Constructing constraint solvers using Monte Carlo Tree Search

Ariinas Prokopas! Alan Frisch? Ian P. Gent!
Lars Kotthoff? Ian Miguel®

1 University of St Andrews. {ap637, Ian.Gent, caj21, ijm, pwnl}@st-andrews.ac.uk
2 University of York alan. frisch@york.ac.uk
3 University College Cork larsko@4c.ucc.ie

Christopher Jefferson!
Peter Nightingale'

Abstract: Constraint solvers are complex pieces of software that are capable of solving a wide variety of prob-
lems. Customisation and specialisation opportunities are usually very limited and require specialist knowledge.
The Dominion [4] constraint solver synthesizer automatically creates problem-specific solvers. The config-
uration of a constraint solver is highly complex, especially if the aim is to achieve high performance. We

demonstrate how Monte Carlo Tree Search can be employed to tackle this problem.

1 Introduction

Constraints are a natural, powerful means of knowledge
representation and reasoning. Dominion is a novel frame-
work for the dynamic and problem-specific generation of
constraint solvers. Instead of having a monolithic core with
limited configuration options and parameters, Dominion
provides the ability to customise every part of a solver. Our
approach is considerably more flexible than existing ap-
proaches. This additional flexibility comes at a cost though
— it is much more difficult to find good solvers.

The main feature that distinguishes Dominion from pa-
rameterised solvers is that there is no “default” configura-
tion — Dominion cannot be run at all without configuring
a complete solver. This must be done by selecting a large
number of components from the component database. Dur-
ing this selection, performance of the components has to
be taken into the account, while also keeping track of con-
straints between components, so that the constructed solver
is valid (able to solve the given problem correctly). A com-
plete description of the Dominion architecture can be found
in [4]. This configuration is a very difficult problem by it-
self, therefore standard techniques cannot be applied to it.

There are approaches that attempt similar tasks in the lit-
erature, but they almost always rely on background knowl-
edge being available to guide the decision making. Our ap-
proach relies on no background knowledge and discovers
the performance impact of the various decisions to be made
dynamically and for the specific problem to be solved.

2 Monte Carlo Tree Search

Monte Carlo Tree Search [2] (MCTY) is a recent best-first
search algorithm that can be applied to wide range of prob-
lems that can be expressed as a tree of sequential deci-
sions. The main advantage of MCTS over similar methods
is that it can be used with little or no domain knowledge
and has shown to be applicable in cases where other algo-
rithms have failed. Because of this, since its appearance,
MCTS has been applied to a wide range of complex prob-
lems (most notably in various game simulations) [1].

The core of MCTS algorithm is quite simple — every it-

eration of the algorithm consists of four stages: selection,
expansion, simulation and backpropagation.

During the selection step a selection strategy is ap-
plied to recursively build the tree from the previously ex-
plored nodes balancing between the most promising nodes
(exploitation) and nodes with a lot of uncertainty (explo-
ration). The expansion step is used to add new nodes to the
partially completed tree at which point a number of simula-
tions are run to evaluate the new expansion. The results of
those simulations are then backpropagated to update the
values of the ancestor nodes.

3 Generating Dominion Solvers with Monte Carlo

To synthesize a Dominion solver, we generate its architec-
tural description, one component at a time. The structure
of this specification is very hierarchical — the number of
choices that have to be made and the choices themselves
depend greatly on the previous choices.

During the solver generation two data structures are
maintained: a PARTIALTREE, which stores the components
we have selected so far, and OPENNODES list, which con-
tains the list of nodes to which we can assign the next com-
ponent.

During the selection stage, we select the most interesting
node from the OPENNODES list. This is done by analysing
the previous simulations and comparing the runtime aver-
ages of solvers featuring each component choice for every
node. The node with the largest difference between aver-
ages is considered the most interesting.

We then expand all of the possible choices at that node
by running a number of simulations for each of the possi-
ble components that can be assigned to that node. The best
performing component is assigned to the node and the node
itself is moved from the OPENNODES list to the PARTIAL-
TREE. At the same time, its child nodes are added to the
OPENNODES list.

Compared to standard MCTS implementations, in the se-
lection step we check all components that can be assigned
to a single node rather than jumping back and forth be-
tween all nodes, which in turn gives a much larger weight

to the exploitation aspect of the MCTS over exploration.
This is preferable behaviour, because arbitrary exploration
(combined with complex component constraints) can block
the algorithm from choosing important choices that we can
detect otherwise. Furthermore, more focus on exploration
would result in a much larger number of unnecessary simu-
lations, which are time intensive.

4 Experimental evaluation

Figure 1 shows the progress on a training set of n-Queens
problems. Initially, the randomly generated solvers time
out for all but the smallest problem instances. However, the
information acquired from small problem instances enables
us to guide the search towards the configurations with good
performance. After a number of iterations, we are able to
produce solvers that perform well for all instances.

~ 9
L o T
T
(s} —
2]
o <9 _|
L2
=
g .
g 2
3‘_'
[hd —
N]
o

Algortihm iteration

Figure 1: Time it takes to solve 10/50/100-Queens

We compare the performance of the solvers generated
by our algorithm to four configurations of Minion [3] con-
straint solver. It should be noted that both systems can be
fine-tuned further, but one of the core features of the domin-
ion is the fact that it should not require any configuration
from end user. We chose 4 different heuristics for Minion
to demonstrate that this approach still needs to be refined
to produce solvers that outperform a hand-tuned traditional
solver.

Minion Worst Best

Instsance Best Worst | Best Worst
Magic Squares 9999.9 9999.9 | 9999.9 9999.9
n-Queens 9999.9 1044.5 | 9999.9 1044.1
Disc. Tomography | 100.00 0.7058 | 95.005 0.1935
Knapsack 5012.8 0.0127 | 4022.7 0.0178
Graph Coloring 251.23 0.2578 | 0.7318 0.0428
Sonet 4.2712 0.4545 | 0.4246 0.1010
Golomb Ruler 0.8569 0.2777 | 0.3476 0.0760

Table 1: Performance vs best/worst Minion configurations

We have used our algorithm to generate a Dominion

solver for all of the problems and then compared that solver
against Minion (5 to 10 different instances for each prob-
lem were tested). For each instance we then selected the
best and worst of the four Minion configurations (they vary
between problems and instances) performances and com-
pared them to the Dominion instance. The Table 4 shows
two instances (best and worst for dominion) and two Min-
ion configurations (best and worst).

As the table demonstrates, this approach already per-
forms exceptionally well for problems that scale very well
(n-Queens and Magic Squares) as it takes advantage of
the small instances. If the problem instances are not very
predictable (as is the case with Discrete Tomography and
Knapsack problems) and we choose the wrong instances
for our training set, the resulting solver can be over-fitted to
those instances and it’s performance might not be satisfac-
tory when used with unseen instances.

In cases where the solvers are poor in general, we sus-
pect that initial simulations are not providing enough data
to make objective choices (the results are either too simi-
lar, large number of them time-out) in which case the algo-
rithm attempts to make the best guess (which can naturally
be wrong).

5 Conclusions and future work

We have shown the application of Monte Carlo Tree Search
to the problem of configuring a Dominion constraint solver.
The difficulty of this problem lies not only in the large num-
ber of components and their complex interdependencies,
but also in the need to configure a solver that exhibits good
performance on the problems it was generated for.

As out experiments demonstrate, there remain a number
of open challenges. To address the outstanding issues, we
are investigating ways of guiding the search to generate di-
verse sets of solvers instead of random ones. That is, we
aim to maximise the configuration differences to facilitate
better and more meaningful comparison.

We also are investigating the use of generalized linear re-
gression for rating our nodes (which should give us a better
estimate on node importance) and ways to determine when
we do not have sufficient information to make a particular
(potentially wrong) choice.

References

[1] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowl-
ing, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and
S. Colton. A survey of monte carlo tree search methods. /IEEE

Transactions on Computational Intelligence and Al in Games,
4(1), 2012.

[2] G. M. J. Chaslot. Monte-Carlo Tree Search. PhD thesis,
Maastricht University, 2010.

[3] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion:
A fast scalable constraint solver. In Proceedings ECAI 2006,
pages 98-102, 2006.

[4] 1. Miguel, D. Balasubramaniam, I. P. Gent, C. Jefferson,
T. Kelsey, and S. Linton. A constraint solver syntehsiser: Case
for support, 2009.

