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1 Introduction

The Algorithm Selection Problem [8] is to select the most appropriate algorithm for
solving a particular problem. It is especially relevant in the context of algorithm portfo-
lios [2, 3], where a single solver is replaced with a set of solvers and a mechanism for
selecting a subset to use on a particular problem. A common way of doing algorithm
selection is to train a machine learning model and predict the best algorithm from a
portfolio to solve a particular problem.

Several approaches in the literature, e.g. [4, 7], compute schedules for running the
algorithms in the portfolio. Such schedules rely on a ranking of the algorithms that
dictates when to run each algorithm and for how long. Despite this, no comparison of
different ways of arriving at such a schedule has been performed to date. In this paper,
we investigate how to predict a complete ranking of the portfolio algorithms on a par-
ticular problem. In machine learning, this is known as the label ranking problem. We
evaluate a range of approaches to predict the ranking of a set of algorithms on a prob-
lem. We furthermore introduce a framework for categorizing ranking predictions that
allows to judge the expressiveness of the predictive output. Our experimental evaluation
demonstrates on a range of data sets from the literature that it is beneficial to consider
the relationship between algorithms when predicting rankings.

While a complete ranking is not required to do algorithm selection, it can be benefi-
cial. Predictions of algorithm performance will always have some degree of uncertainty
associated with them. Being able to choose from among a ranked list of all portfolio al-
gorithms can be used to mitigate the effect of this by selecting more than one algorithm.

2 Organizing predictions

We propose the following levels to categorise the predictive output of a model with
respect to what ranking may be obtained from it.
Level 0 The prediction output is a single label of the best algorithm. It is not possible

to construct a ranking from this and we do not consider it in this paper.
Level 1 The prediction output is a ranking of algorithms. The relative position of algo-

rithms in the ranking gives no indication of the difference in performance.
Level 2 The prediction output is a ranking with associated scores. The difference be-

tween ranking scores is indicative of the difference in performance.
In the remainder of this paper, we will denote the framework R and level x within

it Rx. Higher levels strictly dominate the lower levels in the sense that their predictive
output can be used to the same ends as the predictive output at the lower levels.



In the context of algorithm selection and portfolios, examples for the different levels
are as follows. A R0 prediction is suitable for selecting a single algorithm. R1 allows
to select the n best solvers for running in parallel on an n processor machine. R2 al-
lows to compute a schedule where each algorithm is allocated resources according to its
expected performance. Note that while it is possible to compute a schedule given just
a ranking with no associated expected performances (i.e. R1), better-quality schedules
can usually be obtained if some kind of performance score is predicted. The expected
performance can be related directly to the time allocated the algorithm rather than allo-
cating a fixed time that is oblivious of the expected performance.

2.1 Empirical evaluation

We evaluate the following ten ways of ranking algorithms, five from R1 and five from
R2. The difference between some of these approaches lies in what kind of predictive
models are learned from the same training data.
Order The ranking of the algorithms is predicted directly as a label. The label consists

of a concatenation of the ranks of the algorithms. This approach is in R1. [6] use a
conceptually similar approach to compute the ranking with a single prediction step.

Order score For each training example, the algorithms in the portfolio are ranked ac-
cording to their performance. The rank of an algorithm is the quantity to predict. We
used both regression and classification approaches. The ranking is derived directly
from the predictions. These two approaches are in R1.

Faster than classification A classifier is trained to predict the ranking as a label sim-
ilar to Order score given the predictions of which is faster for each pair of algo-
rithms. This approach is in R1.

Faster than difference classification A classifier is trained to predict the ranking as a
label given the predictions for the performance differences for each pair of algo-
rithms. This approach is in R1.

Solve time The time to solve a problem is predicted and the ranking derived directly
from this. In addition to predicting the time itself, we also predicted the log. These
approaches are in R2. Numerous approaches predict the solve time to identify the
best algorithm, for example [9].

Probability of being best The probability of being the best algorithm for a specific
instance in a [0, 1] interval is predicted. If an algorithm is the best on an instance,
the probability should be 1, else 0. The ranking is derived directly from this. This
approach is in R2.

Faster than majority vote The algorithms are ranked by the number of times they
were predicted to be faster than another algorithm. This is the approach used to
identify the best algorithm in recent versions of SATzilla [10]. This approach is in
R2. While the individual predictions are simple labels (faster or not), the aggrega-
tion is able to provide fine-grained scores.

Faster than difference sum The algorithms are ranked by the sum over the predicted
performance differences for each pair of algorithms. Algorithms that are often or
by a lot faster will have a higher sum and rank higher. This approach is in R2.
Our evaluation uses four data sets taken from the literature. We use the SAT-HAN

and SAT-IND SATzilla 2009 training data sets with 19 and 18 solvers, respectively. The



third data set comes from the QBF solver evaluation 2010 with 5 solvers. Finally, we
take the CSP data set from [1] with 2 solvers.

We use the Weka machine learning toolkit to train models and make predictions. We
evaluated our approaches using the AdaBoostM1 BayesNet, DecisionTable,
IBk with 1, 3, 5 and 10 neighbours, J48, J48graft, JRip, LibSVM with radial
basis function kernel, MultilayerPerceptron, OneR, PART, RandomForest,
RandomTree, REPTree, and SimpleLogistic algorithms for the approaches
that use classification and the AdditiveRegression, GaussianProcesses,
LibSVM with ε and ν kernels, LinearRegression, M5P, M5Rules, REPTree,
and SMOreg algorithms for regression. We used the standard parameters in Weka.

Where several layers of machine learning algorithms are required, they are stacked
as follows. The first layer is trained on the original training set with the features of
the original problems. The prediction of the models of this first layer is used to train
a model in a second layer that takes the predictions of the earlier layer as input. The
output is the final prediction that we use to compute the ranking.

The performance of each approach on each data set is evaluated using stratified
ten-fold cross-validation. We assess the quality of a predicted ranking by comparing
it to the actual ranking (derived from the measured performance) using the Spearman
correlation test.

3 Results and Conclusion

We present aggregate results in Table 1. For each instance, the Spearman rank corre-
lation coefficient is computed between the predicted and the actual ranking. We show
the median of the distribution of those coefficients for all data sets and rank prediction
approaches. Only the values for the respective best machine learning model are shown.
In addition to the scores for individual data sets, we show the sum over all data sets.

CSP QBF SAT-HAN SAT-IND
∑

R1 Order 1 1 0.888 0.897 3.785
Order score (classification) 1 0.4 0.823 0.759 2.981

Order score (regression) 1 0.4 0.837 0.816 3.053
Faster than classification 1 1 0.891 0.899 3.79

Faster than difference classification 1 0.4 0.83 0.789 3.019

R2 Solve time 1 -0.15 0.453 0.424 1.727
Solve time (log) 1 -0.1 0.791 0.752 2.444

Probability of being best 1 0.1 0.114 0.352 1.566
Faster than majority vote 1 0.8 0.888 0.878 3.566

Faster than difference sum 1 0.1 0.472 0.43 2.002

Table 1. Median of the ranking quality scores for all data sets and rank prediction approaches for
the respective best machine learning algorithm for a particular prediction approach. Higher scores
are better. All numbers are rounded to three decimal places. The best value for each column is
typeset in bold.



The overall best approach is the Faster than classification approach, followed by
the Order approach. The Faster than majority vote, Order score (regression), and Faster
than difference classification approaches exhibit good performance as well. The results
clearly demonstrate that the relationship between the portfolio algorithms is impor-
tant to take into account when predicting the ranking of algorithms. In general, the
approaches that consider the algorithms only in isolation perform worse than the ap-
proaches that consider the portfolio as a whole or pairs of algorithms.

Overall, the approaches in R1 have better performance than those in R2. The likely
reason for this is that the predictions in R2 are inherently more complex and there
is more margin for error. The Faster than classification, Faster than majority vote and
Order are the approaches that deliver the best overall performance. While some of these
are complex and rely on layers of machine learning models, the Order approach is
actually the simplest of those evaluated here. Its simplicity makes it easy to implement
and an ideal starting point for researchers planning to predict rankings of algorithms. In
addition to the approaches named above, predicting the order through a ranking score
predicted by a regression algorithm achieved good performance.

This paper presented a first attempt at organising algorithm selection models with
respect to how their predictive output can be used when computing rankings. We eval-
uated a number of different approaches and identified promising ones that deliver good
performance in practice. An extended version that presents the results in more detail
can be found in [5].
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