
A Preliminary Evaluation of Machine Learning
in Algorithm Selection for Search Problems

Lars Kotthoff, Ian P. Gent, Ian Miguel
University of St Andrews

{larsko,ipg,ianm}@cs.st-andrews.ac.uk

Abstract

Machine learning is an established method of selecting algo-
rithms to solve hard search problems. Despite this, to date no
systematic comparison and evaluation of the different tech-
niques has been performed and the performance of existing
systems has not been critically compared to other approaches.
We compare machine learning techniques for algorithm se-
lection on real-world data sets of hard search problems. In
addition to well-established approaches, for the first time we
also apply statistical relational learning to this problem. We
demonstrate that most machine learning techniques and exist-
ing systems perform less well than one might expect. To guide
practitioners, we close by giving clear recommendations as to
which machine learning techniques are likely to perform well
based on our experiments.

Introduction
The technique of portfolio creation and algorithm selection
has received a lot of attention in areas of artificial intelli-
gence that deal with solving computationally hard problems
recently (Xu et al. 2008; O’Mahony et al. 2008). The current
state of the art is such that often there are many algorithms
and systems for solving the same kind of problem; each with
its own performance on a particular problem.

It has long been recognised that there is no single algo-
rithm or system that will deliver the best performance in all
cases (Wolpert and Macready 1997). For this reason, recent
research has focussed on creating algorithm portfolios, which
contain a selection of state of the art algorithms. To solve a
particular problem with this portfolio, a preprocessing step is
run where the suitability of each algorithm in the portfolio
for the problem at hand is assessed. This step often involves
some kind of machine learning, as the actual performance of
each algorithm on the given, unseen problem is unknown.

The algorithm selection problem was first described many
decades ago in (Rice 1976) and numerous systems that em-
ploy machine learning techniques have been developed (Xu
et al. 2008; O’Mahony et al. 2008; Pulina and Tacchella 2009;
Weerawarana et al. 1996). While there has been some small-
scale work to compare the performance of different machine
learning algorithms (e.g. (Pulina and Tacchella 2009)), there

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has been no comparison of the machine learning methodolo-
gies available for algorithm selection and large-scale evalua-
tion of their performance to date.

The systems that do algorithm selection usually justify
their choice of a machine learning methodology (or a combi-
nation of several) with their performance compared to indi-
vidual algorithms and do not critically assess the real perfor-
mance – could we do as good or even better by using just a
single algorithm instead of having to deal with portfolios and
complex machine learning?

This paper presents a comprehensive comparison of ma-
chine learning paradigms for tackling algorithm selection and
evaluating their performance on data sets used in real-world
systems. We furthermore compare our results to existing
systems and to a simple “winner-takes-all” approach where
the best overall algorithm is always selected, which performs
surprisingly well in practice. Based on the results of these
extensive experiments and additional statistical simulations,
we give recommendations as to which machine learning tech-
niques should be considered when performing algorithm se-
lection. We identify support vector machines as a particularly
promising set of techniques.

Background
We are addressing an instance of the algorithm selection
problem (Rice 1976), which, given variable performance
among a set of algorithms, is to choose the best candidate
for a particular problem instance. Machine learning is an
established method of addressing this problem (Lobjois and
Lemâitre 1998; Fink 1998). Given the performance of each
algorithm on a set of training problems, we try to predict the
performance on unseen problems.

An algorithm portfolio (Gomes and Selman 2001; Leyton-
Brown et al. 2003) consists of a set of algorithms. A subset is
selected and applied sequentially or in parallel to a problem
instance, according to some schedule. The schedule may
involve switching between algorithms while the problem is
being solved (e.g. (Lagoudakis and Littman 2000; Streeter
and Smith 2008)). We consider the problem of choosing the
best algorithm from the portfolio (i.e. a subset of size 1) and
using it to solve the particular problem instance to completion
because the widest range of machine learning techniques
are applicable in this context. Some of the techniques are
also valid in other contexts – performance predictions can

84

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)



easily be used to devise a schedule with time allocations for
each algorithm in the portfolio, which can then be applied
sequentially or in parallel. Therefore some of our results are
also applicable to other approaches.

There have been many systems that use algorithm portfo-
lios in some form developed over the years and an exhaustive
list is beyond the scope of this paper. For a comprehensive
survey, see for example (Smith-Miles 2009). One of the ear-
liest systems was Prodigy (Carbonell et al. 1991), a planning
system that uses various machine learning methodologies to
select from search strategies. PYTHIA (Weerawarana et al.
1996) is more general and selects from among scientific algo-
rithms. (Borrett, Tsang, and Walsh 1996) employed a sequen-
tial portfolio of constraint solvers. More recently, (Guerri and
Milano 2004) use a decision-tree based technique to select
among a portfolio of constraint- and integer-programming
based solution methods for the bid evaluation problem. In
the area of hard combinatorial search problems, a success-
ful approach in satisfiability (SAT) is SATzilla (Xu et al.
2008). In constraint programming, CP-Hydra uses a similar
approach (O’Mahony et al. 2008). The AQME (Pulina and
Tacchella 2009) system does algorithm selection for finding
satisfying assignments for quantified Boolean formulae.

A closely related field is concerned with so-called hyper-
heuristics. In the context of algorithm selection, a hyper-
heuristic would for example choose a heuristic to choose
a machine learning technique to select algorithms from a
portfolio for a specific scenario. An introduction can be
found in (Burke et al. 2003).

Algorithm selection methodologies
An established approach to solve the algorithm selection
problem is to use machine learning. In an ideal world, we
would know enough about the algorithms in the portfolio
to formulate rules to select a particular one based on cer-
tain characteristics of a problem to solve. In practice, this is
not possible except in trivial cases. For complex algorithms
and systems, like the ones mentioned above, we do not un-
derstand the factors that affect the performance of a specific
algorithm on a specific problem enough to make the decisions
the algorithm selection problem requires with confidence.

Several machine learning methodologies are applicable
here. We present the most prevalent ones below. In addition
to these, we use a simple majority predictor that always pre-
dicts the portfolio algorithm that has the best performance
most often on the set of training instances (“winner-takes-all”
approach) for comparison purposes. This provides an eval-
uation of the real performance improvement over manually
picking the best algorithm from the portfolio. For this pur-
pose, we use the WEKA (Hall et al. 2009) ZeroR classifier
implementation.

Case-based reasoning
Case-based reasoning informs decisions for unseen problems
with knowledge about past problems. An introduction to the
field can be found in e.g. (Riesbeck and Schank 1989). The
idea behind case-based reasoning is that instead of trying
to construct a theory of what characteristics affect the per-

formance, examples of past performance are used to infer
performance on new problems.

The main part of a case-based reasoning system is the case
base. We use the WEKA IBk nearest-neighbour classifier
with 1, 3, 5 and 10 nearest neighbours considered as our case-
based reasoning algorithms. The case base consists of the
problem instances we have encountered in the past and the
best portfolio algorithm for each of them – the set of training
instances and labels. Each case is a point in n-dimensional
space, where n is the number of attributes each problem
has. The nearest neighbours are determined by calculating
the Euclidean distance. While this is a very weak form of
case-based reasoning, it is consistent with the observation
above that we simply do not have more information about
the problems and portfolio algorithms that we could encode
in the reasoner.

We use the AQME system (Pulina and Tacchella 2009) as
a representative of this methodology.

Classification
Intuitively, algorithm selection is a simple classification prob-
lem – label each problem instance with the portfolio algo-
rithm that should be used to solve it. We can solve this
classification problem by learning a classifier that discrim-
inates between the algorithms in the portfolio based on the
characteristics of the problem. A set of labelled training ex-
amples is given to the learner and the learned classifier is
then evaluated on a set of test instances.

We use the WEKA LADTree, J48graft, JRip,
BayesNet, ConjunctiveRule, J48, BFTree,
HyperPipes, PART, RandomTree, OneR, REPTree,
RandomForest, DecisionTable, LibSVM (with
radial basis and sigmoid function kernels), FT,
MultilayerPerceptron and AdaBoostM1 clas-
sifiers. Our selection is large and inclusive and contains
classifiers that learn all major types of classification models.
In addition to the WEKA classifiers, we used a custom one
that assumes that the distribution of the class labels for the
test set is the same as for the training set and samples from
this distribution without taking features into account.

We considered (Gent et al. 2010) to evaluate the perfor-
mance of this methodology.

Regression
Instead of considering all portfolio algorithms together and
selecting the one with the best performance, we can also
try to predict the performance of each algorithm on a given
problem independently and then select the best one based on
the predicted performance measures. The downside is that
instead of running the machine learning once per problem,
we need to run it for each algorithm in the portfolio for a
single problem.

Regression is usually performed on the runtime of an algo-
rithm on a problem. (Xu et al. 2008) predict the logarithm of
the runtime because they “have found this log transformation
of runtime to be very important due to the large variation in
runtimes for hard combinatorial problems.”

We use the WEKA LinearRegression, REPTree,
LibSVM (ε and ν), SMOreg and GaussianProcesses

85



learners to predict both the runtime and the logarithm of the
runtime. Again we have tried to be inclusive and add as
many different regression learners as possible regardless of
our expectations as to their suitability or performance.

(Xu et al. 2008) is the system we use to evaluate the per-
formance of regression.

Statistical relational learning
Statistical relational learning is a relatively new discipline of
machine learning that attempts to predict complex structures
instead of simple labels (classification) or values (regression)
while also addressing uncertainty. An introduction can be
found in (Getoor and Taskar 2007). For algorithm selec-
tion, we try to predict the performance ranking of portfolio
algorithms on a particular problem.

We use the support vector machine SVMrank instantia-
tion1 of SVMstruct (Joachims 2006). It was designed to
predict ranking scores. Instances are labelled and grouped
according to some criteria. The labels are then ranked within
each group. We can use the system unmodified for our pur-
poses and predict the ranking score for each algorithm on
each problem. We left the parameters at their default values
and used a value of 0.1 for the convergence parameter ε ex-
cept in cases where the model learner did not converge within
an hour. In these cases, we set ε = 0.5.

To the best of our knowledge, statistical relational learning
has never before been applied to algorithm selection.

Evaluation data sets
We evaluate and compare the performance of the approaches
mentioned above on five real-world data sets of hard algo-
rithm selection problems. We take three sets from the training
data for SATzilla 2009. This data consists of SAT instances
from three categories – handmade, industrial and random.
They contain 1181, 1183 and 2308 instances, respectively.
The authors use 91 attributes for each instance and select a
SAT solver from a portfolio of 19 solvers2. We compare the
performance of each of our methodologies to the SATzilla
system which was trained using this data and won several
medals in SAT competitions.

The fourth data set comes from the QBF Solver Evaluation
20103 and consists of 1368 QBF instances from the main,
small hard, 2QBF and random tracks. 46 attributes are cal-
culated for each instance and we select from a portfolio of
5 QBF solvers. Each solver was run on each instance for at
most 3600 CPU seconds. If the solver ran out of memory
or was unable to solve an instance, we assumed the time-
out value for the runtime. The experiments were run on a
machine with a dual 4 core Intel E5430 2.66 GHz processor
and 16 GB RAM. We compare the performance to that of the
AQME system, which was trained on parts of this data.

Our last data set is taken from (Gent et al. 2010) and
selects from a portfolio of two solvers for a total of 2028
constraint problem instances with 17 attributes each from

1http://www.cs.cornell.edu/People/tj/svm˙light/svm˙rank.html
2http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
3http://www.qbflib.org/index˙eval.php

46 problem classes. We compare our performance to the
classifier described in the paper.

We chose the data sets because they represent algorithm
selection problems from three areas where the technique of
algorithm portfolios has attracted a lot of attention recently.
For all sets, reference systems exist that we can compare
against. Furthermore, the number of algorithms in the respec-
tive portfolios for the data sets is different.

It should be noted that the systems we are comparing
against are given an unfair advantage. They have been trained
on at least parts of the data that we are using for the evaluation.
Their performance was assessed on the full data set as a
black box system. The machine learning algorithms we use
however are given disjoint sets of training and test instances.

Methodology
The focus of our evaluation is the performance of the machine
learning algorithms. Additional factors which would impact
the performance of an algorithm selection system in practice
are not taken into account. These factors include the time to
calculate problem features and additional considerations for
selecting algorithms, such as memory requirements.

We measured the performance of the learned models in
terms of misclassification penalty. The misclassification
penalty is the additional CPU time we need to solve a problem
instance if not choosing the best algorithm from the portfolio,
i.e. the difference between the CPU time the selected algo-
rithm required and the CPU time the fastest algorithm would
have required. If the selected algorithm was not able to solve
the problem, we assumed the timeout value minus the fastest
CPU time to be the misclassification penalty. This only gives
a weak lower bound, but we cannot determine the correct
value without running the algorithm to completion.

For the classification learners, we attached the misclassifi-
cation penalty as a weight to the respective problem instance
during the training phase. The intuition is that instances with
a large performance difference between the algorithms in the
portfolio are more important to classify correctly than the
ones with almost no difference.

The handling of missing attribute values was left up to the
specific machine learning system. We estimated the perfor-
mance of the learned models using ten-fold stratified cross-
validation (Kohavi 1995). We summed the misclassification
penalties across the individual folds to provide an estimate of
the misclassification penalty on the whole data set assuming
that it had never been seen before.

For each data set, we used two sets of features – the
full set and the subset of the most predictive features. We
used WEKA’s CfsSubsetEval attribute selector with the
BestFirst search method, again with default parameters,
to determine the most predictive features for the different
machine learning methodologies. We treated SVMrank as
a black box algorithm and therefore did not determine the
most predictive features for it.

We performed a full factorial set of experiments where we
ran each machine learning algorithm of each methodology
on each data set. We also evaluated the performance with
thinned out training data. We randomly deleted 25, 50 and

86



75% of the problem-portfolio algorithm pairs in the training
set. We thus simulated partial training data where not all
algorithms in the algorithm portfolio had been run on all
problem instances.

To evaluate the performance of the existing algorithm se-
lection systems, we ran them on the full, unpartitioned data
set. The misclassification penalty was calculated in the same
way as for the machine learning algorithms.

Machine learning algorithm parameters
We used the default parameters for all machine learning al-
gorithms unless noted otherwise. It is likely that the perfor-
mance could be improved by tuning the parameters, but there
are a number of reasons not to do this in this study.

First, finding the optimal parameters for all the considered
algorithms and data sets would require a lot of resources.
Every machine learning algorithm would need to be tuned
for every data set; there are 180 such tuning pairs in our case.
We could of course limit the tuning to a smaller number of
machine learning algorithms, but then the question of how to
choose those algorithms arises. The ones commonly used in
the literature are not necessarily the best ones. We therefore
need to identify the machine learning techniques with the
most promising performance as a starting point for tuning.

Second, our intention in this paper is to compare the same
machine learning algorithms across the different data sets to
assess their performance. Parameter tuning would result in
a large number of algorithm-parameter pairs and it is very
unlikely that we would be able to draw consistent conclusions
across all data sets. For new algorithm selection problems,
we would not be able to recommend a specific set of machine
learning techniques. Our purpose is not to find the best
machine learning algorithm for a single data set, but one that
has consistently good performance across all data sets.

Finally, the parameters of machine learning techniques
are not always tuned in existing algorithm selection systems.
Researchers who use algorithm portfolios are usually not
machine learning experts. If the performance is already good
enough (i.e. better than existing systems), there is little in-
centive to invest a huge amount of effort into tuning the
parameters with no guarantee of a proportional return in
performance improvement.

Experimental results
We first present and analyse the results for each machine
learning methodology and then take a closer look at the indi-
vidual machine learning algorithms and their performance.

The misclassification penalty in terms of the majority pre-
dictor for all methodologies and data sets is shown in Figure 1.
At first glance, no methodology seems to be inherently supe-
rior. This result is not surprising, as it is predicted by the “No
free lunch” theorem (Wolpert and Macready 1997). We were
however surprised by the good performance of the majority
predictor, which in particular delivers excellent performance
on the industrial SAT data set. The SVMrank relational
approach is similar to the majority predictor when it delivers
good performance. We were also surprised by the perfor-
mance of the SATzilla system, which performs significantly

worse than the majority predictor on two of the three data
sets it has been trained on. This only applies to the machine
learning aspect however; in practice additional techniques
such as using a presolver improves its performance.

Most of the literature completely fails to compare to the
majority predictor, thus creating a misleading impression of
the true performance. As our results demonstrate, always
choosing the best algorithm from a portfolio without any
analysis or machine learning can significantly outperform
more sophisticated approaches.

A statistical significance test (non-parametric Wilcoxon
signed rank test) of the difference between performing regres-
sion on the runtime and log of the runtime showed that the
difference was not significant. We estimated the performance
with different data by choosing 1000 bootstrap samples from
the set of data sets and comparing the performance of each
machine learning algorithm for both types of regression. Re-
gression on the log of the runtime has a higher chance of
better performance – with a probability of ≈64% it will be at
least as good as regression on the runtime which only has a
chance of ≈52% of being at least as good as regression on
the log. We therefore only consider regression on the log of
the runtime, but still show normal regression for comparison.

Figure 2 shows the results for the set of the most predic-
tive features. At first glance, the results look very similar
to the ones with the full set of features. We performed the
same statistical significance test as above on the difference be-
tween using all the features and selecting the most important
ones. Again the difference was not statistically significant. A
bootstrapping estimate as described above indicated that the
probability of the full feature set delivering results at least
as good as the set of the most important features is ≈67%,
whereas the probability of the smaller set of features being
as good or better is only ≈44%. Therefore, we only consider
the full set of features in the remainder of this paper because
it does not require the additional feature selection step.

The effects of thinning out the training set were differ-
ent across the data sets and are shown in Figure 3. On the
SAT data sets, the performance varied seemingly at random;
sometimes increasing with thinned out training data for one
machine learning methodology while decreasing for another
one on the same data set. On the QBF data, the performance
decreased across all methodologies as the training data was
thinned out while it increased on the CSP data set. Statistical
relational learning was almost unaffected in most cases.

The size of the algorithm portfolio did not have a mea-
surable effect on the performance of the different machine
learning methodologies. Our intuition was that as the size
of the portfolio increases, classification would perform less
well because the learned model would be more complex. In
practice however it turned out that the number of portfolio
algorithms selected at all is small in all cases.

There is no clear conclusion to be drawn from these results
as the effect differs across data sets and methodologies. They
however suggest that, as we are dealing with inherently noisy
data, deleting a proportion of the training data may reduce the
noise and improve the performance of the machine learning
algorithms. At the very least, not running all algorithms on
all problems because of resource constraints is unlikely to

87



CSP

case−based
reasoning

0.1

10.0

1000.0

100000.0

penalty relative
to majority predictor

QBF

classification

SAT−HAN

regression

SAT−IND

regression−log

SAT−RAN

statistical
relational
learning

Figure 1: Experimental results with full feature sets and training data across all methodologies and data sets. The plots show
the 0th (bottom line), 25th (lower edge of box), 50th (thick line inside box), 75th (upper edge of box) and 100th (top line)
percentile of the performance of the machine learning algorithms for a particular methodology (4 for case-based reasoning,
19 for classification, 6 for regression and 1 for statistical relational learning). The boxes for each data set are, from left to
right, case-based reasoning, classification, regression, regression on the log and statistical relational learning. The performance
is shown as a factor of the simple majority predictor which is shown as a dotted line. Numbers less than 1 indicate that the
performance is better than that of the majority predictor. The solid lines for each data set show the performance of the systems
we compare against ((Gent et al. 2010) for the CSP data set, (Pulina and Tacchella 2009) for the QBF data set and (Xu et al.
2008) for the SAT data sets).

CSP

case−based
reasoning

0.1

10.0

1000.0

100000.0

penalty relative
to majority predictor

QBF

classification

SAT−HAN

regression

SAT−IND

regression−log

SAT−RAN

Figure 2: Experimental results with reduced feature sets across all methodologies and data sets. For each data set, the most
predictive features were selected and used for the machine learning.

88



CSP

0.1

10.0

1000.0

penalty relative
to majority predictor

0% 50%
25% 75% deleted training data

case−based
reasoning

classification
regression

regression−log

statistical
relational
learning

QBF SAT−HAN SAT−IND SAT−RAN

Figure 3: Experimental results with full feature sets and thinned out training data across all methodologies and data sets. The
lines show the median penalty (thick line inside the box in the previous plots) for 0%, 25%, 50% and 75% of the training data
deleted. The performance is shown as a factor of the simple majority predictor which is shown as a grey line. Numbers less than
1 indicate that the performance is better than that of the majority predictor.

have a large negative impact on performance as long as most
algorithms are run on most problems.

As it is not obvious from the results which methodology is
the best, we again used bootstrapping to estimate the proba-
bility of being the best performer for each one. We sampled,
with replacement, from the set of data sets and for each
methodology from the set of machine learning algorithms
used and calculated the ranking of the median performances
across the different methodologies. Repeated 1000 times,
this gives us the likelihood of an average algorithm of each
methodology being ranked 1st, 2nd and 3rd. We chose to
compare the median performance because there was no ma-
chine learning algorithm with a clearly better performance
than all of the others and algorithms with a good performance
on one data set would perform much worse on different data.
We used the same bootstrapping method to estimate the likeli-
hood that an average machine learning algorithm of a certain
methodology would perform better than the simple majority
predictor. The probabilities are summarised in Table 1.

Based on the bootstrapping estimates, it looks like case-
based reasoning is the methodology most likely to give the
best performance. The methodology most likely to deliver
good performance in terms of being at least as good as the
majority predictor however is regression on the log of the
runtime. Statistical relational learning has the most consistent
performance and gets better as the training data is thinned
out, but never even matches the performance of the majority
predictor on the full set of training data. This means that most
of the machine learning methodologies are outperformed by
the majority predictor.

We observe that the majority classifier is very likely to
have performance equivalent to or even better than sophisti-
cated machine learning approaches. Its advantages over all
the other approaches are its simplicity and that no problem

features need to be computed, a task that can further impact
the overall performance negatively.

Determining the best machine learning
The results are not clear – no methodology has a high proba-
bility of giving performance at least as good as the majority
predictor. But should we focus on choosing a methodology
first, or is choosing an algorithm independent of the method-
ology likely to have a larger impact on performance? We
calculated the coefficients of variation of the misclassification
penalty for each data set for the algorithms within a method-
ology and for the median performance across methodolo-
gies. If the coefficient of variation within a machine learning
methodology was small, there would be little variability in
performance once the decision which methodology to use
was fixed. That is, after deciding to use e.g. regression, it
would make little difference what specific machine learning
algorithm for regression to choose. Figure 4 compares the re-
sults. Choosing a machine learning algorithm independently
of methodology is likely to have a far greater impact than
choosing the methodology and then the algorithm.

What is the machine learning algorithm with the overall
best performance? There is no clear overall winner; a differ-
ent algorithm is the best one on each data set. We therefore
concentrate on finding an algorithm with good and reliable,
not necessarily the best performance. It is unlikely that one
of the best algorithms here will be the best one on new data,
but an algorithm with good performance is more probable
to exhibit good performance on unseen data. We performed
a bootstrap estimate of whether the performance of each in-
dividual algorithm would be at least as good as that of the
majority predictor. The results are summarised in Table 2.

The results are surprisingly clear – for untuned machine
learning algorithms, doing regression on the log of the run-

89



rank with full at least as good rank 1 with
training data as majority deleted training data

methodology 1 2 3 predictor 25% 50% 75%
case-based reasoning 41% 27% 27% 43% 36% 27% 13%
classification 17% 21% 26% 39% 10% 13% 4%
regression-log 13% 19% 19% 50% 2% 39% 18%
statistical relational learning 30% 33% 28% 0% 53% 20% 66%

Table 1: Probabilities for each methodology ranking at a specific place with regard to the median performance of its algorithms
and probability that this performance will be better than that of the majority predictor. We also show the probabilities that the
median performance of the algorithms of a methodology will be the best for thinned out training data. All probabilities are
rounded to the nearest percent. The highest probabilities for each rank are in bold.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

coefficient of variation

across within
methodologies

Figure 4: Comparison of the coefficients of variation of mis-
classification penalty across and within machine learning
methodologies across the different data sets.

machine learn-
ing methodology

machine learn-
ing algorithm

at least as good as
(better than) ma-
jority predictor

regression-log LibSVM ε 100% (40%)
regression-log LibSVM ν 100% (40%)
classification LibSVM sig-

moid function
80% (0%)

case-based rea-
soning

IBk 10 neigh-
bour

60% (60%)

classification AdaBoostM1 60% (60%)
classification LibSVM radial

basis function
60% (60%)

classification PART 60% (60%)
classification RandomForest 60% (60%)
regression-log SMOreg 60% (60%)

Table 2: Probability that a particular machine learning al-
gorithm will perform at least as good as (better than) the
majority predictor on the full training data. We only show
ones with a probability higher than 50%. All probabilities
are rounded to the nearest percent.

time with a LibSVM learner will always be at least as good as
the majority predictor and has a substantial chance of being
better than it. Classification with a sigmoid function LibSVM
however only emulates the majority predictor when it deliv-
ers good performance. The other algorithms have a lower
chance of being at least as good as the majority predictor,
but are more likely to be better – in particular they are more
likely than not to be better – and are therefore reasonable
choices as well. The AdaBoostM1 and RandomForest
algorithms were also the best ones on an individual data set.

The high probabilities of LibSVM ε and ν performing re-
gression on the runtime being at least as good as the majority
predictor are consistent with the observation that regression
on the log of the runtime is the paradigm most likely to
achieve such performance in Table 1.

Our intuition is that these particular machine learning al-
gorithms perform well because they are relatively tolerant
to noise. In the case of AdaBoostM1, which is susceptible
to noise, the boosting of the initial weak learner seems to
make up for this. This is probably because almost all the
algorithms we have tried are weak in the sense that they are
not (much) better than the majority predictor and therefore
an algorithm that assumes weak learners has an advantage.
The good performance of the RandomForest ensemble
method is consistent with observations in (Kotthoff, Miguel,
and Nightingale 2010).

Conclusions
In this paper, we investigated the performance of several
different machine learning methodologies and algorithms
for algorithm selection on several real-world data sets. We
compared the performance not only among these methodolo-
gies and algorithms, but also to existing algorithm selection
systems. To the best of our knowledge, we presented the
first comparison of machine learning methodologies applica-
ble to algorithm selection. In particular, statistical relational
learning has never been applied to algorithm selection before.

We used the performance of the simple majority predictor
as a baseline and evaluated the performance of everything
else in terms of it. This is a less favourable evaluation than
usually found in the literature, but gives a better picture of
the real performance improvement of algorithm portfolio
techniques over just using a single algorithm. This method
of evaluation clearly demonstrates that the machine learning

90



performance of existing algorithm selection systems is not
as good as commonly perceived. In particular, much more
sophisticated (and computationally expensive) approaches
have inferior performance in some cases.

The perhaps surprising result of our evaluation was that
most machine learning techniques are unlikely to even match
the performance of the majority predictor, much less exceed
it. We believe that this finding could provide an incentive
for machine learning research to improve the current state
of the art in this area. This applies in particular to statistical
relational learning.

We provide strong evidence that when performing algo-
rithm selection, choosing the right machine learning algo-
rithm is much more important than deciding on the right
methodology and then choosing an algorithm. We further-
more demonstrate that methodologies and algorithms that
have the best performance on one data set do not necessarily
have good performance on all data sets.

Another non-intuitive result of our investigation is that
deleting parts of the training data can help improve the overall
performance, presumably by reducing some of the noise
inherent in the empirical runtime data.

The probabilities in Table 1 suggest that the majority
predictor is a feasible alternative to more sophisticated ap-
proaches, likely to provide similar performance despite the
theoretical effectiveness of algorithm portfolios and lots of re-
search into algorithm selection. Comparing new approaches
to the majority predictor would provide a better picture of the
real performance improvement over using a single algorithm,
something not commonly found in the literature.

Based on a statistical simulation with bootstrapping, we
give recommendations as to which algorithms are likely to
have good performance. We identify support vector ma-
chines in the various forms used in this paper as a particularly
promising type of machine learning algorithms. They are
very likely to achieve performance at least as good as the
simple majority predictor.

Acknowledgments
We thank the reviewers for their feedback and Kristian Ker-
sting for pointing out SVMstruct to us. This research was
supported by EPSRC grant EP/H004092/1. Lars Kotthoff is
supported by a SICSA studentship.

References
Borrett, J. E.; Tsang, E. P. K.; and Walsh, N. R. 1996.
Adaptive constraint satisfaction: The quickest first principle.
In ECAI, 160–164.
Burke, E.; Hart, E.; Kendall, G.; Newall, J.; Ross, P.; and
Schulenburg, S. 2003. Hyper heuristics: an emerging di-
rection in modern search technology. In Handbook of Meta-
Heuristics, volume 57. Kluwer.
Carbonell, J.; Etzioni, O.; Gil, Y.; Joseph, R.; Knoblock, C.;
Minton, S.; and Veloso, M. 1991. PRODIGY: an integrated
architecture for planning and learning. SIGART Bull. 2:51–
55.
Fink, E. 1998. How to solve it automatically: Selection
among Problem-Solving methods. In ICAPS, 128–136.

Gent, I.; Jefferson, C.; Kotthoff, L.; Miguel, I.; Moore, N.;
Nightingale, P.; and Petrie, K. 2010. Learning when to use
lazy learning in constraint solving. In ECAI, 873–878.
Getoor, L., and Taskar, B. 2007. Introduction to Statistical
Relational Learning. MIT Press.
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artif. Intell. 126(1-2):43–62.
Guerri, A., and Milano, M. 2004. Learning techniques for
automatic algorithm portfolio selection. In ECAI, 475–479.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. 2009. The WEKA data mining software:
An update. SIGKDD Explorations 11(1).
Joachims, T. 2006. Training linear SVMs in linear time.
In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 217–226.
Kohavi, R. 1995. A study of Cross-Validation and bootstrap
for accuracy estimation and model selection. In IJCAI, 1137–
1143.
Kotthoff, L.; Miguel, I.; and Nightingale, P. 2010. Ensemble
classification for constraint solver configuration. In CP, 321–
329.
Lagoudakis, M. G., and Littman, M. L. 2000. Algorithm
selection using reinforcement learning. In ICML, 511–518.
Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden,
J.; and Shoham, Y. 2003. A portfolio approach to algorithm
selection. In IJCAI, 1542.
Lobjois, L., and Lemâitre, M. 1998. Branch and bound
algorithm selection by performance prediction. In AAAI,
353–358.
O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an
algorithm portfolio for constraint solving. In Irish Conference
on Artificial Intelligence and Cognitive Science.
Pulina, L., and Tacchella, A. 2009. A self-adaptive multi-
engine solver for quantified boolean formulas. Constraints
14(1):80–116.
Rice, J. R. 1976. The algorithm selection problem. Advances
in Computers 15:65–118.
Riesbeck, C. K., and Schank, R. C. 1989. Inside Case-Based
Reasoning. L. Erlbaum Associates Inc.
Smith-Miles, K. A. 2009. Cross-disciplinary perspectives on
meta-learning for algorithm selection. ACM Comput. Surv.
41:6:16:25.
Streeter, M. J., and Smith, S. F. 2008. New techniques for
algorithm portfolio design. In UAI, 519–527.
Weerawarana, S.; Houstis, E. N.; Rice, J. R.; Joshi, A.; and
Houstis, C. E. 1996. PYTHIA: a knowledge-based system
to select scientific algorithms. ACM Trans. Math. Softw.
22(4):447–468.
Wolpert, D. H., and Macready, W. G. 1997. No free lunch the-
orems for optimization. IEEE Transactions on Evolutionary
Computation 1(1):6782.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. J.
Artif. Intell. Res. (JAIR) 32:565–606.

91


