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Abstract. A lot of technological advances depend on next-generation materials,
such as graphene, which enables better electronics, to name but one example. Man-
ufacturing such materials is often difficult, in particular, producing graphene at
scale is an open problem. We apply state-of-the-art machine learning to optimize
the production of laser-induced graphene, an established manufacturing method
that has shown great promise. We demonstrate improvements over previous results
in terms of the quality of the produced graphene from a variety of different pre-
cursor materials. We use Bayesian model-based optimization to quickly improve
outcomes based on little initial data and show the robustness of our approach to
different experimental conditions, tackling a small-data problem in contrast to the
more common big-data applications of machine learning. We analyze the learned
surrogate models with respect to the quality of their predictions and learned rela-
tionships that may be of interest to domain experts and improve our understanding
of the processes governing laser-induced graphene production.
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1. Introduction

Graphene is a two-dimensional honeycomb layer of carbon atoms with extraordinary
properties, for example relative strength higher than any other material, high conductivity
of electricity and heat, and near transparency. It has many promising applications, such
as next-generation semiconductors, flexible electronics, and smart windows, to name but
a few examples [1]. There already are commercially available products made from or
with graphene, and the size of the global market is currently about US-$100 million, with
significant growth forecast. However, the reliable and large-scale production of graphene
is a difficult problem that researchers have been tackling over the past decades.

One method of producing graphene is to convert natural sources of carbon, e.g.
graphite, coal, and biochar, into graphene oxide, which is soluble in water. Such solu-
tions can be used as graphene oxide inks and be printed directly onto substrates as thin
films, similar to how ink-jet printers deposit ink on paper. Irradiating this precursor ma-
terial with a laser heats and anneals the graphene oxide selectively to reduce the oxy-
gen, ultimately converting it into pure graphene. Similar results can be achieved by ir-
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radiating commercial polymer films, eliminating the need to manufacture and deposit
graphene oxide, which is time-consuming in itself, or indeed any carbon precursor ma-
terial [2]. The reduction of such precursor materials into graphene allows for the rapid
and chemical-free manufacturing of advanced devices such as electronic sensors [3], fuel
cells [4], supercapacitors [5,6], and solar cells [7]. The interested reader is referred to a
recent survey on laser-induced graphene for more information [8]. This process is also
referred to as laser-reduced graphene in the literature [9].

One of the advantages of the targeted irradiation of the precursor material is that it
allows to easily create patterns in solid substrates without pre-patterned masks in only
a few minutes. While graphene is electrically conductive, graphene oxide and polymers
are not — patterns of graphene in an insulating material can form electric circuits. The
laser irradiation process enables the scalable and cost-efficient fabrication of miniatur-
ized electronic devices in a single process, rather than manufacturing the graphene sep-
arately and then patterning it onto a carrier material. This process also ensures that only
the amount of material that is actually needed is produced, similar to other advanced
manufacturing processes like 3D printing.

The challenge in irradiating the precursor material is determining the best laser pa-
rameters and reaction environment. First-principles knowledge does not allow to derive
the optimal conditions and the effectiveness of different irradiation conditions varies
across different precursor materials. A recent study emphasizes the effect the irradiation
parameters have on the quality of the produced graphene and the need to optimize these
parameters to achieve good results in practice [10]. Even with just a few parameters, for
example the power applied to the laser and the duration for irradiating a particular spot,
the space of possibilities is too large to explore exhaustively. There are complex interac-
tions between parameters, and evaluating a particular parameter configuration involves
running an experiment that requires a skilled operator and precursor material of suffi-
cient quality. Exploring the space of experimental parameters efficiently is crucial to the
success of laser-induced graphene in practice.

We present the application of state-of-the-art model-based optimization (MBO)
techniques to the automated production of laser-induced graphene, improving the qual-
ity of the produced graphene significantly compared to results achieved in the literature.
These improvements translate directly into better advanced materials that will enable the
next generation of advanced electronics and their cost-efficient production. Our MBO
system is deployed and used by domain scientists, with first results published in in the
domain literature [11]. In this paper, we present a more in-depth analysis of the previous
results and new results on the patterning of lines. While there have been applications of
model-based optimization in other areas of materials science, e.g. [12,13], we present the
first application to laser-induced graphene, to the best of our knowledge.

2. Methodology and Experimental Setup

The graphene oxide samples investigated in this paper were prepared from graphite using
the improved Hummers’ method, which avoids the generation of hazardous gases such
as NO and NO, from nitrate that is used in the conventional Hummers’ method [14].
Powdered samples, ground and sieved to 20 um, were mixed in concentrated H>,SO4 and
H3PO, and placed in an ice bath. KMnO4 was added at a mixture temperature of 35°C
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and increased to 98 °C before termination with ultrapure water (Millipore) and H,O;.
The filtrate was then washed with HCI and repeatedly with water until a pH-level of
about 6.5 was obtained. The GO inks were produced using 25 mg of the freeze-dried GO
powder, diluted in 100 mL deionized water and ultrasonicated with a cooling system.
After the sample was centrifuged, the remaining supernatant was repeatedly diluted and
ultrasonicated until a 200 mL dilution was obtained. The GO inks were spray-coated onto
a lcmx1cm quartz or polyimide substrate (Kapton HN 125 um, Dupont) in multiple
passes until a thickness of 1 um was achieved, verified with an optical profilometer.

Laser-induced graphene (LIG) spots were patterned by reducing GO films deposited
on quartz and polyimide, and by carbonization of polyimides directly. We denote GO on
quartz, GO on polyimide and polyimide as samples GOQ, GOPI and PI, respectively. The
patterning setup is shown in Figure 1. The deposited GO films were placed in a sample
chamber which allows patterning in air, argon, or nitrogen environments with pressures
up to 1000 psi. LIG patterns were irradiated using a 532 nm diode-pumped solid-state
continuous-wave laser. The laser beam was focused with a 50x microscope lens to a spot
size of 20 um on the sample surface. Irradiated beam spots were positioned sufficiently
far apart from each other to ensure pristine precursor material for each experiment. The
sample area is about 1 cm?, allowing approximately 256, 25, and 25 patterns for samples
GOQ, GOPI, and PI, respectively. Taking into account sample preparation and repeated
measurements to account for experimental errors and ensure reproducibility, we set our
experimental budget to 70 for all types of samples.

532nm
Ar N, Air CW-laser

l Beam
Splitt
Sample

Chamber y,

Figure 1. Experimental setup for patterning and measuring laser-induced graphene. The unlabeled rectangles
represent mirrors to reflect the laser beam, the ellipse a lens to focus it.

Additionally, we patterned LIG lines on GOQ using the same experimental setup,
but restricted to an argon environment with pressures up to 350 psi. The lines had a length
of 2 mm spaced 1 mm apart, totaling 14 lines within the sample area of 1 cm?.

Raman spectroscopy is a common technique for determining the quality of laser-
induced graphene by observing how laser photons scatter after they interact with the
vibrating molecules in the sample probe. The intensities of the characteristic D and G
bands in the Raman spectra can be used to judge to what extent the precursor material
has been reduced to graphene, i.e. the quality of the resulting material. The D and G
bands result from the defects and in-plane vibrations of sp? carbon atoms, respectively.
In particular, the degree of reduction of the precursor material to graphene, and thus the
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conductivity of the irradiated area, can be quantified through the ratio of the intensities
of the G and D bands — the larger this ratio, the more the precursor material has been
reduced. Figure 2 shows an example.
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Figure 2. Raman spectra showing D (left peak) and G (right peak) bands of graphene oxide before (bottom)
and after (top) laser irradiation. The ratio we optimize in this paper is calculated from the area under the peaks.
The intensity is shown in arbitrary units (a.u.).

We filtered the backscattered laser beam through a long-pass filter after irradiation
to perform Raman spectroscopy. Using the same laser source for patterning and spec-
troscopy, we are able to characterize the identical spot in-situ. The Raman data for each
spot were averaged over 10 measurements with a collection time of 3 s at laser power
<10 mW for each measurement. The Raman spectra were post-processed with a linear
background subtraction to 0 and normalization of the maximum peak to 1. The G- and
D-bands were fitted using Lorentzian functions and the ratio of their intensities computed
as the ratio of the areas under the fitted functions. The G/D ratios indicate the degree of
reduction of GO to graphene. This measure can be used as a proxy for electric conduc-
tivity, which we cannot measure for an irradiated spot because of physical constraints.

For the LIG-patterned lines, we quantified the conductivity of the induced graphene
by uniformly printing silver contacts (Voltera V-One, Ontario) at each end of each line
and measuring the electrical resistance with a two-point probe. Results were averaged
over nine individual measurements. We note that these measurements are only possible
by removing the sample from the reaction chamber, i.e. after 14 lines have been pat-
terned, as removing and replacing the sample after each line is too much human ef-
fort to be feasible in practice (in particular realigning the sample would be a very time-
consuming task). This means that, different to the G/D ratio, the results of an experimen-
tal evaluation are only available after a complete batch has been evaluated.

2.1. Parameter Space

We consider the following four parameters of the experimental conditions that control
the irradiation process for the spots.

* The power applied to the laser used to irradiate the sample. We consider a power
range of 10 mW to 5550 mW, with a precision of 10 mW and a step size of 10 mW.
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e The duration a particular spot was irradiated by the laser. We vary this parameter
from 500 ms to 20000 ms, with a precision of 1 ms and a step size of 1 ms.

e The pressure in the reaction chamber. The values for this parameter range from
0 psi to 1000 psi, with a precision of 10 psi and a step size of 10 psi.

e The gas in the reaction chamber. Possible values for this parameter are argon,
nitrogen, and air.

For the lines, we considered the following parameter space.

* We limited the power range to 10 mW to 1190 mW to avoid damage to the sample
we observed for high powers in some cases [11]. The precision was 10 mW and
the step size 10 mW.

* The patterning speed was varied between 0.267 mms~! to 1.905 mms~!. This is
dictated by the physical limits of the motor moving the sample chamber. The step
size and precision were 0.001 mms~!.

¢ The pressure in the reaction chamber. The values for this parameter range from
0 psi to 350 psi, with a precision of 10 psi and a step size of 10 psi.

¢ The gas in the reaction chamber was limited to argon, based on results from irra-
diating spots where argon performed better.

These parameters give rise to a large space of possible combinations that is infeasi-
ble to explore exhaustively. The cost of gathering data is high — running experiments is
time-consuming and requires precursor materials to be available. In contrast to big-data
approaches, we need techniques that work with small amounts of data, such as the MBO
we apply here.

2.2. Model-Based Optimization

Bayesian model-based optimization techniques (MBO) are used in many areas of Al and
beyond to automatically optimize outcomes across large parameter spaces. They usually
proceed in an iterative fashion — choose the configuration to evaluate based on predictions
of the surrogate model, and augment the surrogate model with the result of this evaluation
for the next iteration. At the heart of these techniques are the surrogate models, which
approximate and model the process whose parameters are to be tuned. This underlying
process is expensive to evaluate, i.e. it is infeasible to exhaustively explore the parameter
space and we are interested in keeping the number of evaluations as small as possible.
The approximate surrogate model on the other hand is cheap to evaluate and allows for
a targeted exploration of the parameter space, identifying promising configurations that
available resources for evaluations of the underlying process should be directed towards.

Surrogate models are induced using machine learning, taking an increasing amount
of ground-truth data into account between subsequent iterations. State-of-the-art MBO
approaches often use Gaussian Processes or random forests to induce surrogate models,
depending on the nature of the parameter space. MBO is a mature approach that has been
used in many applications over decades. The interested reader is referred to the paper
that formalized the approach [15] for more information.

There are many implementations of MBO; we use the mIrMBO package [16] to
model the parameter space, build the surrogate models (with the mlr package [17]), and
determine the most promising configuration for the next evaluation of the underlying
process. In particular, we use the default random forest surrogate model for parameter



36 L. Kotthoff et al. / Optimizing Laser-Induced Graphene Production

spaces that contain non-continuous parameters (the gas in the reaction chamber), and
Gaussian Processes for the parameter space for the patterning of the lines that contains
only continuous parameters, with expected improvement as our acquisition function in
both cases. In each iteration of the optimization process, the next configuration or batch
of configurations to evaluate is proposed by mirMBO. Each configuration is set auto-
matically by the experimental setup, which proceeds with running the experiment and
evaluating its result for the irradiated spots. The evaluated parameter configuration and
the resulting G to D ratio is added to the data used to train the surrogate model for the
next iteration. For the resistance measured for lines of graphene, we propose batches of
14 parameter settings to evaluate using the “constant liar” strategy [18]; the surrogate
model is retrained for the next MBO iteration after 14 such evaluations.

The initial surrogate model for the irradiated spots and G/D measurements was
trained on 20 randomly-sampled parameter configurations. We then performed 50 itera-
tions of our model-based optimization approach. For each of the three investigated mate-
rials GOQ, GOPI, and PI, we ran three experimental campaigns for a total of nine exper-
imental campaigns and 630 patterned spots. This represents several weeks of experimen-
tal effort, in addition to the effort of preparing the samples. We ran three experimental
campaigns for each material to assess the impact of different randomly-sampled initial
data, as well as the effect of variations in the material itself.

The experiments patterning lines had a total experimental budget of nine samples
for a total of 126 lines. One of the samples (14 parameter configurations) was used to
evaluate configurations randomly sampled from the parameter space to train the initial
surrogate model. The remaining eight samples were used to optimize the resistance of the
patterned material. As patterning lines consumes considerably more precursor material
than spots, the number of evaluations we were able to perform here is much smaller. We
did not use any information from the patterning of spots to initialize the optimization of
line patterning — it is not obvious how to transfer the best configurations.

The code, data, and some variations of our approach are available at https://
github.com/aim-uwyo/lig-model-opt and as supplementary material for [11]. Our
approach and code has since been used by other groups for similar purposes [19].

3. Results and Analysis

We first present the results for patterning spots of graphene and optimizing the G/D ra-
tio in detail. Figure 3 shows the quality of the graphene produced for all of our nine
experimental campaigns and Table 1 summarizes the results numerically. We note that
performance improves as soon as we evaluate configurations that were determined to
be promising by the model-based optimization approach compared to the initial random
data. We achieve performance improvements for all three materials and on each of the
experimental campaigns except one. Our approach is robust to differences in the ini-
tial data and irradiated materials. The performance improvements compared to random
search are particularly large for graphene oxide on polyimide (GOPI, second graph). For
the experiments on polyimide samples (PI, third graph) we achieve the smallest improve-
ments over random parameter configurations and in one experimental campaign no im-
provement over the best configuration found in the initial random samples at all, owing
to the very good results of the initial random search.
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Figure 3. Quality of produced graphene (ratio of G to D intensities, higher is better) for three experimental
campaigns on three different materials each. The materials shown are GOQ, GOPI, and PI. On the left of each
graph (iteration < 0), the distribution of ratios for the randomly-sampled parameter configurations used for
the initial surrogate model for each campaign; crosses denote the median. The lines denote the progression of
ratios during the iterations of the model-based optimization for the respective campaign; 50 iterations in total.
The summary lines on the right of the graph (iteration > 50) show the distribution of ratios achieved during all
iterations of the respective MBO run; again crosses denote the median value.

These results clearly show the promise of our approach. While MBO is given more
data and better results are therefore not surprising, it performs better than random sam-
pling in the majority of cases even when the playing field is leveled. Table 1 shows me-
dian and maximum values for 40 configurations which were randomly sampled from the
total of 60 initial random samples across three experimental campaigns per material. In
the column to the right of this, we show median and maximum values obtained during
the first 20 iterations of the MBO that was initialized with another 20 random parameter
configurations, for the same number of 40 samples seen by the optimization approach
at this point. The median value achieved by the MBO is always better than for random
sampling, and the best achieved ratio in seven out of nine cases. This indicates that MBO
was able to optimize our target more effectively than random search. We compared our
approach to configurations determined by human experts after months of investigation
[20] and found similar results — the quality of graphene produced by the configurations
found by MBO is up to a factor of two better than configurations found manually.

Figure 4 shows more detail for the optimization run for one of the three experimental
campaigns conducted on GOQ as an example; the detailed results for the other runs are
qualitatively similar. The graph illustrates how the model-based optimization proceeds
and learns to optimize — the first few iterations focus on the areas of the parameter space
where the initial random search has identified parameter configurations with good per-
formance and achieves similar results. Eventually, parameter configurations with better
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Mat. Camp. Median Value Best Value

Random 40 Random MBO first20 allMBO Random 40 Random MBO first20  all MBO

GOQ 1 1.27 1.23 1.95 2.09 2.57 2.87 2.55 3.54
GOQ 2 1.22 1.23 2.86 3.18 2.87 2.87 5.68 721
GOQ 3 1.3 1.23 1.69 2.32 2.39 2.87 5.83 5.83
GOPI 1 0.63 1.2 3.55 3.55 4.49 4.49 5.27 527
GOPI 2 1.43 1.2 3.37 3.39 3.37 4.49 6.54 6.54
GOPI 3 1.05 1.2 3.44 4.31 3.88 4.49 4.98 6.58
PI 1 1.05 1.06 3.26 3.03 52 3.61 4.02 4.02
PI 2 1.47 1.06 2.72 2.84 3.54 3.61 3.42 4.35
PI 3 1.18 1.06 3.41 3.15 3.13 3.61 5.5 55

Table 1. Median and maximum achieved G/D ratios for the initial 20 random parameter configurations, 40
random parameter configurations sampled from the total of 60 initial random samples per material, during the
first 20 iterations of the MBO, and during all iterations of the MBO for all experimental campaigns. All values
rounded to two decimal places.

performance are discovered and the MBO starts to focus on these areas of the parameter
space, but without neglecting to explore parameter configurations that turn out to have
poor performance.
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Figure 4. Quality of produced graphene (ratio of G to D intensities, higher is better) for one of the exper-
imental campaigns on graphene oxide on quartz (GOQ). On the left of each graph, the distribution of ratios
for the training data is shown (iteration 0). The circles show ground-truth data, crosses values predicted by the
surrogate model (connected to the corresponding ground-truth value with a gray line). The boxplot on the right
of the graph shows the distribution of ground-truth ratios of the configurations that the MBO explored.

To evaluate what the surrogate models have learned, we trained a surrogate model
on the entire available data for each material; 210 evaluations from 60 random samples
and 150 iterations of MBO. As the four-dimensional parameter space is not easily com-
prehensible, we used the mlr package [17] to compute the partial dependence of the G/D
ratio on individual and pairs of parameters [21]. Figure 5 shows the corresponding plots
for all pairs of continuous parameters for GOQ. They indicate that the ideal parameter
configuration has low values for pressure (less than ~=200 psi) and time (less than =8 ),
while the applied power does not seem to make a major difference. The predicted ratios
are noticeably lower (darker shade of blue) above these values for pressure and time;
there is no similar threshold for power.
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Figure 5. Partial dependence plots for pairs of continuous parameters of the predictions of a surrogate model
trained on all available data for GOQ. Red crosses denote parameter configurations that were evaluated exper-
imentally and are concentrated in the areas with the best predicted G/D ratios.

While some of these findings make sense, others do not. We know that irradiating
a particular spot for too long has a detrimental effect on the material as the laser burns
through it. However, the same is true for high values of laser power, but the surrogate
model did not learn this relationship at all, even though parameter configurations with
high power and long duration have been evaluated. Very low power and short duration
regimes will have no effect on the precursor material, as the tile with a darker shade in
the bottom-left corner of the plot for power and time indicates. It is unclear why low-
pressure regimes are predicted to result in good ratios. The partial dependence analysis
of the G/D ratio on power for graphene oxide on polyimide (GOPI, not shown for space
reasons) identified values in the range of 1.9W to 2.5W as optimal, which coincides
with the known threshold power of 2.4 W at which the conversion from polyimide to
graphene occurs. Overall, our analysis of the surrogate models failed to reveal any in-
teresting relationships that the domain experts were not already aware of or improve our
understanding of the underlying processes in other ways. In some cases, the surrogate
model obviously failed to learn a known relationship. There is scope for more in-depth
analysis here, which may discover knowledge of interest.

3.1. Patterning Lines and Optimizing Resistance

Figure 6 shows the measured resistances for the patterned lines. We see similar results as
for the spots; the optimized results are much better than the initial random data, although
progress is slower. However, the median resistance of the final MBO batch is better
than the minimum resistance of the initial evaluations, again conclusively demonstrating
the performance of our approach. We note that this experimental setting is much more
challenging for MBO because of batched evaluations — there is no immediate feedback on
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a choice of parameter configuration, and proposed configurations become increasingly
speculative as more “constant liar” evaluations are added.
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Figure 6. Quality of produced graphene (resistance in Q) for patterning lines from graphene oxide on quartz
(GOQ), lower is better. On the left of graph, the distribution of resistance for the initial training data is shown.
We show results summarized by batch of 14 lines; each boxplot represents one batch. The boxplot on the right
of the graph shows the distribution of measured resistances for all configurations that the MBO explored.

Similar to the experiments irradiating spots, we again analyzed what the surrogate
models had learned by training a model with all evaluations and producing partial depen-
dence plots. For space reasons, we only show the one for speed and pressure in Figure 7.
Medium values for pressure and high patterning speeds result in the lowest resistance,
according to the surrogate model. This intuitively makes sense, as with low speeds there
is more potential for inconsistencies resulting from the irradiation. The partial depen-
dence plots for other parameter configurations did not provide any insights, which we
attribute in part to the lower total number of evaluations here than for irradiated spots.
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Figure 7. Partial dependence plot for patterning speed and pressure in the reaction chamber of the predictions
of a surrogate model trained on all available data for patterning lines. Red crosses denote parameter configura-
tions that were evaluated experimentally.
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4. Related Work

There are numerous approaches in the literature to producing laser-induced graphene.
For graphene oxide, [22] report G to D intensity ratios of up to 1.1, while [23] achieve
ratios of 3.7. [24] achieve 3.45 and, with an experimental setup that is closest to ours, [25]
achieve 1.03. For polyimides, [26] achieve ratios of up to 0.86, [5] 2.25, [27] 1.03, and
[28] 1.38. We are not aware of any approaches that irradiate lines and measure resistance
as we do here.

Most of the results in the literature are not directly comparable to ours, as the ex-
perimental setup differs. Other approaches use different kinds of lasers, pattern graphene
oxide on different substrates and with different thicknesses, and use different gases in
the reaction chamber. For the G/D ratios, we achieve much better results than are re-
ported in the literature though and thus we are confident that our approach results in true
improvements.

Bayesian optimization is applied in many areas of materials science. [29,30,31] use
BO to optimize the grain boundary structure in polycrystalline materials instead of ex-
haustively evaluating the design space for the materials. They all demonstrate that results
of similar quality to exhaustive evaluation can be achieved at significantly lower cost,
with an increase in efficiency by up to two orders of magnitude. Similarly, [32] optimize
the grain boundary energy over several thousand precomputed parameter configurations,
which allows them to compare the performance of different approaches. [13] employ BO
in a similar setting by evaluating its performance on a set of a few hundred precomputed
results. They optimize the elastic properties of a material and demonstrate that BO is
quickly able to identify the optimal parameters in their relatively small approximation
of the real search space. [33] investigate the same application and in subsequent publi-
cations demonstrate the effectiveness of BO to optimize shape memory alloys [34], the
band gap in perovskites, an important material in the creation of solar cells [35], and
the band gap in compounds for luminescent materials [36]. [37] demonstrate the utility
of BO to optimize the density-functional-theory-calculated magnetic deformation of a
material, superconductors, thermoelectricity, and the strength of steel. [38] apply BO to
the problem of creating new materials via a parameterized generator for patterns that
describe the structure of the material. They optimize the interfacial area of the material,
which can be computed directly and very cheaply compared to numerical simulations,
but the large parameter space still necessitates a more efficient parameter optimization
approach than exhaustive search. [39] design materials with low energy dissipation by
optimizing a dopant (an impurity introduced into a pure material of a different type) and
its concentration using BO.

In many applications, it may be desirable to batch evaluations of the optimized pro-
cess, for example because certain measurements can only be taken after the sample has
been transferred to a different instrument, as in this paper. [12] propose batches of con-
figurations to evaluate by optimizing the acquisition functions for different values of a
parameter that trades off exploration and exploitation. In contrast, we use the “constant
liar” strategy [18]. [40] investigate the heat treatment of alloys, where multiple samples
can be processed at the same time in an oven but at a fixed temperature, and the produc-
tion of polymer fibers, where different values for polymer flow and coagulant speed can
be evaluated at the same time but within a fixed geometry. They propose a nested BO
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approach that optimizes the parameters that are subject to constraints in an outer loop
and, given the optimized values, the unconstrained parameters in an inner loop. Their ap-
proach evaluates batches of parameter configurations where part of the parameter space
is fixed. In contrast, our approach does not fix any parameter settings and does not require
nested BO.

5. Conclusions and Outlook

We have applied state-of-the-art Al techniques, in particular surrogate-model-based
Bayesian optimization, to the real-world problem of producing laser-induced graphene in
an automated experimental setup, for both irradiating spots and lines. Patterning conduc-
tive lines into a non-conductive material will allow to produce electronic components,
such as sensors. Using Al to optimize the experimental parameters, we were able to im-
prove over results previously reported in the literature substantially. This application re-
quired no expensive customizations of existing techniques and the deployed system is
used by domain experts with no background in Al

We demonstrated the robustness of our system by optimizing for different precursor
materials, different sets of initial data, different optimization objectives, and batch eval-
uations. Due to the cost of running experiments, we optimize with much less data than
in most cases in the Al literature, but still achieve good results, in many cases after only
a few iterations. This shows the usefulness this approach for small-data problems.

A promising avenue for future work is to investigate whether knowledge obtained
from previous MBO runs can be used to warm-start new runs through transfer learning.
In practice, no two experimental setups will be exactly the same, for example because the
precursor material is manufactured in different ways, or because graphene lines instead
of spots are created. It is unclear whether and how results from different experimental
setups can be transferred, but this could further improve results and reduce experimental
effort. Further, a principled investigation into the performance of different types of BO
approaches could guide the application of MBO for materials science, in particular with
respect to what machine learning techniques are most suitable for inducing surrogate
models in this context.
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