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Abstract—Automated hyperparameter optimization (HPO) has
gained great popularity and is an important component of most
automated machine learning frameworks.

However, the process of designing HPO algorithms is still an
unsystematic and manual process: New algorithms are often
built on top of prior work, where limitations are identified and
improvements are proposed. Even though this approach is guided by
expert knowledge, it is still somewhat arbitrary. The process rarely
allows for gaining a holistic understanding of which algorithmic
components drive performance and carries the risk of overlooking
good algorithmic design choices.

We present a principled approach to automated benchmark-driven
algorithm design applied to multi-fidelity HPO (MF-HPO). First,
we formalize a rich space of MF-HPO candidates that includes,
but is not limited to, common existing HPO algorithms and then
present a configurable framework covering this space. To find
the best candidate automatically and systematically, we follow a
programming-by-optimization approach and search over the space
of algorithm candidates via Bayesian optimization. We challenge
whether the found design choices are necessary or could be replaced
by more naive and simpler ones by performing an ablation analysis.
We observe that using a relatively simple configuration (in some ways,
simpler than established methods) performs very well as long as some
critical configuration parameters are set to the right value.

Index Terms—Algorithm design, algorithm analysis, hyperparam-
eter optimization, multifidelity, automated machine learning

I. INTRODUCTION

Machine learning (ML) is, in many regards, an optimization
problem, and many ML methods can be expressed as algorithms
that perform loss minimization with respect to a given objective
function. The higher-level task of selecting the ML method and its
configuration is often framed as an optimization problem as well,
sometimes referred to as a hyperparameter optimization (HPO) [1]
or combined algorithm selection and hyperparameter optimization
(CASH) problem [2]. Successfully addressing this problem can
lead to large performance gains compared to simply using defaults,
and in the context of automated machine learning (AutoML), the
use of HPO can make ML more accessible to non-experts. Because
of their potential benefits to ML performance and usability, it is
of particular interest to design optimization algorithms that perform
particularly well on the HPO problem.

Optimization problems arise in many fields of science and
engineering, but as the no-free-lunch theorem states, there is no one
optimization algorithm that solves all problems equally well [3]. To
design suitable optimizers, it is therefore important to understand
the characteristics of HPO:
• Black-box: The objective usually provides no analytical

information [4] – such as a gradient. Thus, the application of
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many traditional optimization methods – such as BFGS – is
rendered inappropriate or at least questionable.

• Complex search space: The search space of the optimization
problem is often high-dimensional and may contain
continuous, integer-valued and categorical dimensions. Often,
there are dependencies between dimensions or even specific
hyperparameter values [5].

• Expensive: A single evaluation of the objective function may
take hours or days. Thus, the total number of possible function
evaluations is often severely limited [4].

• Low-fidelity approximations possible: An approximation of
the true objective value at lower expense can often be obtained,
for example, through a partial evaluation [6].

• Low effective dimensionality: The landscape of the objective
function can usually be approximated well by a function of
a small subset of all dimensions [7].

Recent HPO and AutoML research has focused on finding and
improving optimization algorithms that work particularly well
under these conditions. A common approach is to tackle HPO by
estimating a local or global structure of the objective landscape by
some form of predictive model. This introduces additional overhead
and complexity with the aim of reducing the overall number of
expensive objective evaluations necessary to find an approximate
optimum. Typical representatives of this approach are Bayesian
optimization (BO) [8] algorithms and frameworks based on BO,
which are global optimization schemes based on a non-linear
regression model, e.g., a Gaussian process or random forest. They
have shown significant improvements in performance compared
to other methods [9] but carry a significant overhead. Furthermore,
BO is somewhat difficult to parallelize due to its sequential nature,
although many variants exist (e.g. [10]–[13]).

Multi-fidelity HPO (MF-HPO) algorithms aim to accelerate
the optimization process by exploiting cheaper proxy functions
of the objective function itself (e.g., by training ML models on
a smaller subsample of the available training data, or by running
fewer training iterations). Bandit-based algorithms like Hyperband
(HB) [14] have become particularly popular because of their good
trade-off between optimization performance and simplicity.

Progress in the field of HPO often consists of iterative
improvements of established algorithms. Considerable work exists,
for example, to improve the limitations of HB: Asynchronous
successive halving (ASHA) [15] proposes a sophisticated way
to make efficient use of parallel resources, BO Hyperband
(BOHB) [16] improves performance during later parts of a run
by incorporating surrogate assistance into HB, and asynchronous
BOHB (A-BOHB) [17] unites a bandit-based optimization scheme
using model-based guidance with asynchronous parallelization.
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While these conceptual extensions of HPO all have their respec-
tive merit, it is often somewhat overlooked that the simplicity of
an optimization algorithm (i.e., how difficult modifications and
extensions are, and on how many dependencies a system relies [18])
heavily influences its adoption in practice. Random search (RS), for
example, still enjoys great popularity, as it is extremely simple to im-
plement and parallelize, has almost no overhead, and is able to take
advantage of the aforementioned low effective dimensionality [7].
Furthermore, algorithmic developments identify and address limita-
tions of prior research, but rarely question core algorithmic choices
that have been made in the original implementation. Many multi-
fidelity algorithms, for example, are extensions and further devel-
opments of HB that take the fixed successive halving schedule [19]
for granted. The process of designing a good MF-HPO optimizer in
practice – and many other algorithmic solutions in science in general
– can therefore often feel somewhat like a “manual stochastic local
search on the meta level”. The drawback of this manual procedure
is that the design space of all HPO algorithms is not systematically
searched, and parts of the design space are excluded by prior algorith-
mic decisions. If “established” algorithms are not challenged, there is
a risk that algorithms that work well will be overlooked., and it is of-
ten hard to identify what algorithmic components make a difference.
In particular, it is possible that overly complicated algorithms are
developed by extending “established” designs, only some of which
contribute meaningfully to performance gains. Sometimes certain
technical components of an algorithm, which are neither exposed nor
discussed in detail, may also influence performance significantly.

A. Contributions

We make a principled demonstration of how HPO algorithm
design can be performed systematically and automatically with
a benchmark-driven approach following the programming-by-
optimization paradigm [20]. In particular, the contributions of this
work are:
• Formalization: We formalize the design space of MF-HPO

algorithms and demonstrate that established MF-HPO
algorithms represent instances within this space.

• Framework: Based on this formalization, we present a rich,
configurable framework for MF-HPO algorithms, whose
software implementation we call SMASHY (Surrogate Model
Assisted HYperband).

• Configuration: Based on the formalization and framework,
we follow an empirical approach to design an MF-HPO
algorithm by optimization, given a large benchmark suite. This
configuration procedure does not only consider performance,
but also, e.g., the simplicity of the design.

• Benchmark: As in general any HPO algorithm will be applied
in a diverse set of application scenarios, we evaluate the perfor-
mance of our newly designed algorithm on a representative set
of problems that were not previously used for its configuration
(i.e., a clean test-set approach on the meta-level) and compare
them with established implementations of HPO methods.

• Explanation: For the resulting MF-HPO system, we
systematically assess and explain the effect of different design
choices on overall algorithmic performance. Furthermore, we
investigate the behavior of algorithmic design components
in the context of specific problem scenarios; i.e., we

investigate which algorithmic components lead to performance
improvements for simple HPO with numeric hyperparameters,
AutoML pipeline configuration, and neural architecture search.

II. RELATED WORK

HPO is one of the most essential components of current AutoML
methods [1], and MF-HPO has recently become more prominent,
given that cheap, low-fidelity evaluations have proven useful to
speed up optimization, especially for expensive HPO of complex
ML algorithms on larger data sets [14]. While AutoML tools have
historically relied on a limited set of HPO methods, we argue that the
optimal HPO method depends on problem characteristics, and there-
fore a systematic development of HPO methods under consideration
of problem characteristics is required. Approaches towards such
systematic development have often relied on a high-level language
or template that allows expressing solution algorithms for a given
problem class, e.g. to solve constraint satisfaction problems [21]–
[23], satisfiability problems [24], scheduling problems [25], or
general multi-objective combinatorial problems [26] [27].

Even if a high-level language is available, manual configuration
of such frameworks is laborious and requires expert knowledge.
This motivates the design philosophy of “Programming by
Optimization” [20] (PBO), which advocates for allowing
algorithmic choices in a software system (instead of fixing them
at the time of implementation) and automatic configuration by
optimization for a given problem context.

As one approach to automatic and efficient algorithm
configuration, racing-based strategies have been used to design
optimization algorithms. For example, iterated F-RACE [28] has
been used for the automatic design of multi-objective ant colony
optimization algorithms [26]. Similarly, IRACE [29] has been used
for the automatic design multi-objective evolutionary algorithms
[27] or to meta-configure the parameters IRACE itself [30].
Another commonly used framework is SMAC [5], which extends
the sequential model-based optimization paradigm (SMBO, see
also Section IV-A2) to an algorithm configuration setting. This is
achieved through the use of an intensification procedure that governs
across how many problem instances each configuration is evaluated,
trading off computational cost against confidence regarding the
superiority of a given configuration. While such intensification
mechanisms have been used in other work before [31] [32], SMAC
also uses instance features describing properties of a problem in-
stance are used to train the empirical performance model predicting
the performance of a configuration on a new problem instance.
Besides racing and sequential model-based approaches, genetic
algorithms have also been used to evolve optimal solvers [33].

We argue that the design of HPO algorithms can be seen as
an instance of PBO. However, while there are many approaches
that focus on individual algorithmic choices (e.g., the choice of
a surrogate model for BO [34]), we are not aware of many cases
where PBO is applied to designing HPO systems themselves. One
exception is [35], who use SMACv3 [36] to automatically configure
Bayesian optimization (BO) for HPO from a flexible search space of
components. We take a similar approach here in that the algorithmic
choices are exposed as hyperparameters that can be tuned. However,
unlike [35], we do not configure an established HPO method
(such as BO) with a predefined structure and associated control
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parameters (e.g., varying the surrogate model of BO). Instead, we
introduce a new configurable algorithmic framework, which covers
many different MF-HPO structures, including well-established
principles for multi-fidelity handling (e.g., Successive Halving) as
well as new approaches (e.g., equal batch size in all proposals).

In addition to designing well-performing algorithms, it is
equally important to facilitate an understanding of the effects of
all considered design choices. The field of sensitivity analysis (SA)
comprises a multitude of methods to assess the importance of input
factors on the output of a mathematical model [37]. Functional
ANOVA (fANOVA) methods, which decompose the response of
a (mathematical) model or function into lower-order components,
are a widely studied method in the field of SA, dating back to [38].
This class of methods has also become popular in the field of ML
to analyze the importance of hyperparameters [39].

Popular ways of analyzing effects of algorithmic effects in
ML and algorithm configuration are ablation studies [40]. This
involves measuring the performance when removing one or more of
algorithmic subcomponents to understand the relative contribution of
the ablated components to overall performance. There are different
ways of performing an ablation analysis; probably the most common
approach is leave-one-component-out (LOCO) ablation [41]. In
the context of algorithm configuration, [40] proposes an ablation
approach that links a source configuration (e.g., the default) to a
target (e.g., the optimized configuration) through an ablation path.

Nevertheless, many existing works that propose or improve HPO
or algorithm configuration systems do not analyze the algorithmic
choices of an optimized system, and the ones that do perform
relatively straightforward analyses. For example, [21] compare the
designs their approach finds automatically to the designs expert
humans generated. [42] perform ANOVA and non-parametric
Friedman tests to investigate in detail the effects that algorithmic
choices, found through automatic configuration [26], have on the
performance of multi-objective ant colony optimization algorithms.
[43] present a modular framework for CMA-ES variants on which
they perform optimization; in particular, they investigate how the
optimized configuration changes when the search space is enlarged
by introducing new components.

III. METHODOLOGY

A. Supervised Machine Learning

Supervised ML typically deals with a dataset (which is,
mathematically speaking, a tuple)D =

(
(x(i), y(i))

)
∈ (X ×Y)n

of n observations, assumed to be drawn i.i.d. from a data-generating
distribution Pxy. An ML model is a function f̂ : X → Rg that
assigns a prediction to a feature vector from X .1 f̂ is itself con-
structed by an inducer function I, i.e., the model-fitting algorithm.
The inducer I : (D,λ) 7→ f̂ uses training data D and a vector of
hyperparameters λ ∈ Λ that govern its behavior. The overall goal
of supervised ML is to derive a model f̂ from a data setD so that f̂
predicts data sampled from Pxy best. The quality of a prediction is
measured as the discrepancy between predictions and ground truth.
This is operationalized by the loss function L : Y × Rg → R+

0 ,
which is to be minimized during model fitting. In contrast to the

1where g allows handling of multi-output regression, as well as multiclass
classification with g classes by returning decision scores.

optimisation problems that we will define in Sections III-B and
III-C, we term this the “first level” optimisation problem.

The expectation of the loss value of predictions made for data
samples drawn from Pxy is the generalization error

GE := E(x,y)∼Pxy

[
L(y, f̂(x))

]
(1)

which cannot be computed directly if Pxy is not known beyond
the available dataD. Therefore, one often uses so-called resampling
techniques that fit models onNiter subsamplesD[Jj] and evaluate
them on complementsD[−Jj] of these subsets to obtain an estimate
of the generalization error

ĜE(I,λ,J) =
1

Niter

Niter∑
j=1

L
(
y[−Jj],I (D[Jj],λ) (x[−Jj])

)
.

(2)
Depending on the resampling method, the inducer I, and

the quantity of data in D, estimating the generalization error
ĜE(I,λ,J) can require large amounts of computational resources.

B. Hyperparameter Optimization

The goal of HPO is to identify a hyperparameter configuration
that performs well in terms of the estimated generalization error
in Equation (2). Often, optimization only concerns a subspace of
available hyperparameters because some hyperparameters might be
set based on prior knowledge or due to other constraints. One would
therefore split up the space of hyperparameters Λ into a subspace
of hyperparameters ΛS over which optimization takes place, and
the remaining hyperparameters ΛC = Λ/ΛS for which values λC
are given exogenously. We define the HPO problem as:

λ∗S ∈ argmin
λS∈ΛS

c(λS) = argmin
λS∈ΛS

ĜE(I, (λS,λC),J). (3)

Here, λ∗S denotes a theoretical optimum, and c(λS) is a shorthand
for the estimated generalization error in Equation (2). We refer to
Problem 3 as the “second level” optimisation problem.

Hyperparameters can be either continuous, discrete, or categorical,
and search spaces are often a mix of the different types. The search
space may be hierarchical, i.e., some subordinate hyperparameters
can only be set in a meaningful way if another parent hyperparameter
takes a certain value. In particular, many AutoML frameworks
perform optimization over a hierarchical hyperparameter space that
represents the components of a complex ML pipeline [1].

Many HPO algorithms can be characterized by how they handle
two different trade-offs: (a) The exploration vs. exploitation
trade-off refers to how much budget an optimizer spends on either
trying to directly exploit the currently available knowledge base
by evaluating very close to the currently best candidates (e.g.,
local search) or whether it explores the search space to gather
new knowledge (e.g., random search). (b) The inference vs. search
trade-off refers to how much time and overhead is spent to induce
a model from the currently available archive data in order to exploit
past evaluations as much as possible. Other relevant aspects that
HPO algorithms differ in are: Parallelizability, i.e., how many
configurations a tuner can (reasonably) propose at the same time;
global vs. local behavior of the optimizer, i.e., if updates are always
quite close to already evaluated configurations; noise handling, i.e.,
if the optimizer takes into account that the estimated generalization
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error is noisy; search space complexity, i.e., if and how hierarchical
search spaces can be handled; multi-fidelity, i.e., if the optimizer
uses cheaper evaluations to infer performance on the full data.

Multi-fidelity methods make use of the fact that the resampling
procedure in Equation (2) can be modified in multiple ways to
make evaluation cheaper: one can (i) reduce the training sizes |Jj|
via subsampling, as model evaluation complexity is often at least
linear in training set size, or (ii) change some components in λ in
a way that makes model fits cheaper. Examples of (ii) are reducing
the overall number of training cycles performed by a neural network
fitting process, or reducing the number of base learner fits in a
bagging or boosting method. These modifications can both increase
the variance of ĜE and introduce an (often pessimistic) bias, as
models trained on smaller datasets or with values of λ that make
fitting cheaper often have worse generalization errors.

We introduce a fidelity parameter r ∈ (0,1] that influences the
resource requirements of the evaluation of ĜE and define

c(λS; r) := ĜE (I, (λS,λC(r)) ,J(r)) . (4)

With this definition we make the choice that r should influence the
evaluation cost of ĜE only by modifying the resampling, J(r) or
by modifying a hyperparameter λC(r). Typically, r only affects
one of these aspects at a time, and if it affects λC, it only affects
a single hyperparameter dimension.

Note that we normally assume that a higher fidelity r returns
a better model in terms of the estimate of the generalization error,
and the best estimate is returned for r = 1. Therefore, r enters the
expression in a way where it can influence performance, but is not
searched over. We define c(λS) := c(λS; 1) as in [44], and the
optimization problem remains as in Equation (3).

This assumption may be violated in some scenarios, and model
performance could worsen for a higher value of r (e.g., a neural
network, which may overfit on a small dataset if trained for too
many epochs). In this case, we define the optimization problem as
(λ∗S, r

∗) ∈ argminλS∈ΛS,r∈(0,1] c(λS; r).

The resource requirements of evaluating c(λ; r) can have a
complicated relationship with λ and r; in practice, r is chosen
in such a way that it has an overwhelming and linear influence on
resource demand. The overall cost of optimization up to a given point
in the optimization process is therefore assumed to be the cumulative
sum of the values of r of all evaluations of c(λ; r) up to that point.
We can also interpret r as the fraction of the budget of a single full
fidelity model evaluation that must be spent for evaluating c(λ; r).

Given the definition of the HPO problem, we present an
(MF-)HPO algorithm for a single, synchronous worker in its most
generic form in Algorithm 1. Until a pre-determined budget is
exhausted, such an algorithm decides in every iteration (a) which
configuration(s) λS to evaluate next and (b) which fidelity r to
use for evaluation; non-multi-fidelity algorithms set this to r = 1
as default. The algorithm makes use of an archive A, a database
recording previously proposed hyperparameter configurations and,
if available, their evaluation results. This database can be shared
among multiple worker processes that optimize concurrently.

Algorithm 1 A generic HPO algorithm

1: while budget is not exhausted do
2: Propose

(
λ

(i)
S , r

(i)
)
, i = 1, ..., k, based on archiveA

3: Write proposals into a shared archiveA
4: Estimate generalization error(s) c

(
λ

(i)
S ; r(i)

)
5: Write results into shared archiveA
6: end while
7: Wait for workers to synchronize
8: Return best configuration in archiveA

The optimization process can be accelerated by making efficient
use of parallel resources. We distinguish between synchronous and
asynchronous scheduling. The former starts multiple evaluations
synchronously at the same time and waits until all of these have
finished. To be more precise, a number of k > 1 configurations is
proposed in line 2 and evaluated in parallel in line 4, all within the
inner loop of Algorithm 1. GivenK available parallel resources, it
should be ensured that the number k of configurations scheduled in
parallel is not significantly smaller thanK and that the evaluation
runtimes amongst these k configurations do not differ significantly
in order to avoid unnecessarily idling single parallel resources.
In contrast, for asynchronous scheduling, Algorithm 1 is run
individually in K separate worker processes. Given a shared
archive that is synchronized between the workers, every worker can
independently schedule new configurations to evaluate.

C. Algorithm Design and Configuration

Our goal will be to design and configure a new HPO algorithm
based on a superset of design choices included in previously
published HPO methods. We are interested in finding a configuration
(or making design choices) based on a set of training instances that
works across a broad set of future problem instances. This problem
is called algorithm configuration [5], [45]. It is quite similar to HPO;
a major difference is that algorithm configuration optimizes the
configuration of an arbitrary algorithm over a diverse set of often het-
erogeneous instances for optimal average performance, while HPO
performs a per-instance configuration of an ML inducer for a single
data set. We introduce the following notation for consistency with the
relevant literature: γ denotes configuration parameters controlling
our optimizerA, while λ denotes hyperparameters optimized by our
optimizer, controlling our inducer I. The algorithm configuration
problem can be formally stated as follows: Given an algorithm
A : Ω×Γ→ Λ parametrized by γ ∈ Γ and a distribution PΩ over
problem instances Ω together with a cost metric ζ, we must find a
parameter setting γ∗ that minimizes the expected ζ(A) over PΩ:

γ∗ ∈ argmin
γ∈Γ

Eω∼PΩ
[ζ(A(ω,γ))] . (5)

In our example, Γ corresponds to the space of possible components
of our HPO method and Ω to a class of HPO problems (i.e., ML
methods and datasets on which they are evaluated) for which their
configuration should be optimal. Based on a training set of repre-
sentative instances {ωi} drawn from PΩ, a configuration γ∗ that
minimizes c across these instances should be chosen through opti-
mization. When necessary, we refer to this process as the “third level”
optimization problem to distinguish it from the optimization per-
formed by the HPO algorithmA, i.e., the second level optimization.
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IV. FORMALIZING A BROAD CLASS OF MF-HPO ALGORITHMS

We aim to find an HPO algorithm that performs particularly
well in the multi-fidelity setting. To design an algorithm by
optimization, we propose a framework and search space of HPO
algorithm candidates that covers a large class of possible algorithms
and focus on a subclass of algorithms similar to Hyperband
because of their favorable properties. This subclass focuses
on multi-fidelity algorithms that use a pre-defined schedule of
geometrically increasing fidelity evaluations containing algorithms
like Hyperband [14] and BOHB [16].

The basis of this framework is presented in Algorithm 2, which
can be configured by combining algorithmic building blocks in novel
ways. The main difference to Algorithm 1 is that the Propose part
is specified more explicitly. At its core, Algorithm 2 consists of two
parts: (i) sampling new configurations at low fidelities (lines 2–7)
and (ii) increasing the fidelity for existing configurations (lines 8–
14). In contrast to Algorithm 1, Algorithm 2 makes use of state
variables t, b, and r to account for optimization progress. However,
these variables are only shown in Algorithm 2 for clarity and can, in
principle, be inferred from the archiveA. As argued in Section III,
every single worker instance of Algorithm 1 can, in principle, be
scheduled asynchronously, but we do not consider this in this work.

In its first iteration, Algorithm 2 uses a SAMPLE-subroutine to
initialize the initial batch C of µ solution candidates. The fidelity of
the evaluation of the proposed configurations is refined iteratively;
when all configurations in the batch have been evaluated with given
fidelity r, the top 1/ηsurv fraction of configurations is evaluated
with a fidelity that is increased by a factor of ηfid. When the
fidelity cannot be further increased for a batch because all of its
configurations were evaluated at full fidelity r = 1, they are set
aside, and a new batch of configurations is sampled.

The SAMPLE subroutine creates new configurations to be evalu-
ated, possibly using information from the archive to propose points
that are likely to perform well. We allow that any inducer Ifsur that
produces a surrogate model fsur can be used for model-assisted sam-
pling. The subroutine works by at first sampling a number of points
from a given generating distribution Pλ(A). The performance of
these points is then predicted using the surrogate model, and points
with unfavorable predictions are discarded in a process we refer to
as filtering. This process is repeated until the requested number µ of
non-discarded points is obtained.Ns and ρ have the same function as
in [16] (see Section IV-A5), with the filter factorNs controlling the
number of sampled points needed for each of the µ points returned,
and ρ controlling the fraction of points that are not filtered. Thus,
the configuration space of sampling methods also includes purely
random sampling, as in Hyperband, by setting ρ = 1. The influence
of the surrogate model on sampled candidates is larger when (i) the
number of sampled configurationsNs is large, or (ii) the fraction ρ
of candidates sampled at random is small. We present two slightly
different SAMPLE algorithms: SAMPLETOURNAMENT (Algorithm
3) and SAMPLEPROGRESSIVE (Algorithm 4) based on this principle
(see Appendix A). Both allow to use differentNs values for different
points they sample, parameterized byN0

s andN1
s .

While hyperparameters λS are proposed by one of the two SAM-
PLE methods, the fidelity hyperparameter r follows a fixed schedule
similar to Successive Halving [19] and Hyperband [14], with a few
extensions. For one, the survivor factor ηsurv can be a different value

from the fidelity scaling factor ηfid. Furthermore, the algorithm
allows three scheduling modes, controlled by batch_method: SH
does Successive Halving. The HB mode evaluates brackets, as
performed by Hyperband. While µ(b) is, in principle, a free
configuration parameter for every value of b, we choose to set µ(b)
so that total budget expenditure is approximately equal between
all brackets. This follows the principle used in Hyperband, but
the dependency on ηsurv and ηfid is more complex and determined
dynamically. Finally, equal batch_method uses equal batch sizes
for every evaluation. Individuals that perform badly at low fidelity
are removed, as in SH, but new individuals are sampled to fill up
batches to the original size. Because new individuals are added
to the batches at all fidelity steps, it is not necessary to use
brackets with different initial fidelities, and therefore, only a single
repeating bracket b = 1 is used. The equal method is an original
contribution of this work and was designed to be similar to HB
while using parallel resources more efficiently; the two batch
scheduling methods are illustrated in Figure 1.

If the exploration-exploitation tradeoff is not balanced properly,
the optimization progress can either stagnate or function evaluations
are wasted due to too much exploration of uninteresting regions of
the search space. However, the relative importance of exploration
and exploitation can change throughout the course of optimization,
where exploration performed later during the optimization is not as
useful as during the beginning. The given configuration space makes
it possible to make the exploration-exploitation tradeoff dependent
on optimization progress by providing the option to make ρ(t) and(
N0

s (t),N1
s (t)

)
dependent on the proportion of exhausted total bud-

get at every configuration proposal step. It is likely that large values
of ρ(t) / small values ofN ·s(t) perform better when t is small. Con-
versely, it is likely that small ρ(t) / largeN ·s(t) work well for large t.

A. Common MF-HPO Algorithms Covered by Algorithm 2
The following describes a few common HPO algorithms that

can be instantiated within this framework; see Table I for specific
configuration parameter settings within Algorithm 2 that correspond
to these algorithms.

1) Random search (RS): Configurations λS are drawn
(uniformly) at random, and every configuration is evaluated
with full fidelity r = 1. Parallelization is straightforward, as
configurations are drawn independently.

2) Bayesian Optimization (BO) [8]: The configuration
that maximizes an acquisition function a(λ) (e.g., expected
improvement, EI [4]) is proposed and evaluated with the full fidelity
r = 1. a(λ) is based on a surrogate model trained on the archive
A. BO can be parallelized by either using methods that can propose
multiple points at the same time using a single surrogate model or,
alternatively, by fitting a surrogate model on the anticipated outcome
of configurations that were proposed but not yet evaluated [11].
BO can be represented in Algorithm 2 by using an inducer Ifsurr

that produces a function fsurr equal to the composition of model
prediction and acquisition function. In its basic form, BO is not an
MF algorithm and therefore always sets r = 1.

3) Successive halving (SH) [19]: Successive halving, also called
Sequential Halving [46], is a simple multi-fidelity optimization algo-
rithm that combines random sampling of configurations with a fixed
schedule for r. At the beginning, a batch of µ configurations is sam-
pled randomly and evaluated with an initial fidelity rmin < 1. This is
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(a)
b = 1 b = 2 b = 3 b = 4

i |C| r |C| r |C| r |C| r

1 8 1/8 6 1/4 4 1/2 4 1
2 4 1/4 3 1/2 2 1
3 2 1/2 1 1
4 1 1

(b)
b = 1

i |C| r

1 8 1/8
2 8 1/4
3 8 1/2
4 8 1

(c) CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7
CPU 8

Time

(d) CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7
CPU 8
CPU 9
CPU10

(e) CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7
CPU 8

Bracket 2 ( HB ) /
Sampled with fidelity 1/4 ( equal )

Bracket 1 ( HB ) /
Sampled with fidelity 1/8 ( equal )

Bracket 3 ( HB ) /
Sampled with fidelity 1/2 ( equal )

Bracket 4 ( HB ) /
Sampled with fidelity 1 ( equal )

Evaluation of newly sampled configuration Evaluation "survivor" from previous iteration

Fig. 1: Illustration of the different batch_methods used, corresponding to values of ηfid = ηsurv = 2, s = 4, µ = 8.
The tables show (a) the HB method and (b) the equal method. Shown are the number |C| and fidelity value r of configurations
being evaluated in the iterations i of the various brackets counted by b. Except for i, the variables are the same as in Algorithm 2.
Subfigures (c) - (e) illustrate resource utilization by the batch methods, given availability of parallel resources. (c): Naively scheduling
the configuration evaluations one batch after another can make use of available parallel resources, but leaves many of them idle. (d):
Hypothetical way of scheduling configuration evaluations of different brackets at the same time so that all configurations with the same
r-value are scheduled together utilizes resources more efficiently, but the number of evaluations in each batch still varies. (e): The simpler
equal batch scheduling method always evaluates the same number of configurations within each batch and, therefore, makes optimal
use of available parallel resources.

TABLE I: RS, BO, SH, HB, BOHB as instances of Algorithm 2. η, ρ,Ns are configuration parameters of the respective algorithms.
“—” denotes that the value has no influence on the algorithm in this configuration.
*: BO and BOHB use inducers that produce non-standard model functions, which do not aim to predict the actual performance of
configurations, and instead calculate the value of an acquisition function such as EI [4] (for BO) or the ratio of two kernel density estimator
(KDE) models (for BOHB).
†: In a small departure from BOHB, Algorithm 2 uses the KDE estimate of good points for all sampled points, even when randomly
interleaved. BOHB randomly interleaves from a uniform distribution.

Algorithm µ(b) s ηsurv ηbudget Ifsur ρ Ns batch_mode Pλ(A)

RS — 1 — — — 1 — — uniform
BO 1 1 — — e.g. GP+EI* ρ Ns — uniform
SH µ b− logη(rmin)c+ 1 η η — 1 — SH uniform

HB ds · η
s−b

s−b+1
e b− logη(rmin)c+ 1 η η — 1 — HB uniform

BOHB ds · η
s−b

s−b+1
e b− logη(rmin)c+ 1 η η TPE* ρ Ns HB KDE†
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Algorithm 2 SMASHY algorithm
Configuration Parameters: batch size schedule µ(b),

number of fidelity stages s, survival rate ηsurv, fidelity rate
ηfid, SAMPLE method (either SAMPLETOURNAMENT or
SAMPLEPROGRESSIVE), batch_method (one of equal, SH, or
HB), total budgetB; further configuration parameters of SAMPLE:
Ifsurr , Pλ(A), ρ(t),

(
N0

s (t),N1
s (t)

)
, ntrn.

State Variables: Expended budget fraction t ← 0, bracket
counter b ← 1 (remains 1 for batch_method ∈ {equal, SH}),
current fidelity r← 1, batch of proposed configurations C ← ∅

1: while t < 1 do

2: if r = 1 then . Generate new batch of configurations
3: r← (ηfid)

b−s

4: C ← SAMPLE
(
A, µ(b), r;Ifsur,Pλ(A),
ρ(t),

(
N0

s (t),N1
s (t)

)
, ntrn

)
5: if batch_method = HB then
6: b← (b mod s) + 1
7: end if
8: else . Progress fidelity
9: r← r · ηfid

10: C ← SELECT_TOP (C, |C|/ηsurv)
11: if batch_method = equal then
12: µ̃← µ(b)− |C|
13: C ← C ∪ SAMPLE

(
A, µ̃, r;Ifsur,Pλ(A),
ρ(t),

(
N0

s (t),N1
s (t)

)
, ntrn

)
14: end if
15: end if

16: Evaluate configuration(s) c (λS; r) for all λS ∈ C
17: Write results into shared archiveA
18: t← t+ r · |C|/B . Update budget spent
19: end while

followed by repeated “halving” steps, where the top fraction η−1 of
configurations is kept and evaluated after r is increased by a factor
of η, until the maximum fidelity value is reached. The schedule is
chosen to keep the total sum of all evaluated r constant in each batch.
Both ηsurv and ηfid in Algorithm 2 correspond to SH’s η-parameter.

4) Hyperband (HB) [14]: Similar to SH, Hyperband uses a
fixed schedule for the fidelity parameter r, but it augments SH by
using multiple brackets b of SH runs starting at different rmin(b)
and with different µ(b). The number of brackets is set to

s = blogη(1/rmin)c+ 1, (6)

which coincides with the number of fidelity steps that can be
performed on a geometric scale on the interval [rmin,1]. In bracket
b ∈ {1,2, . . . , s}, a number of µ(b) samples are initially sampled
and evaluated with initial fidelity r = ηs−b. µ(b) is chosen such
that each bracket needs an approximately similar amount of budget:
µ(b) = ds · ηs−b

s−b+1e.
5) Bayesian Optimization Hyperband (BOHB) [16]: Model-

based methods outperform Hyperband when a relatively large
amount of budget is available and many objective function evalua-
tions can be performed. BOHB was created to overcome this draw-
back. This method iterates through successive halving brackets like

Hyperband, but, instead of sampling new configurations randomly, it
uses information from the archive to propose points that are likely to
perform well. A total number ofNs configurations are proposed for
evaluation; ρ are sampled at random, and the rest are chosen based
on a surrogate model induced on the evaluated configurations inA.
The models used by BOHB are a pair of kernel density estimators
of the top and bottom configurations in A, similar to the process
in [47]. To implement BOHB in Algorithm 2, one therefore needs
to use an inducer Ifsurr that produces a function that calculates the
ratio of kernel densities, an unusual kind of regression model.

B. Limitations and Further MF-HPO Algorithms

The following lists notable HPO algorithms not currently covered
by the optimization space of Algorithm 1. They were excluded
because they differ in too substantial ways from the other algorithms
considered here.

1) FABOLAS [48]: Fabolas is a continuous multi-fidelity BO
method, where the conditional validation error is modelled as a
Gaussian process using a complex kernel-capturing covariance with
the training set fraction r ∈ (0,1] to allow for adaptive evaluation
at different resource levels.

2) Asynchronous successive halving (ASHA) [15] and
asynchronous Hyperband: Hyperband, as well as SH, have the
drawback that batch sizes decrease throughout the stages of an SH
run, preventing efficient utilization of parallel resources. ASHA
is an effective method to parallelize SH by an asynchronous
parallelization scheme. A shared archive across a number of different
workers is maintained. Instead of waiting until alln configurations of
a batch have been evaluated for fidelity r, every free worker queries
the shared archiveA for “promotable” configurations (i.e., configura-
tions that belong to the fraction of top η−1 configurations evaluated
with the same fidelity). Asynchronous Hyperband works similarly.

3) Asynchronous BOHB (A-BOHB) [17]: A-BOHB, an
asynchronous extension of BOHB where configurations are
sampled from a joint Gaussian Process, explicitly capturing
correlations across fidelities. In contrast to ASHA and asynchronous
versions of BOHB in the original BOHB publication [16], A-BOHB
does not perform synchronization after each stage but instead
uses a stopping rule [49] to asynchronously determine whether a
configuration should continue to run or be terminated.

V. EXPERIMENTAL ANALYSIS

Given the formalization of the framework in Section IV, our goal
is to find the best representative (out of this class of algorithms) by
solving the third-level optimization problem in Equation (5), and
explain the role of specific algorithmic components in a benchmark-
driven approach. We aim to answer the following research questions:
RQ1: How does the optimal configuration of our MF-HPO

framework differ between problem scenarios, i.e., do different
problem scenarios benefit from different HPO algorithms?

RQ2: How does our optimized MF-HPO algorithm compare to
other established HPO implementations?

RQ3: Does the successive-halving fidelity schedule have an
advantage over the simpler equal-batch-size schedule?

RQ4: What is the effect of using multi-fidelity methods in general?
RQ5a: Does changing SAMPLE configuration parameters

throughout the optimization process offer an advantage?
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TABLE II: Three benchmark collections of YAHPO Gym used in our benchmark.

Hyperparameter Types

Scenario Target Metric d Cont. Integer Categ. Hierarchical # Instances # Training Set

lcbench: HPO of a neural network cross entropy loss 7 6 1 0 7 35 8
rbv2_super: AutoML pipeline configuration log loss 38 20 11 7 X 89 30
nb301: Neural architecture search validation accuracy 34 0 0 34 X 1 —

RQ5b: Does (more complicated) surrogate-assisted sampling in
SAMPLE provide an advantage over using simple random
sampling with surrogate filtering?

RQ6: What effect do different surrogate models (or using no
model at all) have on performance?

RQ7: Does the equal-batch-size schedule give an advantage over
established methods when parallel resources are available?

We rely on benchmark scenarios of the YAHPO Gym benchmark
suite [50], each of which provides a number of related instances of
optimization problems. The benchmark scenarios we have chosen
cover three important application areas of AutoML: Hyperparameter
optimization of a neural network (lcbench), AutoML pipeline
configuration (rbv2_super), and neural architecture search (nb301).
These classes of problems do not only represent common and
relevant tasks for researchers and practitioners in the field; as
presented in Table II, they are also quite different with regards
to: (1) the dimensionality of the search space, (2) hyperparameter
types (categorical, integer, continuous), and (3) whether there
are hierarchical dependencies between hyperparameters. More
details on the characteristics of the problem classes are given in
Appendix B. To avoid an optimistic bias in the analysis caused by
over-adaption to the random peculiarities of the particular instances
used during configuration, we are using meta-holdout splits on the
level of HPO problem instances (see Appendix IV). This means
that for analysing the performance of a configured candidate of
Algorithm 2, we are evaluating this candidate by running it on
instances that were not seen during configuration. Algorithm 2 is
always run with a budget limit corresponding to 30 · d full fidelity
evaluations (where d is the dimension of the problem instance).

A. Algorithm Design via Configuration

First, we describe the experiments we conducted to configure
Algorithm 2 via optimization.

We follow the PBO principle, and configure Algorithm 2 by
optimizing separately for different HPO scenarios, namely for
lcbench and rbv2_super, resulting in two optimized configurations
γ∗lcbench and γ∗rbv2_super, respectively. The nb301 scenario is not
used for configuration, but exclusively for subsequent analysis.

For the algorithm configuration of our framework (third level),
the performance objective Eω∼PΩ [ζ(A(ω,γ))] for a configuration
γ in Equation (5) is estimated by running Algorithm 2 (i.e., second
level optimization) configured by γ on a set of problem instances
and taking the average of observed performances. For this, all
problem instances included in the respective benchmark scenario
that have not been held out for subsequent analysis are used.
As configurator for our framework we use BO with the lower
confidence bound acquisition function [51] with interleaved random

configurations every three evaluations2. Configuration is repeated
three times for each scenario, each running for 60 hours, with
different random seeds. To get the overall best configuration, the set
of all evaluated configurations γ (i.e., the third level optimization
archive) is combined into a single data set for each scenario. To
estimate the actual best configuration, a common identification
criterion [52] is used: a surrogate model is fitted on the combined
datasets and the optimum among the in-sample predictions of this
model is used (γ∗lcbench and γ∗rbv2_super, respectively). We also store
the (surrogate-smoothed) optima of all three individual optimization
runs and record the range of configuration parameter values to obtain
an estimate of the uncertainty of the overall optimal configurations.

The search space used for the optimization of Algorithm 2
is shown in Appendix C, Table V. While the batch size µ is
constant in the equal batch_method, it changes for every bracket
when batch_method is HB. The batch sizes µ(2), µ(3), . . . are
constructed from µ(1) dynamically as described in Section IV.
The search space contains several surrogate learners: Random
forests [53] (RF), K-nearest-neighbors with k set to 1 (KNN1),
kernelized K-nearest-neighbors with “optimal” weighting [54]
(KKNN7), and the ratio of density predictions of good and bad points,
similar to tree parzen estimators [47] without a hierarchical structure
as in BOHB [16] (TPE). For the pre-filtering sample distribution
Pλ(A), we evaluate both uniform sampling (uniform), and
sampling from the estimated density of good points as done in
BOHB [16] (KDE). filter_mb determines whether the surrogate
model makes predictions assuming the highest fidelity value r ob-
served (TRUE), as opposed to assuming the fidelity of the points be-
ing sampled; in the framework of the SAMPLE Algorithms 3 and 4 in
Appendix A, this influences the behavior of Ifsurr . Note that the max-
imum number of fidelity steps per batch s is not part of the search
space and instead inferred automatically from ηfid and the lower
bound for r that is given as part of the optimization problem instance.
As in Hyperband, it is set to the largest number of stages that is pos-
sible given ηfid and the lower bound on r according to Equation (6).

B. Algorithm Analysis

Our goal in this work is not only to determine configurations of
Algorithm 2 that perform well on the respective benchmarking sce-
narios, but also to determine what effect individual components have
on performance. However, performing a complete sensitivity anal-
ysis would be prohibitively computationally expensive, as it would
require evaluation of the objective (i.e., running Algorithm 2) in an
experimental design of different configurations. Instead, we evaluate
the performance of the candidate configurations found in Sec-
tion V-A and alternative configurations – which are chosen in a way
to allow for answering our research questions – on the benchmark

2Note that this optimizer used for third-level optimization is not an instance of
Algorithm 2
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test instances which were held out during configuration. A simple
method to answer many of these questions is to take the optimized
configuration of Algorithm 2 and swap components of it for simpler
components (or removing them completely), thereby performing
a one-factor-at-a-time analysis or an ablation study. However, the
optimal values of some components may interact strongly with other
components. We therefore auto-configure the framework several
times under certain constraints dictated by our particular research
question at hand. For example, to investigate the effect of varying
ntrn and Ns over t, we run the optimization of Algorithm 2 with
the constraint n(0) to be equal to n(1) and compare the resulting
configuration to the overall optimum γ. Table III lists the different
values of γ we generate under different constraints. For each value
of γ, we run the respectively configured HPO algorithm on both the
lcbench and the rbv2_super scenario, and (unless stated otherwise)
once each for batch_method set to equal and HB. We refer
to an optimized configuration that was obtained on the lcbench
scenario with batch_method set to equal as γ∗lcbench[equal],
and to the overall optimum (i.e., the better of γ∗lcbench[equal] and
γ∗lcbench[HB]) as γ∗lcbench; similar for rbv2_super.

Every evaluation of a framework configuration, i.e., a complete
HPO run on a problem instance, is repeated 30 times (with different
random seeds) to allow for statistical analysis.

The analysis of our research questions is based on the following
tables and visualizations. Table VI in Appendix D shows the
configuration parameters that were selected for each benchmark
scenario with various search space restrictions. We perform all op-
timization runs constrained to the fidelity scheduling equal and
HB, respectively, and denote the resulting optimal configurations
γ∗[equal] and γ∗[HB]. Figure 2 shows the configuration values of
the top 80 evaluated points according to their surrogate-predicted
performance. The ranges covered by the bee swarms are again an
indicator of approximate ranges of configuration values that can be
expected to work well. Figure 5 shows the final performance at 30·d
full-budget evaluations for all optimization runs that were performed.
The standard error shown is the estimated standard deviation of the
mean of benchmark-instance-wise performance, representing uncer-
tainty about the “true” performance mean if an infinite number of
benchmark instances of the given class of problems were available.

We now describe in more detail how we operationalize each of
the research question RQ1-RQ7 and report results.

RQ1: How does the optimal configuration differ between
problem scenarios, i.e., do different problem scenarios benefit from
different HPO algorithms?

Setup: We investigate the difference in the values that γ∗lcbench

and γ∗rbv2_super take, and put this difference in perspective by
comparing it to the uncertainty of these values. To evaluate how
well γ∗lcbench and γ∗rbv2_super generalize to other problem scenarios,
we evaluate them on the respective instances of scenarios that they
were not configured on.

Results: As can be seen in Table VI and in Figure 2, many of
the selected components of the γ∗ are relatively close to each other
across the two scenarios on which they were optimized, relative
to their uncertainty ranges. Ifsurr is chosen as KNN1 on rbv2_super,
but can also use KKNN7 on lcbench, which in fact seems to be
slightly preferred. This is interesting as KNN-based models are
rarely considered in surrogate-based HPO; the typically preferred

random forest model was not selected. Pλ(A) takes any of the two
values for rbv2_super, but is chosen to be KDE in lcbench. Finally,
ρ(0) is close to 1 in the beginning on rbv2_super, and closer to 0
(although still greater than ρ(1)) for lcbench.

The degree to which the differences in γ∗ influence the outcome
can be observed in Figure 5. The optimized results generalize well
to test instances from the same scenario as they were configured
on. Figure 3 shows the optimization progress (on unseen test
instances) of configurations if configured on the same scenario vs.
configurations that were configured on a different scenario. We see,
for example, a clear advantage of the configurations that we obtained
by optimizing directly on lcbench when we evaluate them on their
respective held out test instances. We suspect that this difference
in performance is mainly due to the different choices of surrogate
model classes Ifsurr as well as the random interleave fraction ρ
(cf. Figure 2), and that specific settings for these two algorithmic
components are needed for lcbench to reach optimal performance.

This is not the case for the rbv2_super scenario, where none
of the different algorithms seem to clearly exploit the problem
structure of rbv2_super better than others.

RQ2: How does the optimized algorithm compare to other
established HPO implementations?

Setup: We evaluate several well-known HPO algorithms in
their default configuration on the same benchmark instances: for
BOHB [16], we use the implementation found in HpBandSter3

(version 0.7.4); for HB [14], we use mlr3hyperband4 (version
0.1.2); for SMAC [5], we use the SMACv3 package5 (version
1.0.1). We also construct a traditional Gaussian process-based BO
(GPBO) [4] with mlrMBO6 (version 1.1.5). As GPBO works best
with numerical search spaces, we only evaluate it on lcbench. Note
that GPBO, SMAC, and RS are not multi-fidelity algorithms and
therefore always evaluate points with maximum fidelity 1.

Results: The performance curves for the mean normalized regret
are shown in Figure 3, and the final performance values at 30 ·d full
fidelity evaluations are shown in Figure 5. A critical difference plot
and test can be seen in Figure 4b. The behavior of RS, HB, BOHB,
and SMAC is not surprising; initially, RS and SMAC perform the
same, as SMAC evaluates an initial random design. After this, the
performance of SMAC improves quickly. HB and BOHB initially
both perform better than RS or SMAC because of their multi-fidelity
evaluations, but there is little difference between them. After a while,
BOHB starts to outperform HB because of its surrogate-based sam-
pling, which aligns with the observations in [16]. Therefore, BOHB
performs well for most budgets, often being the best optimizer for
a budget of one as well as for 100 full fidelity evaluations. Given its
multi-fidelity characteristics, HB is a good choice for low budgets,
while SMAC is well suited for larger optimization budgets. Our
framework is very competitive on both lcbench and rbv2_super, but
is outperformed by SMAC on nb301. We assume that this is because
Algorithm 2 was not explicitly optimized for the nb301 scenario.

Although our framework was only optimized for performance
at 30 · d evaluations, it is also competitive with BOHB after fewer
evaluations, as seen in Figure 4b.

3https://github.com/automl/HpBandSter
4https://cran.r-project.org/package=mlr3hyperband
5https://github.com/automl/SMAC3
6https://cran.r-project.org/package=mlrMBO
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Fig. 2: Beeswarm plot of the best configurations according to the surrogate model over the meta-optimization archive of γ∗. Shown
are the top 80 configuration points (according to the surrogate-model-predicted performance) that were evaluated during optimization.
Levels of discrete parameters are shown. Most numeric parameters are on a log-scale (left axis), except for ρ(0), ρ(1), which are on
a linear scale (right axis). Instead of showing bothN0

s (t) andN1
s (t), their geometric meanNs(t) is shown. The highlighted large points

are γ∗[HB] and γ∗[EQUAL], which were found on both benchmark scenarios.

RQ3: Does the successive-halving fidelity schedule have an
advantage over the (simpler) equal-batch-size schedule?

Setup: It is likely that the type of fidelity scheduling used interacts
with other configuration parameters. Therefore, we investigate
the difference of resulting optimal configurations γ∗[equal] and
γ∗[HB].

Results: In both scenarios, the batch method HB is ultimately
selected for the optimum γ∗, although Figures 4a and 4b show that
the difference to batch size equal is not statistically significant
at α = 1%. We observe that the equal fidelity scheduling mode
has several advantages: it is much simpler than HB as it does
not need to keep track of SH brackets, and does not need to adapt
µ(b) to make the expended budget at each bracket approximately
equal. As another benefit, it allows for easy parallel scheduling of
evaluations (see also Figure 1). This is because it always schedules
the same number of function evaluations at a time, which can
therefore be run synchronously.

RQ4: What is the effect of using multi-fidelity methods in
general?

Setup: We evaluate the performance of a modified γ∗ where
the number of fidelity stages s is set to to 1, thus ensuring that
configurations are only evaluated with maximum fidelity 1.7

Results: Our results show the superiority of MF-HPO methods
compared to HPO methods that do not make use of lower-fidelity
approximations. Figure 4a suggests that multi-fidelity methods are

7Because s is not part of the search space Γ and is instead given by Equation 6,
this is achieved by setting ηfid to∞.

significantly better than their non-multi-fidelity counterparts if opti-
mization is stopped at an intermediate overall budget corresponding
to 100 full fidelity evaluations. To be more precise, we see that
BOHB as well as both optimized variants γ∗[equal] and γ∗[HB]
(optimized for the respective scenario, respectively) significantly out-
perform SMAC under this strict budget constraint. In line with [14],
HB significantly outperforms RS for this budget. On the other hand,
Figure 4b provides evidence that multi-fidelity methods can achieve
performance on the same level as state-of-the-art methods that do
not make use of low fidelity approximations (e.g., SMAC) for larger
budgets. We conclude that a properly designed multi-fidelity mech-
anism provides substantial improvements of anytime performance
without affecting performance for larger budgets negatively. In our
opinion, the gain in anytime performance justifies the additional
algorithmic complexity that is introduced by multi-fidelity methods.

RQ5a and RQ5b: Does changing SAMPLE configuration
parameters throughout the optimization process offer an advantage?
Does (more complicated) surrogate-assisted sampling in SAMPLE
provide an advantage over using simple random sampling with
surrogate filtering?

Setup: To investigate RQ5a (i.e., the effect of the dependence of
ρ, ntrn and theNs configuration parameters on t), we performed an
optimization where this t-dependence was removed. As these pa-
rameters are interpolated between the values at t = 0 and t = 1, this
corresponds to restricting the search space to where these values are
equal, as shown for γ2 in Table III. In addition to this, we ran another
optimization where we further restricted N0

s and N1
s to be equal,
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Fig. 3: Optimization progress (mean normalized regret) of serial evaluation on each benchmark scenario as well as 32x parallel evaluation
on lcbench. Different configurations of Algorithm 2 are executed on benchmark functions that have not been used for the meta-optimization
itself, and the progress of these algorithm runs is shown. “γ∗(lcbench bm equal)” is the configuration obtained from optimizing on lcbench
with batch_methodequal, other labels are contructed similarly. Shown is the mean over 30 evaluations, averaged over all available
test benchmark instances for each of the three scenarios. The uncertainty bands show the standard error over the test instances. Note
the log-scale on the x-axis. Regret is calculated as the difference between the best evaluation performance so far and the overall best
value found on each benchmark instance over all experiments; normalized such that 1 corresponds to the median of the performance
of all randomly sampled full fidelity evaluations. We plot performance values observed by the HPO algorithm which depend on evaluation
fidelity. This is the reason for the initially “slow” convergence of algorithms that make their first full-fidelity evaluation late. Note that
µ of γ∗[equal] was set to 32 for the parallel evaluations, and HB and BOHB were only naïvely parallelized to simulate a synchronous
“single optimizer, multiple workers” environment. See Figure 6 in Appendix E for a larger version.

2 3 4 5 6

CD

gamma*[HB]

BOHB

gamma*[EQUAL]

HB

SMAC

RS

(a) Intermediate optimization budget of 100 full evaluations

2 3 4 5 6

CD

gamma*[EQUAL]

SMAC

gamma*[HB]

BOHB

HB

RS

(b) Full evaluation budget (final performance)

Fig. 4: Critical difference plot [55] comparing the performance of different algorithms across all instances and scenarios. For each of the
three scenarios, the mean performance (across replications) for each of the six algorithms is computed (γ∗[HB] is equal to γ∗lcbench[HB]
for instances of the lcbench scenario, and to γ∗rbv[HB] for the rbv2_super scenario; same for γ∗[EQUAL]). The critical difference test
is based on the ranks of the algorithms computed per scenario and instance. Lower ranks are better. Horizontal bold bars indicate that
there is no significant difference between algorithms (α = 1%). GPBO, which was not evaluated on all scenarios, is not included.

ntrn to be 1, and only the tournament filter_method be used
for RQ5b. The performance of the resulting configurations gives an
indication of the performance that is lost for the gain in simplicity.

Results: The observations made for γ2 (forbidding change over
time) and γ3 (forbidding change over time and within each batch)
are slightly contradictory. In particular, the nb301 performance
of γlcbench

2 [HB] is a visible outlier with regards to optimization
performance. There is no obvious explanation from inspecting the
configuration parameters of γlcbench

2 [HB], but it is possible that it is
an accidental “good fit” of configuration parameters to the specific
landscape of nb301.

On lcbench and rbv2_super, the impact of restricting the search
space is smaller and within the uncertainty of the performance
of a single configuration. However, we note that both changing
configuration parameters over time and within each batch sample
introduces significant complexity to the algorithm; thus we prefer

the restricted optimization results over γ∗.

RQ6: What effect do different surrogate models (or using no
model at all) have on performance?

Setup: We evaluate the overall result γ∗[equal] with Ifsur set
to each of the inducers in the original search space (see Table V).
Furthermore, γ∗[equal] is evaluated with ρ set to 1 (i.e., all points
are sampled randomly from a distribution that may be non-uniform),
and finally, with ρ = 1 and Pλ(A) = uniform (i.e., all points
are sampled completely uniformly at random).

Results: Surprisingly, the simple k-nearest-neighbors algorithm
seems to be chosen consistently by the algorithm configuration
for both lcbench and rbv2_super (see Figure 2), either with a
value of k = 1 or k = 7. This result is in line with what we
already speculated for RQ1. Our ablation experiments suggest that
the performance of the optimizer is on average best when using
this surrogate learner, even though the differences do not seem
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lcbench rbv2_super nb301
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γ1

γ*

Mean Normalized Regret

Scenario lcbench rbv2_super Ifsurr
KKNN7
KNN1

none
RF

Sample KDE
TPE

batch_method equal HB

Fig. 5: Mean normalized regret of final performance on “test” benchmark instances for the configuration, shown in Table III. Shown
is the mean over 30 evaluations, averaged over all available test benchmark instances for each of the three scenarios. The uncertainty
bands show standard error over instance means. Regret is calculated as the difference between the best evaluation performance so far
and the overall best value on each benchmark instance over all experiments; normalized such that 1 corresponds to the median of the
performance of all randomly sampled full fidelity evaluations.

to be significant. KNN1 is therefore a reasonable, and simpler,
alternative to more complex surrogate learners like the TPE-based
method proposed for the original BOHB algorithm.

RQ7: Does the equal-batch-size schedule give an advantage over
established methods when parallel resources are available?

Setup: Optimization of ML methods that are expensive to evaluate
is often done in parallel; we evaluate the performance of our method
and other methods in a (simulated) parallel setting. We evaluate
γ∗[equal] with µ set to 32 and with an optimization budget of
30 · 4 · d, where d is the dimensionality of the optimization problem.
We compare it to GPBO with qLCB [10] for 32 parallel evaluations,
and simulate parallel execution of RS by running 30 · 4 · d random
evaluations. Both BOHB and SMAC offer parallelized versions, but
the YAHPO Gym benchmark package does not yet provide support
for asynchronous parallel evaluations [50]. However, since HB and
BOHB propose evaluations in batches, we compared HB and BOHB
by accounting for submitted batches in increments of 32, essentially
simulating a single HB/BOHB optimizer sending evaluations to 32
parallel workers and waiting for their completion synchronously.

Results: Figure 3 shows that our algorithm is competitive with
GPBO – a state-of-the-art synchronously parallel optimization
algorithm – when evaluated with 32 parallel resources. This result
also shows the main advantage that the equal fidelity schedule
has over scheduling like HB, as synchronously parallelizing HB
or BOHB puts them at a great disadvantage over even RS. For
HB and BOHB, it is necessary to use asynchronously parallelized
methods [15], [17] or use an archive shared between multiple
workers [16] to obtain competitive results. However, synchronous
objective evaluations are much easier to implement in many
environments than asynchronous communication between workers,

making the advantage of the simplicity of the equal schedule
even more pronounced.

C. Reproducibility and Open Science

The implementation of the framework in Algorithm 2 and
reproducible scripts for the algorithm configuration and analysis
are available in public repositories.8 All data that were generated
by our analyses are available as well.

VI. CONCLUSION

We presented a principled approach and framework to benchmark-
driven algorithm design and applied it to generic multi-fidelity HPO.
We formalized the search space of multi-fidelity hyperparameter
optimizers and created a rich and configurable optimization
framework. Given the search space, we used BO for meta-
optimization of our framework on two different problem scenarios
within the field of AutoML, and evaluated the result on held out
test problems and an entirely held out test scenario. We evaluated
the configured optimizers and compared to BOHB, HB, SMAC,
and a simple RS as reference. We performed an extensive analysis
of the effect of different algorithmic components on performance,
while also considering the additional algorithmic complexity they
introduce. Our configured framework showed equal and in some
cases superior performance to widely-used HPO algorithms.

The additional algorithmic complexity introduced by multi-
fidelity evaluations provides substantial benefits. However, based on
our experiments, we argue that design choices made by established
multi-fidelity optimizers like BOHB can be replaced by simpler

8https://github.com/mlr-org/smashy,
https://github.com/compstat-lmu/paper_2021_benchmarking_special_issue
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TABLE III: Summary of Experiment. Shown are the various optimizer configurations γ that were obtained from optimizations with
different constraints. “Name”: The name by which we refer to the configuration in the text. “RQ”: The research question that mainly
relates to the configuration. “Optimize”: Whether the given configuration was obtained by conducting a (possibly constrained) optimization
(X), or by substituting values into the global optimum γ∗.

Name RQ Optimize Design Modification

γ∗ 1, 2, 3 X none (global optimization)
γ1 4 7 ηfid →∞
γ2 5a X ntrn(0) = ntrn(1), N0

s (0) = N0
s (1), N1

s (0) = N1
s (1), ρ(0) = ρ(1)

γ3 5b X filter_method→ tournament, ntrn → 1, N0
s (0) = N0

s (1) = N1
s (0) = N1

s (1), ρ(0) = ρ(1)
γ4 6 7 batch_method→ equal, Ifsur → ∗
γ5 6 7 batch_method→ equal, ρ→ 0
γ6 6 7 batch_method→ equal, ρ→ 0, Pλ(A)→ uniform
γ7 7 7 batch_method→ equal, µ→ 32, quadruple budget

choices: For example, the (more complex) SH schedule is not
significantly better than a schedule using equal batch sizes, which
allows for more efficient parallelization.

KDE-based sampling of points to propose, whether filtered by a
surrogate model or not, was consistently chosen by our framework.
This detail, which is not usually presented as the main feature of
BOHB, seems to have an unexpectedly large impact. On the other
hand, our optimization results suggest that a surprisingly simple
surrogate learner (knn, k = 1) can perform even better.

Some components of our search space with large algorithmic
complexity have not shown much benefit. Optimization on
rbv2_super did choose time-varying random interleaving, and
overall, more aggressive filtering late during an optimization run
(Ns(1) > Ns(0)) was slightly favored, but the results did not
consistently outperform a configuration obtained from a restricted
optimization that excluded time-varying configuration parameters.

Our analysis of the set of best observed performances during
optimization indicates that there is a large agreement between
benchmark scenarios about what the optimal γ∗ configuration
should be, with parameters that control (model-based) sampling
and the surrogate model being the notable exception. This suggests
that there may be a set of configuration parameters that are either
generally good for many ML problems, or have little impact
on performance and can therefore be set to the simplest value.
However, some configuration parameters should be adapted to
the properties of the particular given optimization problem. The
meta-optimization framework presented in this work can be used
in future work to investigate the relationship between features of
optimization problems and related optimal configurations.

Other fruitful directions for future work include the more
in-depth evaluation of asynchronous evaluations; asynchronous
methods are important nowadays where parallel resources are
plentiful, but current widely-used surrogate-based benchmarks do
not allow for easy asynchronous evaluations. Suggested methods
– such as waiting with a sleep-timer for an appropriate amount [16]
– are impractical for meta-optimization.
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APPENDIX A
SAMPLE ALGORITHMS

The pseudocode of both SAMPLE algorithms is presented here
for clarity.

Algorithm Algorithm 3, SAMPLETOURNAMENT, diversifies
the set of points proposed through an extension that draws
different points {λS} in n tournaments at each invocation of
SAMPLE. Each tournament yields the top ntrn points out of
ntrn · N(i)

s samples according to the surrogate model, where
i ∈ {1, . . . , n}. We parameterize the number of points sampled
for each tournament using the configuration parameters N0

s
and N1

s ; the effective value of Ns for each point is interpolated
geometrically9: N(i)

s =
⌊
(N0

s )(n−i)/(n−1) · (N1
s )(i−1)/(n−1)

⌉
.

The special case of ntrn = 1 corresponds to a basic SAMPLE

subroutine where points λ(i)
S are each independently filtered with

different effective filter factorsN(i)
s .

Besides the sampling method described above, we propose
an alternative method, Algorithm 4, which we name
SAMPLEPROGRESSIVE: instead of sampling N

(i)
s points

independently for each configuration λ
(i)
S with i ∈ {1, . . . , µ}, we

sample a single ordered pool P of µ ·max(N0
s ,N

1
s ) random points

once at the beginning of SAMPLE. Each λ
(i)
S is then selected as the

point with the best surrogate-predicted performance from the first
µ ·N(i)

s points in P that was not already selected before.

Algorithm 3 SAMPLETOURNAMENT algorithm
Input: Archive A, number of points to generate µ, current

fidelity r

Configuration Parameters: Surrogate learner Ifsur , generating
distribution Pλ(A), random interleave fraction ρ, sample filtering
rates (N0

s ,N
1
s ), points to sample per tournament round ntrn.

State Variables: Batch of proposed configurations C ← ∅

1: Use ρ to decide how many points nrandom_interleave to sample
without filter

2: C ← Sample nrandom_interleave points from Pλ(A)
3: n← d(µ− nrandom_interleave)/ntrne .

Numter of tournament rounds
4: fsur ← Ifsur(A) . Surrogate model
5: for i← 1 to n do
6: nsample ←

⌊
(N0

s )
n−i
n−1 · (N1

s )
i−1
n−1

⌉
7: C0 ← Sample nsample configurations from Pλ(A)
8: Predict performances of points in C0 using fsur
9: C ← C ∪ SELECT_TOP (C0,min(ntrn, µ− |C|))

10: end for
11: return C

9Here, b·e is the operation that rounds to the nearest integer

Algorithm 4 SAMPLEPROGRESSIVE algorithm
Input: Surrogate learner Ifsur , ArchiveA, number of points to

generate µ, current fidelity r, random interleave fraction ρ, sample
filtering rates (N0

s ,N
1
s ), generating distribution Pλ(A)

State Variables: Batch of proposed configurations C ← ∅,
(ordered) pool of sampled points to select from P

1: Use ρ to decide how many points nrandom_interleave to sample
without filter

2: C ← Sample nrandom_interleave configurations from Pλ(A)
3: µ← µ− nrandom_interleave

4: npool ← µ ·max(N0
s ,N

1
s )

5: P ← Sample npool configurations from Pλ(A)
6: fsur ← Ifsur(A) . Surrogate model
7: Predict performances of points in P using fsur
8: for i← 1 to µ do
9: noptions ←

⌊
(N0

s )
µ−i
µ−1 · (N1

s )
µ−1
µ−1

⌉
10: Poptions ← first noptions elements of P
11: S ← SELECT_TOP (Poptions,1)
12: C ← C ∪ S
13: P ← P − S
14: end for
15: return C

APPENDIX B
BENCHMARK COLLECTIONS

While the underlying data for lcbench and nb301 have been
previously used in publications ( [1], [2]), rbv2_super is a novel
task that has not been investigated previously in literature.

Benchmarks in the YAHPO Gym are implemented as surrogate
model benchmarks, where a Wide & Deep [3] neural network was
fitted to a set of pre-evaluated performance values of hyperparameter
configurations.

HPO on a neural network (lcbench [1]): The first set of
problems covers HPO on a relatively small and numeric search space.
The neural network (more precisely, a funnel-shaped multilayer
perceptron) that is tuned has a total of 7 numerical hyperparameters.
The fidelity of an evaluation can be controlled by setting the number
of epochs over which the neural network is trained. The instances
belonging to this scenario represent HPO performed on 35 different
classification tasks taken from OpenML [4]. As a target metric, we
choose the cross entropy loss on the validation set.

AutoML pipeline configuration (rbv2_super [5]): Second, we
investigate the problem of configuring an AutoML pipeline. Here,
a learning algorithm must be selected first from the following
candidates: approximate k nearest neighbors [6], elastic net linear
models [7], random forests [8], decision trees [9], support vector
machines [10], and gradient boosting [11]. The hyperparameters of
each learner are chosen conditioned on this learner being active, i.e.,
there are hierarchical hyperparameter dependencies. The fidelity
of a single evaluation can be controlled by choosing the size of
the training data set that is used to train the respective learner. The
automated optimization of the pipeline is performed for 89 different
classification tasks [5], again taken from OpenML. As a target
metric, we opt for the log loss.
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Neural architecture search (nb301 [2]): As third problem
scenario, we consider neural architecture search. The search space
of architectures is given by the darts search space [12], and architec-
tures were trained and evaluated on CIFAR-10 [13]. A convolutional
neural network is constructed by stacking so-called normal and re-
duction cells that each can be represented as a directed acyclic graph
consisting of an ordered sequence of vertices (nodes) resembling
feature maps, with each directed edge associated with an operation
that transforms the input node. A tabular representation can be
derived using 34 categorical parameters with 24 dependencies. Each
architecture can be trained for 1 to 98 epochs, allowing again for
lower fidelity evaluations. The target metric is validation accuracy.

APPENDIX C
META-OPTIMIZATION SEARCH SPACE

The full optimization space used for optimization of γ∗ is
presented here in Table V. Other γ results have the restrictions
applied to them, as shown in Table III in Section V.

TABLE IV: Instances within the benchmarking scenarios lcbench, rbv2_super, and nb301 within the YAHPO Gym test suite that have
been used for the experimental analysis (Section V). We show the instances that have been used for optimization only (Section V-A),
and the instances that have been held out from optimization and exclusively used for analysis (Section V-B).

Scenario Instances used for configuration Instances held out for analysis

lcbench 3945, 7593, 126026, 167201, 168329, 168868, 168908, 189354 34539 126025, 126029, 146212, 167083, 167104, 167149, 167152,
167161, 167168, 167181, 167184, 167185, 167190, 167200, 168330,
168331, 168335, 168910, 189862, 189865, 189866, 189873, 189905,

189906, 189908, 189909

rbv2_super 1050, 1053, 1056, 1068, 12, 1461, 1464, 1489, 1510, 1515, 42, 44, 4534, 4538, 469, 470, 50, 54, 60,
188, 3, 307, 32, 37, 375, 38, 40496, 40498, 40701, 40978 1040, 1049, 1063, 1067, 11, 1111, 14, 1462, 1468, 1475,

40979, 40983, 41142, 41146, 41156, 41157, 458, 46, 6332, 1476, 1478, 1479, 1480, 1485, 1486, 1487, 1494, 1497, 15,
1501, 16, 18, 181, 182, 22, 23, 23381, 24, 28,

29, 31, 312, 334, 377, 40499, 40536, 40670, 40900, 40966,
40975, 40981, 40982, 40984, 40994, 41138, 41143, 41212, 4134, 4154

nb301 – 1

TABLE V: Meta-optimization search space used to configure Algorithm 2. Some configuration parameters are optimized on a non-linear
scale, meaning e.g. the optimizer optimizes a value of logµ(1) ranging from log 2 to log 200.

Parameter Meaning Range Scale

µ(1) (first bracket) batch size {2, . . . ,200} logµ(1)
batch_method batch method {equal, HB}
ηfid fidelity rate [21/4,24] log log ηfid
ηsurv survival rate [1,∞) 1/ηsurv
filter_method SAMPLE method {SAMPLETOURNAMENT, SAMPLEPROGRESSIVE}
Pλ(A) SAMPLE generating distribution {uniform, KDE}
Ifsurr surrogate learner {KNN1, KKNN7, TPE, RF}
ntrn(0) filter sample per tournament round at t = 0 {1, . . . , 10} logntrn(0)
ntrn(1) filter sample per tournament round at t = 1 {1, . . . , 10} logntrn(1)
N0

s (0) filtering rate of first point in batch at t = 0 [1,1000] logN0
s (1)

N0
s (1) filtering rate of first point in batch at t = 1 [1,1000] logN0

s (1)
N1

s (0) filtering rate of last point in batch at t = 0 [1,1000] logN1
s (1)

N1
s (1) filtering rate of last point in batch at t = 1 [1,1000] logN1

s (1)
ρ(0) random interleave fraction at t = 0 [0,1]
ρ(1) random interleave fraction at t = 1 [0,1]
filter_mb surrogate prediction always with maximum r {TRUE, FALSE}
ρrandom random interleave the same number in every batch {TRUE, FALSE}



IEEE TEVC SPECIAL ISSUE: BENCHMARKING SAMPLING-BASED OPTIMIZATION HEURISTICS 3

APPENDIX D
ALL γ-VALUES

A table of all optimization γ-values is given in Table VI.

TABLE VI: Optimized configuration parameters, under some constraints. Top: restricted to batch_method HB, bottom: equal. γ2,
γ3 are further restricted, as described in Table III in Section V. Shown is the overall result. Square brackets show range (for numeric
parameters) or list (for discrete parameters) of values found in individual optimization runs when not aggregated as a rough indicator
of uncertainty. “(!)” indicates the parameter was forced to the value by a restriction. The “(evals)” row indicates the number of performance
evaluations (i.e. full second level optimization runs) that were performed in each setting.

Parameter γ∗ γ∗ γ2 γ2 γ3 γ3
Scenario lcbench rbv2_super lcbench rbv2_super lcbench rbv2_super

Optimized with batch_method HB:

µ(1) 5 [5, 23] 2 [2, 52] 126 [10, 126] 8 [8, 114] 5 [3, 68] 2 [2, 52]
ηfid 3.11 [1.25, 3.11] 1.97 [1.97, 6.73] 2.19 [1.68, 10.2] 4.4 [2.04, 4.4] 14.6 [1.45, 14.6] 5.19 [2.24, 5.19]
ηsurv 2.22 [2.22, 6.1] 6.09 [1.65, 6.09] 3.42 [2.58, 9.19] 3.26 [3.26, 5] 1.15 [1.15, 3.07] 1.20 [1.03, 1.62]
filter_method PROG [TRN] PROG [TRN] PROG [TRN] PROG [TRN] TRN (!) TRN (!)
Pλ(A) KDE uniform [KDE] KDE uniform [KDE] KDE uniform
Ifsurr KKNN7 [KNN1] KNN1 KKNN7 [KNN1] KNN1 KKNN7 [KNN1] KNN1
ntrn(0) 2 [2, 8] 2 [1, 5] 5 [1, 8] 5 [1, 6] 1 (!) 1 (!)
ntrn(1) 1 [1, 5] 5 [1, 5]
N0

s (0) 101 [9.19, 124] 226 [2.03, 226] 39.6 [10.5, 76.7] 125 [125, 163]
570 [73, 570] 155 [155, 561]N0

s (1) 312 [56.3, 817] 495 [57.1, 533]
N1

s (0) 28.9 [4.84, 144] 256 [7.19, 256] 31.4 [18.2, 74.6] 481 [480, 563]
N1

s (1) 8 [8, 654] 99.7 [46.4, 890]
ρ(0) 0.21 [0.12, 0.85] 0.86 [0.68, 0.86] 0.37 [0.2, 0.49] 0.71 [0.49, 0.71] 0.38 [0.12, 0.54] 0.34 [0.34, 0.45]
ρ(1) 0.08 [0.08, 0.55] 0.06 [0.01, 0.25]
filter_mb TRUE [FALSE] FALSE [TRUE] TRUE TRUE TRUE [FALSE] FALSE
ρrandom FALSE [TRUE] TRUE [FALSE] FALSE [TRUE] TRUE [FALSE] TRUE TRUE [FALSE]

(evals) 1495 332 1071 249 981 337

Optimized with batch_method equal:

µ(1) 3 [2, 4] 15 [11, 15] 5 [2, 7] 5 [2, 5] 2 [2, 6] 85 [3, 93]
ηfid 2.71 [1.77, 12.2] 1.25 [1.22, 1.43] 2.63 [2.27, 6.01] 8 [1.28, 8] 2.59 [1.46, 2.59] 2.3 [1.36, 12.7]
ηsurv 2.5 [1.23, 3.36] 18.8 [8.74, 18.8] 1.87 [1.84, 5.49] 3.45 [3.45, 5.53] 3.53 [1.29, 4.86] 6.5 [5.34, 11.3]
filter_method TRN [PROG] PROG TRN [PROG] PROG [TRN] TRN (!) TRN (!)
Pλ(A) KDE KDE [uniform] KDE uniform [KDE] KDE uniform [KDE]
Ifsurr KKNN7 [KNN1] KNN1 KNN1 [KNN7] KNN1 KNN1 [KNN7] KNN1
ntrn(0) 1 [1, 4] 2 [1, 3] 5 [1, 5] 3 [1, 3] 1 (!) 1 (!)
ntrn(1) 2 [1, 2] 9 [1, 9]
N0

s (0) 21.5 [1.63, 309] 39.5 [2.42, 39.5] 169 [43.4, 191] 212 [49.5, 212]
81.3 [24.8, 111] 583 [295, 777]N0

s (1) 941 [58.2, 991] 18.1 [11.5, 408]
N1

s (0) 35.4 [7.8, 280] 6.65 [5.43, 391] 4.76 [2.34, 273] 1.71 [1.71, 4.21]
N1

s (1) 264 [5, 474] 925 [25.4, 925]
ρ(0) 0.32 [0.09, 0.68] 0.83 [0.49, 0.83] 0.34 [0.09, 0.37] 0.34 [0.34, 0.53] 0.27 [0.03, 0.27] 0.96 [0.38, 0.96]
ρ(1) 0.16 [0.06, 0.29] 0.03 [0.03, 0.5]
filter_mb TRUE TRUE TRUE TRUE TRUE [FALSE] TRUE
ρrandom TRUE [FALSE] FALSE TRUE [FALSE] FALSE [TRUE] TRUE TRUE [FALSE]

(evals) 1751 450 1437 341 1070 368
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APPENDIX E
ENLARGED OPTIMIZATION CURVE PLOTS
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Fig. 6: Enlarged version of Figure 3.
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