveys the available literature and
describes how research has progressed.

Researchers have long ago recognised that a single algorithm will not give the best performance
across all problem instances one may want to solve and that selecting the most appropriate method is
likely to improve the overall performance. Empirical evaluations have provided compelling evidence
for this (e.g. Aha, 1992; Wolpert & Macready, 1997).

The original description of the Algorithm Selection Problem was published in Rice (1976). The
basic model described in the paper is very simple – given a space of instances and a space of
algorithms, map each instance-algorithm pair to its performance. This mapping can then be used
to select the best algorithm for a given instance. The original figure that illustrates the model is
reproduced in Figure 1 on the following page. As Rice states,

“The objective is to determine S(x) [the mapping of problems to algorithms] so as to
have high algorithm performance.”

Almost all contemporary approaches employ machine learning to learn the performance mapping
from problem instances to algorithms using features extracted from the instances. This often involves
a training phase, where the candidate algorithms are run on a sample of the problem space to
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Figure 1: Basic model for the Algorithm Selection Problem as published in Rice (1976).
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Figure 2: Contemporary algorithm selection model. Dashed lines show optional connections.

experimentally evaluate their performance. This training data is used to create a performance model
that can be used to predict the performance on new, unseen instances. The term model is used only
in the loosest sense here; it can be as simple as a representation of the training data without any
further analysis.

Figure 2 sketches a contemporary algorithm selection model that corresponds more closely to
approaches that use machine learning. At the heart of is the selection model S, which is trained using
machine learning techniques. The data for the model comes from the algorithms A ∈ A and the
problems x ∈ P, which are characterised by features. S is created either by using training data that
contains the performances of the algorithms on a subset of the problems from the problem space, or
feedback from executing the chosen algorithm on a problem and measuring the performance. Some
approaches use both data sources.

The model S makes the prediction of a specific algorithm A given a problem x. This algorithm is
then used to solve the problem. At a high level, this describes the workings of an algorithm selection
model, but there are many variations. The figure is meant to give a general idea, not describe every
approach mentioned in this paper.

Arguably, one of the most prominent systems to do algorithm selection is and has been SATzilla
(Xu, Hutter, Hoos, & Leyton-Brown, 2008). There are several reasons for this. It was the first
system to really bring home the point of algorithm portfolios in combinatorial search by dominating

2



Algorithm Selection for Search: A survey

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

0

5

10

15
publications

Figure 3: Publications by year. Data taken from http://4c.ucc.ie/~larsko/assurvey/. Note
that the number for 2013 is not final.

the SAT competition1 for years. Furthermore, it is probably the only system that has been developed
over a period of several years, continuously improving its performance. Its authors have not limited
themselves to scientific advancements, but also implemented a number of techniques that make it
viable to run the system in practice.

Figure 3 shows that over the last two decades, there has been an increasing interest in algorithm
selection, as witnessed by the number of publications in the field. In particular, the number of
publications has increased significantly after the success of SATzilla in the SAT competition in 2007.
This is probably the best indication of its impact on the research community.

Despite this prominence, other approaches rarely use SATzilla’s ideas directly. Another set of
prominent systems that have been developed over a number of years start with ISAC (Kadioglu,
Malitsky, Sellmann, & Tierney, 2010) and continue with 3S (Kadioglu, Malitsky, Sabharwal, Samu-
lowitz, & Sellmann, 2011) and CSHC (Malitsky, Sabharwal, Samulowitz, & Sellmann, 2013). Despite
the commonality of the goal, and indeed application domain, there is no explicit cross-fertilisation
between these approaches and SATzilla.

In other research areas, innovations implemented by one system usually make it into other systems
after some time. This is not the case in algorithm selection. This is partly because of the sheer
number of different approaches to solving the problem – a technique may simply not be applicable in
a different context and completely different methods may be able to achieve similar performance. In
addition, there is no algorithm selection community in the same sense in which there is for example
a SAT community. As a result, publications are fragmented and scattered throughout different areas
of AI. This makes it very hard to get a big picture overview of what the best techniques are or indeed
to simply become aware of other approaches. As a result, many approaches have been reinvented
with small variations.

Because there is no clear single line of research, this survey will look at the different aspects of
algorithm selection and the techniques that have been used to tackle them. For a different take from
a machine learning point of view, the interested reader is referred to Smith-Miles (2008).

2. Algorithm portfolios

For diverse sets of problem instances, it is unlikely that a single algorithm will be the most suitable
one in all cases. A way of mitigating this restriction is to use a portfolio of algorithms. This idea
is closely related to the notion of algorithm selection itself – instead of making an up-front decision
on what algorithm to use, it is decided on a case-by-case basis for each instance individually.

The idea of algorithm portfolios was first presented by Huberman, Lukose, and Hogg (1997).
They describe a formal framework for the construction and application of algorithm portfolios and
evaluate their approach on graph colouring problems. However, the work cited more frequently in

1. http://www.satcompetition.org/
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the Artificial Intelligence community is the later paper by Gomes and Selman (1997), which draws
on the ideas presented by Huberman et al., 1997. The technique itself however had been described
under different names by other authors at about the same time in different contexts (e.g. “algorithm
family”, Allen & Minton, 1996).

Beyond the simple idea of using a set of algorithms instead of a single one, there is a lot of scope
for different approaches. There are two main types of portfolios. Static portfolios are constructed
offline before any problem instances are solved. While solving an instance, the composition of the
portfolio and the algorithms within it do not change. Dynamic portfolios change in composition,
configuration of the constituent algorithms, or both during solving.

2.1 Static portfolios

Static portfolios are the most common type. They have been used in the earliest papers, e.g.
Huberman et al. (1997). The number of algorithms or systems in the portfolio is fixed. This
approach is used for example in the systems SATzilla (Xu et al., 2008), AQME (Pulina & Tacchella,
2007), and CPhydra (O’Mahony, Hebrard, Holland, Nugent, & O’Sullivan, 2008).

As the algorithms in the portfolio do not change, their selection is crucial for its success. Ideally,
the algorithms will complement each other such that good performance can be achieved on a wide
range of different problem instances. Hong and Page (2004) report that portfolios composed of a
random selection from a large pool of diverse algorithms outperform portfolios composed of the
algorithms with the best overall performance. In the same spirit, Samulowitz and Memisevic (2007)
use a portfolio of heuristics for solving quantified Boolean formulae problems that have specifically
been crafted to be orthogonal to each other. Xu, Hoos, and Leyton-Brown (2010) automatically
engineer a portfolio with algorithms of complementary strengths. In Xu, Hutter, Hoos, and Leyton-
Brown (2012), the authors analyse the contributions of the portfolio constituents to the overall
performance and conclude that not algorithms with the best overall performance, but with techniques
that set them apart from the rest contribute most.

Most approaches make the composition of the portfolio less explicit. Many systems use portfolios
of solvers that have performed well in solver competitions with the implicit assumption that they
have complementing strengths and weaknesses and the resulting portfolio will be able to achieve good
performance. This is true for example for SATzilla. Part of the reason for composing portfolios in
this manner may be that publications indicating that this may not be the best way are little known.
Furthermore, it is of course very easy to take an existing set of algorithms.

2.2 Dynamic portfolios

Static portfolios are necessarily limited in their flexibility and diversity. Being able to modify
the portfolio algorithms or create entirely new ones is an idea that emerged soon after the first
applications of portfolios, leveraging earlier ideas on modifying algorithms dynamically.

The SAGE system (Strategy Acquisition Governed by Experimentation) (Langley, 1983) spe-
cialises generic building blocks for the instance to solve. It starts with a set of general operators
that can be applied to a search state. These operators are refined by making the preconditions
more specific based on their utility for finding a solution. The Multi-tac (Multi-tactic Analytic
Compiler) system (Minton, 1996) similarly specialises a set of generic heuristics for the constraint
problem instance to solve.

The same principle of combining algorithmic building blocks can be applied to algorithm port-
folios. An example of this is the Adaptive Constraint Engine (ACE) (Epstein & Freuder, 2001).
The building blocks are so-called advisors, which characterise variables of the constraint problem
instance and give recommendations as to which one to process next. ACE combines these advisors
into more complex ones. Also based on these ideas is CLASS (Fukunaga, 2002), which combines
heuristic building blocks to form composite heuristics for solving SAT problems.
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In these approaches, there is no strong notion of a portfolio – the algorithm or strategy used to
solve a problem instance is assembled from lower level components and never made explicit.

3. Problem solving with portfolios

Once an algorithm portfolio has been constructed, the way in which it is to be used has to be
decided. There are different considerations to take into account. We need to decide what to select
and when to select it.

Given the full set of algorithms in the portfolio, a subset has to be chosen for solving the problem
instance. This subset can consist of only a single algorithm that is used to solve the instance to
completion, the entire portfolio with the individual algorithms interleaved or running in parallel or
anything in between.

The selection of the subset of algorithms can be made only once before solving starts or contin-
uously during search. If the latter is the case, selections can be made at well-defined points during
search, for example at each node of a search tree, or when the system judges it to be necessary to
make a decision.

3.1 What to select

A common and the simplest approach is to select a single algorithm from the portfolio and use it
to solve the problem instance completely. This single algorithm has been determined to be the best
for the instance at hand. For example SATzilla (Xu et al., 2008), ArgoSmArT (Nikolić, Marić, &
Janičić, 2009), SALSA (Demmel, Dongarra, Eijkhout, Fuentes, Petitet, Vuduc, Whaley, & Yelick,
2005) and Eureka (Cook & Varnell, 1997) do this. The disadvantage of this approach is that there
is no way of mitigating a wrong selection. If an algorithm is chosen that exhibits bad performance on
the instance, the system is “stuck” with it and no adjustments are made, even if all other portfolio
algorithms would perform much better.

An alternative approach is to compute schedules for running (a subset of) the algorithms in
the portfolio. In some approaches, the terms portfolio and schedule are used synonymously – all
algorithms in the portfolio are selected and run according to a schedule that allocates time slices
to each of them. The task of algorithm selection becomes determining the schedule rather than to
select algorithms. In the simplest case, all of the portfolio algorithms are run at the same time in
parallel. This was the approach favoured in early research into algorithm selection (Huberman et al.,
1997).

More sophisticated approaches compute explicit schedules. Roberts and Howe (2006) rank the
portfolio algorithms in order of expected performance and allocate time according to this ranking.
Pulina and Tacchella (2009) investigate different ways of computing schedules and conclude that
ordering the algorithms based on their past performance and allocating the same amount of time to
all algorithms gives the best overall performance.

Gomes and Selman (1997) also evaluate the performance of different candidate portfolios, but
take into account how many algorithms can be run in parallel. They demonstrate that the optimal
schedule (in this case the number of algorithms that are being run) changes as the number of available
processors increases. Gagliolo and Schmidhuber (2008) investigate how to allocate resources to
algorithms in the presence of multiple CPUs that allow to run more than one algorithm in parallel.
Yun and Epstein (2012) take this approach a step further and craft portfolios with the specific aim
of running the algorithms in parallel.

None of these approaches has emerged as the prevalent one so far – contemporary systems select
both single algorithms as well as compute schedules. Part of the reason for this diversity is that
neither has been shown to be inherently superior to the other one so far. Computing a schedule adds
robustness, but is more difficult to implement and more computationally expensive than selecting a
single algorithm.
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online (light gray). The width of each bar corresponds to the number of publications that
year (cf. Figure 3). Data taken from http://4c.ucc.ie/~larsko/assurvey/. Note that
the number for 2013 is not final.

3.2 When to select

In addition to whether they choose a single algorithm or compute a schedule, existing approaches can
also be distinguished by whether they operate before the problem instance is being solved (offline)
or while the instance is being solved (online). The advantage of the latter is that more fine-grained
decisions can be made and the effect of a bad choice of algorithm is potentially less severe. The price
for this added flexibility is a higher overhead, as algorithms need to be selected more frequently.

Both approaches have been used from the very start of research into algorithm selection. The
choice of whether to make predictions offline or online depends very much on the specific application
and performance improvements have been achieved with both.

Examples of approaches that only make offline decisions include Xu et al. (2008), Minton (1996),
O’Mahony et al. (2008). In addition to having no way of mitigating wrong choices, often these will
not even be detected. These approaches do not monitor the execution of the chosen algorithms
to confirm that they conform with the expectations that led to them being chosen. Purely offline
approaches are inherently vulnerable to bad choices. Their advantage however is that they only need
to select an algorithm once and incur no overhead while the instance is being solved.

Moving towards online systems, the next step is to monitor the execution of an algorithm or
a schedule to be able to intervene if expectations are not met. Much of this research started as
early as algorithm portfolio research itself. Fink (1997) investigates setting a time bound for the
algorithm that has been selected based on the predicted performance. If the time bound is exceeded,
the solution attempt is abandoned. More sophisticated systems furthermore adjust their selection if
such a bound is exceeded. Borrett, Tsang, and Walsh (1996) try to detect behaviour during search
that indicates that the algorithm is performing badly, for example visiting nodes in a subtree of the
search that clearly do not lead to a solution. If such behaviour is detected, they propose switching
the currently running algorithm according to a fixed replacement list.

The approaches that make decisions during search, for example at every node of the search
tree, are necessarily online systems. Brodley (1993) recursively partitions the classification problem
to be solved and selects an algorithm for each partition. Similarly, Arbelaez, Hamadi, and Sebag
(2009) select the best search strategy at checkpoints in the search tree. In this approach, a lower-
level decision can lead to changing the decision at the level above. This is usually not possible for
combinatorial search problems, as decisions at a higher level cannot be changed easily.

Figure 4 shows the relative numbers of publications that use online and offline predictions by
year. In the first half of the graph, the behaviour is quite chaotic and no clear trend is visible. This
is certainly partly because of the relatively small number of relevant publications in these years. In
the second half of the graph, a clear trend is visible however. The share of online systems steadily
decreases – the overwhelming majority of recent publications use offline approaches.
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This may be in part because as solvers and systems grow in complexity, implementing online
approaches also becomes more complex. Whereas for offline approaches, existing algorithms can be
used unchanged, making online decisions requires information on how the algorithm is progressing.
This information can be obtained by instrumenting the system or similar techniques, but requires
additional effort compared to offline approaches.

Another explanation is that at the beginning of this trend, SATzilla achieved noteworthy suc-
cesses in the SAT competition. As SATzilla is an offline system, its success may have shifted attention
towards those, resulting in a larger share of publications.

4. Portfolio selectors

Research on how to select from a portfolio in an algorithm selection system has generated the
largest number of different approaches within the framework of algorithm selection. There are many
different ways a mechanism to select from a portfolio can be implemented. Apart from accuracy,
one of the main requirements for such a selector is that it is relatively cheap to run – if selecting
an algorithm for solving a problem instance is more expensive than solving the instance, there is no
point in doing so.

There are several challenges associated with making selectors efficient. Algorithm selection sys-
tems that analyse the problem instance to be solved, such as SATzilla, need to take steps to ensure
that the analysis does not become too expensive. One such measure is the running of a pre-solver
(Xu et al., 2008). The idea behind the pre-solver is to choose an algorithm with reasonable general
performance from the portfolio and use it to start solving the instance before starting to analyse it.
If the instance happens to be very easy, it will be solved even before the results of the analysis are
available. After a fixed time, the pre-solver is terminated and the results of the algorithm selection
system are used. Pulina and Tacchella (2009) use a similar approach and run all algorithms for
a short time in one of their strategies. Only if the instance has not been solved after that, they
move on to the algorithm that was actually selected. A number of additional systems implement a
pre-solver in more or less explicit form (e.g. Kadioglu et al., 2011). As such, it is probably the indi-
vidual technique that has found the most widespread adaptation, even though this is not explicitly
acknowledged.

The selector is not necessarily an explicit part of the system. Minton (1996) compiles the al-
gorithm selection system into a Lisp programme for solving a constraint problem instance. The
selection rules are part of the programme logic. Fukunaga (2008) evolve selectors and combina-
tors of heuristic building blocks using genetic algorithms. The selector is implicit in the evolved
programme.

4.1 Performance models

The way the selector operates is closely linked to the way the performance model of the algorithms in
the portfolio is built. In early approaches, the performance model was usually not learned but given
in the form of human expert knowledge. Borrett et al. (1996) use hand-crafted rules to determine
whether to switch the algorithm during solving. Allen and Minton (1996) also have hand-crafted
rules, but estimate the runtime performance of an algorithm. More recent approaches sometimes
use only explicitly-specified human knowledge as well.

A more common approach today is to automatically learn performance models using machine
learning on training data. The portfolio algorithms are run on a set of representative problem
instances and based on these experimental results, performance models are built. This approach
is used by Xu et al. (2008), Pulina and Tacchella (2007), O’Mahony et al. (2008), Kadioglu et al.
(2010), Guerri and Milano (2004), to name but a few examples. A drawback of this approach is that
the time to collect the data and the training time are usually large.
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Models can also be built without a separate training phase, but while the instance is solved.
This approach is used by Gagliolo and Schmidhuber (2006) for example. While this significantly
reduces the time to build a system, it can mean that the result is less effective and efficient. At
the beginning, when no performance models have been built, the decisions of the selector might be
poor. Furthermore, creating and updating performance models while the instance is being solved
incurs an overhead.

The choice of machine learning technique is affected by the way the portfolio selector operates.
Some techniques are more amenable to offline approaches (e.g. linear regression models used by Xu
et al., 2008), while others lend themselves to online methods (e.g. reinforcement learning used by
Gagliolo & Schmidhuber, 2006).

What type of performance model and what kind of machine learning to use is the area of algorithm
selection with the most diverse set of different approaches, sometimes entirely and fundamentally
so. There is no consensus as to the best technique at all. This is best exemplified by SATzilla. The
performance model and machine learning used in early versions (Xu et al., 2008) was replaced by a
fundamentally different approach in the most recent version (Xu, Hutter, Hoos, & Leyton-Brown,
2011). Nevertheless, both approaches have excelled in competitions.

Recently, research has increasingly focused on taking into account the cost of making incorrect
predictions. Whereas in standard classification tasks there is a simple uniform cost (e.g. simply
counting the number of misclassifications), the cost in the algorithm selection context can be quan-
tified more appropriately. If an incorrect algorithm is chosen, the system takes more time to solve
the problem instance. This additional time will vary depending on which algorithm was chosen – it
may not matter much if the performance of the chosen algorithm is very close to the best algorithm,
but it also may mean a large difference. SATzilla 2012 (Xu et al., 2011) and CSHC (Malitsky et al.,
2013) are two examples of systems that take this cost into account explicitly.

4.1.1 Per-portfolio models

One automated approach is to learn a performance model of the entire portfolio based on training
data. Usually, the prediction of such a model is the best algorithm from the portfolio for a particular
problem instance. There is only a weak or no notion of an individual algorithm’s performance.

This is used for example by Pulina and Tacchella (2007), O’Mahony et al. (2008), Kadioglu et al.
(2010). Again there are different ways of doing this. Lazy approaches do not learn an explicit model,
but use the set of training examples as a case base. For new problem instances, the closest instance
or the set of n closest instances in the case base is determined and decisions made accordingly. Pulina
and Tacchella (2007), O’Mahony et al. (2008) use nearest-neighbour classifiers to achieve this.

Explicitly-learned models try to identify the concepts that affect performance on a given prob-
lem instance. This acquired knowledge can be made explicit to improve the understanding of the
researchers of the application domain. There are several machine learning techniques that facili-
tate this, as the learned models are represented in a form that is easy to understand by humans.
Carbonell, Etzioni, Gil, Joseph, Knoblock, Minton, and Veloso (1991), Brodley (1993), Vrakas,
Tsoumakas, Bassiliades, and Vlahavas (2003) learn classification rules that guide the selector. Vrakas
et al. (2003) note that the decision to use a classification rule leaner was not so much guided by the
performance of the approach, but the easy interpretability of the result. A classification model can
be used to gain insight into what is happening in addition to achieving performance improvements.
This is a relatively unexplored area of algorithm selection research – in many cases, the performance
models are too complex or simply not suitable for this purpose.

Ideally, a performance model could be analysed and the knowledge that enables the portfolio to
achieve performance improvements made explicit and be leveraged in creating new algorithms or
adapting existing ones. In practice, this is yet to be tackled successfully by the algorithm selection
community. A system that allowed to do this would certainly be a major step forward and take
algorithm selection to the next level.
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4.1.2 Per-algorithm models

A different approach is to learn performance models for the individual algorithms in the portfolio.
The predicted performance of an algorithm on a problem instance can be compared to the predicted
performance of the other portfolio algorithms and the selector can proceed based on this. The
advantage of this approach is that it is easier to add and remove algorithms from the portfolio –
instead of having to retrain the model for the entire portfolio, it suffices to train a model for the new
algorithm or remove one of the trained models. Most approaches only rely on the order of predictions
being correct. It does not matter if the prediction of the performance itself is wildly inaccurate as
long as it is correct relative to the other predictions. In practice, the predictions themselves will
indeed be off by orders of magnitude in at least some cases, but the overall system will still be able
to achieve good performance.

Models for each algorithm in the portfolio are used for example by Allen and Minton (1996), Xu
et al. (2008), Gagliolo and Schmidhuber (2006). A common way of doing this is to use regression to
directly predict the performance of each algorithm. Xu et al. (2008), Leyton-Brown, Nudelman, and
Shoham (2002), Haim and Walsh (2009) do this, among others. The performance of the algorithms in
the portfolio is evaluated on a set of training instances, and a relationship between the characteristics
of an instance and the performance of an algorithm derived. This relationship usually has the form
of a simple formula that is cheap to compute at runtime.

Silverthorn and Miikkulainen (2010) on the other hand learn latent class models of unobserved
variables to capture relationships between solvers, problem instances and run durations. Based on
the predictions, the expected utility is computed and used to select an algorithm. Weerawarana,
Houstis, Rice, Joshi, and Houstis (1996) use Bayesian belief propagation to predict the runtime of
a particular algorithm on a particular instance. Bayesian inference is used to determine the class of
a problem instance and the closest case in the knowledge base. A performance profile is extracted
from that and used to estimate the runtime.

One of the main disadvantages of per-algorithm models is that they do not consider the in-
teraction between algorithms at all. It is the interaction however that makes portfolios powerful
– the entire idea is based on the fact that a combination of several algorithms is stronger than
an individual one. Despite this, algorithm selection systems that use per-algorithm models have
demonstrated impressive performance improvements. More recently however, there has been a shift
towards models that also consider interactions between algorithms.

4.1.3 Hybrid models

A number of recently-developed approaches use performance models that draw elements from both
per-portfolio models and per-algorithm models. The most recent version of SATzilla (Xu et al.,
2011) uses models for pairs of algorithms to predict one which is going to have better performance.
These predictions are aggregated as votes and the algorithm with the overall highest number of votes
is chosen. This type of performance model allows to explicitly model how algorithms behave with
respect to other algorithms and addresses the main conceptual disadvantage in earlier versions of
SATzilla.

An orthogonal approach is inspired by the machine learning technique stacking (Kotthoff, 2012).
It combines per-algorithm models at the bottom layer with a per-portfolio model at the top layer.
The bottom layer predicts the performance of each algorithm individually and independently and
the top layer uses those predictions to determine the overall best algorithm.

Hierarchical models are a similar idea in that they make a series of predictions where the later
models are informed by the earlier predictions. Xu, Hoos, and Leyton-Brown (2007) use sparse
multinomial logistic regression to predict whether a SAT problem instance is satisfiable and, based
on that prediction, use a logistic regression model to predict the runtime of each algorithm in the
portfolio. Here, the prediction of whether the instance is satisfiable is only used implicitly for the
next performance model and not as an explicit input.
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In all of these examples, a number of performance models are combined into the overall per-
formance model. Such hybrid models are similar to per-portfolio models in the sense that if the
composition of the portfolio changes, they have to be retrained. They do however also encapsulate
the notion of an individual algorithm’s performance.

4.2 Types of predictions

The way of creating the performance model of a portfolio or its algorithms is not the only choice
researchers face. In addition, there are different predictions the performance model can make to
inform the decision of the selector of a subset of the portfolio algorithms. The type of decision is
closely related to the learned performance model however. The prediction can be a single categorical
value – the best algorithm. This type of prediction is usually the output of per-portfolio models
and used for example in Guerri and Milano (2004), Pulina and Tacchella (2007), Gent, Jefferson,
Kotthoff, Miguel, Moore, Nightingale, and Petrie (2010). The advantage of this simple prediction
is that it determines the choice of algorithm without the need to compare different predictions or
derive further quantities. One of its biggest disadvantages however is that there is no flexibility in
the way the system runs or even the ability to monitor the execution for unexpected behaviour.

A different approach is to predict the runtime of the individual algorithms in the portfolio. This
requires per-algorithm models. For example Horvitz, Ruan, Gomes, Kautz, Selman, and Chickering
(2001), Petrik (2005), Silverthorn and Miikkulainen (2010) do this. Allen and Minton (1996) estimate
the runtime by proxy by predicting the number of constraint checks. Lobjois and Lemâıtre (1998)
estimate the runtime by predicting the number of search nodes to explore and the time per node.
Xu, Hutter, Hoos, and Leyton-Brown (2009) predict the penalized average runtime score, a measure
that combines runtime with possible timeouts used in the SAT competition. This approach aims to
provide more realistic performance predictions when runtimes are censored.

Some types of predictions require online approaches that make decisions during search. Borrett
et al. (1996), Sakkout, Wallace, and Richards (1996), Carchrae and Beck (2004) predict when to
switch the algorithm used to solve a problem instance. Horvitz et al. (2001) predict whether a run
will complete within a certain number of steps to determine if to restart the algorithm. Lagoudakis
and Littman (2000) predict the cost to solve a sub-instance. However, most online approaches make
predictions that can also be used in offline settings, such as the best algorithm to proceed with.

The choice for type of prediction depends on the application in many scenarios. In a competition
setting, it is usually best to use the scoring function used to evaluate entries. If the aim is to utilise a
machine with several processors as much as possible, predicting only a single algorithm is unsuitable
unless that algorithm is able to take advantage of several processors by itself. As the complexity
of the predictions increases, it usually becomes harder to make them with high accuracy. Kotthoff,
Gent, and Miguel (2012) for example report that using statistical relational learning to predict
the complete order of the portfolio algorithms on a problem instance does not achieve competitive
performance.

5. Features

The different types of performance models described in the previous sections usually use features to
inform their predictions. Features are an integral part of systems that do machine learning. They
characterise the inputs, such as the problem instance to be solved or the algorithm employed to
solve it, and facilitate learning the relationship between these inputs and the outputs, such as the
time it will take the algorithm to solve the problem instance.

A side effect of the research into algorithm selection has been that researchers have developed
comprehensive feature sets to characterise problem instances. This is especially true in SAT. Whereas
before SAT instances would mostly be described in terms of number of variables and clauses, the
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authors of SATzilla developed a large feature set to characterise an instance with a high level of
detail.

Determining features that adequately characterise a new problem domain is often difficult and
laborious. Once a good set of features has been established, it can be used by everybody. The
determination of features is likely the single area associated with algorithm selection where most of
the traditional science cycle of later approaches building on the results of earlier research occurs.
The feature set used by SATzilla (Xu et al., 2008) is also used by 3S (Kadioglu et al., 2011) and
Silverthorn and Miikkulainen (2010) for example. Gent et al. (2010) include features described in
Guerri and Milano (2004) in their feature set.

The selection of the most suitable features is an important part of the design of algorithm selection
systems. There are different types of features researchers can use and different ways of computing
these. They can be categorised according to two main criteria.

First, they can be categorised according to how much domain knowledge an algorithm selection
researcher needs to have to be able to use them. Features that require no or very little knowledge
of the application domain are usually very general and can be applied to new algorithm selection
problems with little or no modification. Features that are specific to a domain on the other hand may
require the researcher building the algorithm selection system to have a thorough understanding of
the domain. These features usually cannot be applied to other domains, as they may be non-existent
or uninformative in different contexts.

The second way of distinguishing different classes of features is according to when and how
they are computed. Features can be computed statically, i.e. before the search process starts, or
dynamically, i.e. during search. These two categories roughly align with the offline and online
approaches to portfolio problem solving described in Section 3.2.

5.1 Low and high-knowledge features

In some cases, researchers use a large number of features that are specific to the particular problem
domain they are interested in, but there are also publications that only use a single, general feature
– the performance of a particular algorithm on past problem instances. Gagliolo and Schmidhuber
(2006), Streeter, Golovin, and Smith (2007), Silverthorn and Miikkulainen (2010), to name but a
few examples, use this latter approach to build statistical performance models of the algorithms in
their portfolios. The underlying assumption is that all problem instances are similar with respect
to the relative performance of the algorithms in the portfolio – the algorithm that has done best in
the past has the highest chance of performing best in the future.

Other sources of features that are not specific to a particular application domain are more fine-
grained measures of past performance or measures that characterise the behaviour of an algorithm
during search. Langley (1983) for example determines whether a search step performed by a par-
ticular algorithm is good, i.e. leading towards a solution, or bad, i.e. straying from the path to a
solution if the solution is known or revisiting an earlier search state if the solution is not known.
Gomes and Selman (1997) use the runtime distributions of algorithms over the size of a problem
instance, as measured by the number of backtracks.

Most approaches learn models for the performance on particular problem instances and do not
use past performance as a feature, but to inform the prediction to be made. Considering instance
features facilitates a much more nuanced approach than a broad-brush general performance model.
This is the classic supervised machine learning approach – given the correct label derived from the
behaviour on a set of training instances, learn a model that allows to predict this label on unseen
data.

The features that are considered to learn the model are specific to the application domain or even
a subset of the application domain to varying extents. For combinatorial search problems, the most
commonly used basic features include the number of variables, properties of the variable domains,
i.e. the list of possible assignments, the number of clauses in SAT, the number of constraints in
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constraint problems, the number of goals in planning, the number of clauses/constraints/goals of a
particular type and ratios of several of those features and summary statistics.

5.2 Static and dynamic features

In most cases, the approaches that use a large number of domain-specific features compute them
offline, i.e. before the solution process starts (cf. Section 3.2). Examples of publications that only
use such static features are Leyton-Brown et al. (2002), Pulina and Tacchella (2007), Guerri and
Milano (2004). Examples of such features are the number of clauses and variables in a SAT instance,
the number of a particular type of constraint in a constraint problem instance, or the number of
operators in a planning problem instance.

An implication of using static features is that the decisions of the algorithm selection system
are only informed by the performance of the algorithms on past problem instances. Only dynamic
features allow to take the performance on the current problem instance into account. This has the
advantage that remedial actions can be taken if the instance is unlike anything seen previously or
the predictions are wildly inaccurate for another reason.

A more flexible approach than to rely purely on static features is to incorporate features that
can be determined statically, but which estimate the performance on the current problem instance.
Such features are computed by probing the search space. This approach relies on the performance
probes being sufficiently representative of the entire problem instance and sufficiently equal across
the different evaluated algorithms. If an algorithm is evaluated on a part of the search space that is
much easier or harder than the rest, a misleading impression of its true performance may result.

Examples of systems that combine static features of the instance to be solved with features
derived from probing the search space are Xu et al. (2008), Gent et al. (2010), O’Mahony et al.
(2008). There are also approaches that use only probing features. We term this semi-static feature
computation because it happens before the actual solving of the instance starts, but parts of the
search space are explored during feature extraction. This approach is used for example by Allen and
Minton (1996), Beck and Freuder (2004), Lobjois and Lemâıtre (1998). The features that can be
extracted through probing include the number of search tree nodes visited, the number of backtracks,
or the number and quality of solutions found.

Another way of computing features is to do so online, i.e. while search is taking place. These
dynamic features are computed by an execution monitor that adapts or changes the algorithm during
search based on its performance. The type of the dynamic features, how they are computed and
how they are used depends on the specific application. Examples include the following. Carchrae
and Beck (2004) monitor the solution quality during search. They decide whether to switch the
current algorithm based on this by changing the allocation of resources. Stergiou (2009) monitors
propagation events in a constraint solver to decide whether to switch the level of consistency to
enforce. Caseau, Laburthe, and Silverstein (1999) evaluate the performance of candidate algorithms
in terms of number of calls to a specific high-level procedure. They note that in contrast to using
the runtime, their approach is machine-independent. Kadioglu, Malitsky, and Sellmann (2012) base
branching decisions in MIP search on features of the sub-problem to solve.

6. Summary

Over the years, there have been many approaches to solving the Algorithm Selection Problem. Es-
pecially in Artificial Intelligence and for combinatorial search problems, researchers have recognised
that using algorithm selection techniques can provide significant performance improvements with
relatively little effort. Most of the time, the approaches involve some kind of machine learning that
attempts to learn the relation between problem instances and the performance of algorithms auto-
matically. This is not a surprise, as the relationship between an algorithm and its performance is
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often complex and hard to describe formally. In many cases, even the designer of an algorithm does
not have a general model of its performance.

Despite the theoretical difficulty of algorithm selection, dozens of systems have demonstrated
that it can be done in practice with great success. In some sense, this mirrors achievements in
other areas of Artificial Intelligence. SAT is formally a problem that cannot be solved efficiently,
yet researchers have come up with ways of solving very large instances of satisfiability problems
with very few resources. Similarly, some algorithm selection systems have come very close to always
choosing the best algorithm.

This survey presented an overview of the algorithm selection research that has been done to date
with a focus on combinatorial search problems. A categorisation of the different approaches with re-
spect to fundamental criteria that determine algorithm selection systems in practice was introduced.
This categorisation abstracts from many of the low level details and additional considerations that
are presented in most publications to give a clear view of the underlying principles. We furthermore
gave details of the many different ways that can be used to tackle algorithm selection and the many
techniques that have been used to solve it in practice.

This survey can only show a broad and high-level overview of the field. Many approaches and
publications are not mentioned at all for reasons of space. A tabular summary of the literature
that includes many more publications and is organised according to the criteria introduced here can
be found at http://4c.ucc.ie/~larsko/assurvey/. The author of this survey hopes to add new
publications to this summary as they appear.

6.1 Algorithm selection in practice

Algorithm selection has many application areas and researchers investigating algorithm selection
techniques come from many different backgrounds. They tend to publish in venues that are specific
to their application domain. This means that they are often not aware of each others’ work. Even
a cursory examination of the literature shows that many approaches are used by different people in
different contexts without referencing the relevant related work. In some cases, the reason is probably
that many techniques can be lifted straight from e.g. machine learning and different researchers
simply had the same idea at the same time.

Even basic machine learning techniques often work very well in algorithm selection models. If
the available algorithms are diverse, it is usually easy to improve on the performance of a single
algorithm even with simple approaches. There is no single set of approaches that work best – much
depends on the application domain and secondary factors, such as the algorithms that are available
and the features that are used to characterise problem instances.

To get started, a simple approach is best. Build a classification model that, given a problem
instance, selects the algorithm to run. In doing so, you will gain a better understanding of the
relationship between your problem instances, algorithms, and their performance as well as the re-
quirements for your algorithm selection system. A good understanding of the problem is crucial
to being able to select the most suitable technique from the literature. Often, more sophisticated
approaches come with much higher overheads both in terms of implementation and running them,
so a simple approach may already achieve very good overall performance.

Another way to get started is to use one of the systems which are available as open source on
the web. Several versions of SATzilla, along with data sets and documentation, can be downloaded
from http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/. ISAC is available as MATLAB
code at http://4c.ucc.ie/~ymalitsky/Code/ISAC-Portfolio_v2.zip. The R package LLAMA
(http://cran.r-project.org/web/packages/llama/index.html) implements many of the algo-
rithm selection techniques described in this paper through a uniform interface and is suitable for
exploring a range of different approaches.2

2. Disclaimer: The author of this article is the primary author of LLAMA.
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6.2 Future directions

Looking forward, it is desirable for algorithm selection research to become more coordinated. In
the past, techniques have been reinvented and approaches reevaluated. This duplication of effort
is clearly not beneficial to the field. In addition, the current plethora of different approach is
confusing for newcomers. Concentrating on a specific set of techniques and developing these to high
performance levels would potentially unify the field and make it easier to apply and deploy algorithm
selection systems to new application domains.

Much of algorithm selection research to date has been driven by competitions rather than ap-
plications. As a result, many techniques that are known to work well in competition settings are
used and systems becoming more and more specialised to competition scenarios. Lacking prominent
applications, it remains to be shown which techniques are useful in the real world.

There are many directions left to explore. Using algorithm selection research as a means of gaining
an understanding of why particular algorithms perform well in specific scenarios and being able to
leverage this knowledge in algorithm development would be a major step. Another fruitful area is
the exploitation of today’s massively parallel, distributed, and virtualised homogeneous resources.

If algorithm selection techniques were to become widespread in mainstream computer science and
software development, a major paradigm shift would occur. It would become beneficial to develop a
large number of complementary approaches instead of focusing on a single good one. Furthermore,
less time would need to be spent on performance analysis – the algorithm selection system will take
care of it.
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