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a b s t r a c t

The control of the physical, chemical, and electronic properties of laser-induced graphene (LIG) is crucial
in the fabrication of flexible electronic devices. However, the optimization of LIG production is time-
consuming and costly. Here, we demonstrate state-of-the-art automated parameter tuning techniques
using Bayesian optimization to advance rapid single-step laser patterning and structuring capabilities
with a view to fabricate graphene-based electronic devices. In particular, a large search space of pa-
rameters for LIG explored efficiently. As a result, high-quality LIG patterns exhibiting high Raman G/D
ratios at least a factor of four larger than those found in the literature were achieved within 50 opti-
mization iterations in which the laser power, irradiation time, pressure and type of gas were optimized.
Human-interpretable conclusions may be derived from our machine learning model to aid our under-
standing of the underlying mechanism for substrate-dependent LIG growth, e.g. high-quality graphene
patterns are obtained at low and high gas pressures for quartz and polyimide, respectively. Our Bayesian
optimization search method allows for an efficient experimental design that is independent of the
experience and skills of individual researchers, while reducing experimental time and cost and accel-
erating materials research.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Laser materials processing techniques are powerful tools in
materials manufacturing [1e3]. Such approaches have also been
applied to form graphene [4,5], a two-dimensional material with
extraordinary physical and chemical properties [6]. Ground-
breaking work focused on direct laser writing of graphene oxide
(GO), a graphene derivative that can be mass-produced via wet
chemical pathways [4,7,8]. Laser reduction of GO removes insu-
lating oxygen functional groups with precision, which enables
micro-patterning and structuring capabilities that are essential for
the production of graphene-based electronics [9]. Recently, laser-
induced graphene (LIG) patterned on polyimides (PI) substrates
has shown potential in fabricating flexible electronic devices [10].
Following the discovery of LIG, precise control over its physical,
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chemical and electronic properties would allow to broaden the
scope of its applications to new areas such as micro-
supercapacitors [11,12] and fuel cell technology [13]. Therefore,
there is considerable interest in advancing strategies for property
engineering of LIG; in particular, optimizing the lasing parameters
and the local environment for different substrates allows to control
its composition and morphology.

An optimization study is typically concerned with optimizing an
objective function that yields a response depending on the values of
a given set of parameters. A straightforward strategy for such op-
timizations is grid search, whereby the parameter space is sub-
divided into a grid and configurations on this grid are sampled
for evaluation. Although grid search is successful for experimental
design [3,14,15], it is often an inefficient strategy with real-valued
and dependent parameters in larger dimensions. For example, the
Taguchi approach constructs the objective landscape with orthog-
onal arrays, in which parameter inputs are divided a priori into a
grid of possible values [15], while the Fisher method assumes that
parameters take discrete values [14], such that optimal points that
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Fig. 1. Schematic of the laser patterning and in situ Raman measurement setup.
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lie between grid points are not taken into account and thus crucial
features of the objective landscape can be overlooked. Conse-
quently, such traditional strategies require a vast number of ex-
perimentations or computations to sample on a grid that is
sufficiently fine, and thus are not suitable for optimization studies
in which evaluations of the objective function are expensive.

The laser reduction parameters are typically optimized using
manual trial and error as an exhaustive grid search is infeasible, and
the efficiency of the optimization and end result vary depending on
the expertise of the individual performing the optimization. In
contrast, state-of-the-art techniques, such as Bayesian optimization
(BO) and related machine learning (ML) techniques, have recently
been applied as an alternative approach in material informatics for
high-throughput experimental designs [16e18]. The advances in
materials informatics has been primarily focused on utilizing large
databases of computational work to accelerate the discovery of new
materials [19e22]. The optimization of the properties of a new
material often requires extensive parameter studies. Some groups
have reported high-throughput experimental work, where ML
models were sequentially updated with new measurements
[23e25], following a general Bayesian optimization approach. We
streamline optimization of LIG patterning conditions within a
minimum number of iterations by adopting this iterative, adaptive
approach.

Self-adaptive learning systems leverage experience from past
applications of machine learning to achieve better results and
improve over time [26]. In particular, we investigate the application
of techniques for automated parameter tuning through Bayesian
model-based optimization [27]. This technique falls under the um-
brella of automated parameter tuning, also called hyperparameter
configuration, which aims to find the best parameter configuration
of an algorithm for a particular application [28]. Techniques for
automated parameter tuning usually proceed in an iterative fashion
e they predict the configuration to evaluate, and the result of this
evaluation informs the predictions for the configuration to evaluate
next. At the heart of these techniques are so-called surrogate
models, which is cheap to evaluate and allows for a targeted
exploration of the parameter space, identifying promising configu-
rations that available resources for evaluations of the underlying
process should be directed towards. This family of techniques is
often referred to as model-based optimization (MBO), as the opti-
mizationprocess is based on the predictions of the surrogatemodels
that serve as a replacement for the underlying process. Surrogate
models are induced using ML, taking an increasing amount of
ground-truth data into account between subsequent iterations.

In this study, we describe MBO-assisted laser reduction of gra-
phene on quartz and polyimide. We discovered experimental
conditions that lead to LIG patterns with Raman G/D ratios of at
least a factor of four higher than those found in the literature. High
Raman G/D ratios indicate a high degree of graphene formation in
our LIG patterns, which restores the unique properties that are
desirable in graphene-based devices. Additionally, we demonstrate
the human interpretability of the model that gives insight into the
substrate-dependent LIG processing conditions. The mechanisms
which govern the formation of LIG patterns are discussed. Since the
MBO approach presented here suggests promising configurations
iteratively, we consider this work an initial step in the development
of human-in-the-loop automated LIG patterning and character-
ization systems.

2. Experimental setup and methods

2.1. Graphene oxide films

Graphene oxide (GO) was synthesized from graphite using the
improved Hummers’ method, as it avoids the generation of haz-
ardous gases such as NO and NO2 from nitrate that is used in the
conventional Hummers’ method [29]. In this procedure, powdered
samples, ground and sieved to 20 mm, were mixed in concentrated
H2SO4 and H3PO4 and placed in an ice bath. Then, KMnO4 was
added at a mixture temperature of 35 �C and increased further to
98 �C before termination with ultrapure water (Millipore) and
H2O2. The filtrate was thenwashedwith HCl and subsequently with
water repeatedly until a pH-level of about 6.5 was obtained.

The GO inks were produced using 25 mg of the freeze-dried GO
powder, which was diluted in 100 ml deionized water and ultra-
sonicated with a cooling system. After the sample was centri-
fuged, the remaining supernatant was repeatedly diluted and ultra-
sonicated until a 200 ml dilution was obtained. The GO inks were
spray-coated onto a 1 cm2 quartz or polyimide substrate (Kapton
HN 125 mm, Dupont) in multiple passes until a thickness of 1 mm
was achieved. The GO thickness was verified by scratching the
surface and measuring the height using an optical profilometer
(VK-X1000, Keyence).

2.2. Laser-induced graphene

Laser-induced graphene (LIG) spots were patterned by reducing
GO films deposited on quartz and polyimide, and by carbonization
of polyimides directly. We denote GO/Quartz, GO/Polyimide and
Polyimide as samples GOQ, GOPI and PI, respectively. The
patterning setup is shown in Fig. 1. The deposited GO films were
placed in a sample chamber which allows patterning in an air,
argon or nitrogen environment with pressures up to 1000 psi. LIG
patterns were irradiated using a 532 nm diode-pumped solid-state
continuous-wave (CW) laser (Sprout G-12W, Lighthouse Pho-
tonics). The laser beamwas focused with a 50 �microscope lens to
a spot size of 20 mm on the sample surface. Irradiated beam spots
were positioned sufficiently far apart from each other to ensure
pristine precursor material for each experiment. The sample area is
about 1 cm2, allowing approximately 256, 25, and 25 patterns for
samples GOQ, GOPI, and PI, respectively. Taking into account the
sample preparation and repeated measurements, we set our
experimental budget to the maximum number of successful pat-
terns carried out for our most spatially limited material within a
work week, which is 70 runs for PI-based samples. The same
number of runs were performed for quartz-based samples for
consistency.

The quality of the LIG spots was determined using a Raman
spectrometer (Isoplane SCT320, Princeton Instruments). As the
sample is irradiated, the laser beam is backscattered and filtered
through a long-pass filter to increase the sensitivity of the signal.
Using the same laser source for patterning and Raman spectros-
copy, the identical spot was characterized in-situ. The Raman data
for each spot were averaged over 10 measurements with a collec-
tion time of 3 s at laser power <10 mW for each measurement. The
Raman spectra were post-processed with a linear background



Fig. 2. Schematic of the model-based Bayesian optimization approach used in this
study. We use random forests as the surrogate model as the input consists of both
continuous numerical and discrete data. The acquisition function is Expected
Improvement for maximizing the Raman G/D ratio of LIG.
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subtraction to 0 and normalization of the maximum peak to 1. The
G- and D-bands were fitted using Lorentzian functions and the ratio
of their intensities computed as the ratio of the areas under the
fitted functions. The G/D ratios indicate the degree of reduction of
GO and is used as a proxy for electric conductivity.

2.3. Model-based optimization

The schematic in Fig. 2 show the procedure of the machine-
learning-assisted LIG patterning based on the Bayesian model-
based optimization (MBO) algorithm, which is a sequential
approach to optimize a black-box function f(x) [30]. In this study,
we use the mlrMBO package [31] to model the parameter space,
build the surrogate models and determine the most promising
configuration for the next evaluation. We do not optimize param-
eters one-at-a-time [32], but simultaneously to account for possible
interactions between them. Here, the G/D ratio ¼ f(x) is the
objective function specific to our LIG patterns, and x is the process
configuration consisting of a complete assignment of values to all
parameters, i.e. CW-laser power, irradiation time, gas pressure and
type of gas (see Table 1 for limits); for simplicity, we denote ‘G/D
ratio’ as ‘ratio’ throughout this study unless stated otherwise. The

data fxn; rationgNn¼1 obtained from the past N LIG patterns and ratio
measurements are used to build a surrogate model to predict the
value of f(x) at different x, substituting the expensive underlying
process. As we have amixture of continuous numerical and discrete
categorical parameters, we use a random forest with 500 trees as
Table 1
Parameter space limits for MBO.

Parameters Lower limit Upper limit

CW-laser power [W] 0.01 5.55
Irradiation time [s] 0.500 20.000
Gas pressure [psi] 0 1000
Gas type Argon Nitrogen
our surrogate model. Specifically, the predicted ratio for a point x
corresponds to the mean of the predictions across all trees m(x) and
the uncertainty s(x) is estimated as the sum of variances over all
training points. The point-wise variance is computed as the average
of the jackknife-after-bootstrap and infinitesimal jackknife variance
estimates [33], which effectively captures uncertainty due to finite
size of the training data.

The objective of the MBO is to maximize the ratio within an
experimental budget of 70 runs, which is the largest number of
successful patterns performed for our most spatially limited mate-
rialwithin aworkweek.We split the total budget into initial training
data of 20 randomly selected configurations to fit the initial surro-
gate model and 50 iterations of the MBO. The acquisition function
proposes thenext configuration toevaluate basedon thepredictions
made by the surrogatemodel.We use the Expected Improvement (EI)
acquisition function, which searches for the configuration thatmost
likely has a better objective value than the current best measured
point [31]. More concretely, the EI takes both the mean m(x) and
uncertainty s(x) into account to trade off exploration and exploita-
tion e once the uncertainty becomes sufficiently small for a known
good region, the larger uncertainty of unexplored areas of the
parameter space will guide it towards that [31].

Our MBO approach applies the focus search algorithm to iden-
tify the most promising configurations according to the acquisition
function. It shifts from coarser to finer grids for sampling configu-
rations to evaluate the surrogate model on, as even with a cheap
surrogate model an exhaustive grid search is prohibitively expen-
sive. The finer grids are centered around the areas where the best
configurations were discovered in previous iterations. In this work,
the shift is iterated 10 times and the best point over all iterations is
chosen. Note that there is no guarantee that this process will find
the globally optimal configuration, and no guarantees of conver-
gence. This is because there is no closed functional form for the
process we optimize and hence only an exhaustive evaluation of
the entire parameter space would allow to identify the global op-
timum and prove that it is the global optimum. As the evaluations
of the process are very expensive (running an experiment), this is
infeasible.

To summarize, we begin the iterative parameter tuning process
by building an initial surrogate model using random parameter
values and selecting the next configuration to evaluate based on the
results of the focus search and the acquisition function. Thus, the
model proposes new LIG parameters for the next run and the
resulting measurement is used to update the surrogate model for
the next iteration. This process is iterated until we reach 50 itera-
tions, our stopping criterion. To account for the randomness of the
initial data, we performed three experimental runs for each ma-
terial. The MBO code, dataset and metadata are made available in
the supplementary information following the FAIR guiding princi-
ples [34].

3. Results

3.1. Maximization of G/D ratio in LIG

Raman spectroscopy is the traditional technique to characterize
Instrument precision Number of possible values

0.01 554
0.001 195,000
10 100
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Fig. 3. Raman spectra of graphene oxide (GO, bottom) and laser-induced graphene
(LIG, top). The spectra are offset for clarity. (A colour version of this figure can be
viewed online.)
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the structural and electronic properties of graphite. It relies on the
inelastic scattering of laser photons after they interact with the
vibrating molecules in the sample probe. For graphite, Raman ex-
periments extract characteristic information such as the defects (D-
band at ~1350 cm�1), in-plane vibrations of sp2 carbon atoms (G-
band at ~1580 cm�1) and the stacking order of the carbon basal
planes (2D-band at ~2700 cm�1) [35]. The Raman spectrum of GO
and LIG can be distinguished most notably by the presence of the
2D-band in Fig. 3. Although the 2D peak can be fitted with only one
Lorentzian peak at ~2700 cm�1, similar to graphene [35], the full-
width half-maximum (FWHM) is much larger ~60 cm�1 in our
LIG, as reported by others [10,36]. In contrast, the 2D-band in
bilayer or multilayered graphene is commonly fitted with more
than one Lorentzian function [35]. Although the 2D-band was not
explicitly optimized in this study, its characteristics are further
discussed in Section 3.5. Finally, the G/D ratio indicates the degree
of graphitization in the LIG patterns.

A series of three experimental campaigns where conducted for
each material. The experimental setup considered parameters and
objective were the same, but different batches of GO inks, which
were manufactured using the same process, were used to deposit
the GO films and different training data points were used. The aim
of running a series of experiments was to show that our method to
maximize the ratio works with slight variations in the precursor
material, as two thin films of graphene oxide are not exactly the
same even if they are manufactured using the same process, and to
show that we can achieve improvements with different initial
training data.

Fig. 4 shows the best-performing optimization runs. For all
materials, the random initial parameters for the initial surrogate
model are depicted as scatter plots up to the 0th iteration. Note that
the performance improves significantly as soon as we explore
configurations that were suggested by the model-based parameter
optimization approach. Generally, the predictions become more
accurate as the distance between the actual and predicted values
become smaller with each iteration and as more data are added to
the surrogate model. Significant performance improvements are
observed in all three campaigns, as evident from the t-test results
between the randomly sampled and MBO-optimized patterns
(Table S1); the corresponding box plots comparing such differences
are shown in (Fig. S4).

SEM of the LIG patterns are shown in Fig. 5. Before optimization,
the random processing parameters led to LIG patterns with sig-
nificant damage at the center of the irradiated spot. After optimi-
zation, the irradiated pattern is reduced in diameter with no signs
of damage. The porous structures commonly reported in LIG pat-
terns on PI substrates are seen [10]. In contrast, no such structures
are observed in GO on quartz substrates, suggesting that they are
substrate dependent.

3.2. Interpretations of the surrogate model

Model interpretation is of paramount importance in any ML
study. The importance of each parameter can be determined to gain
insight into structural features that impact the LIG patterns. We
apply partial dependence analysis to obtain post-hoc in-
terpretations of our surrogate models. Similar to descriptor signif-
icance analysis, the partial dependence elucidates the effect of a
single parameter on a property by marginalizing over all other
parameters [37].

For a more robust interpretation of the model, we have trained
the surrogate model by combining all the data points from all three
campaigns. The partial dependence for the GOPI and PI samples
show comparable behavior (Fig. S5). Considering these results, we
have combined the data points from six experimental campaigns
for bothmaterials into one. The combinations result in a total of 210
and 420 data points for the LIG on substrates quartz (LIGQ) and
polyimides (LIGPI), respectively.

3.3. Partial dependence of lasing parameters

The partial dependence plots in Fig. 6a e 6f visualize the mar-
ginal relationship between the continuous LIG process parameters
and the prediction of the ratio. Note that the ratios in these plots are
not measured but predictions made by the surrogate model trained
on this data. Therefore, the ratios are not as high as the maximum
measured data in the previous section. The grey area denotes how
the values vary with all possible values for other parameters i.e.
irradiation time, gas pressure and type. For the type of gas, the
actual measurements are shown as we cannot compute partial
dependencies for categorical parameters.

The partial dependence for laser power shows that the optimal
ratio in Fig. 6b is found between 1.9 We2.5 W. This is in agreement
with the threshold power of 2.4 W, at which conversion from PI to
LIG occurs [10]. Note that most studies on PI were done with mm-
pulsed 10.6 mm lasers, while this study, to the best of our knowl-
edge, is the first LIG investigation using a CW 532 nm laser; in PI,
the absorbance at 10.6 mm is twice that of 532 nm [38]. Although
we expect some thermal effects from the CW laser, the SEM mi-
crographs in Fig. S5 show that, apart from some striations and
cracking of the GO thin film, no significant differences are observed
in themorphology between LIG patterned on GOPI and PI. For LIGQ,
the optical profilometer micrographs of patterns irradiated at high
laser power show depressions in the center of the pattern with no
visible melt zones near the edges, which is consistent with a quasi-
phase explosion process observed by other groups [39,40]. As the
CW laser beam is absorbed, the vaporization of interlayer water
builds up internal pressures between the GO sheets until the ma-
terial is ejected through rapid local heating. The ejecta re-deposit as
clusters spattered outwardly in a 380 mm diameter from the irra-
diation spot (Fig. S6b); these clusters are not visible in lower power
regimes (Fig. S6a). Interestingly, clusters were observed for LIGQ
but not for LIGPI, which indicates that their origins are substrate-
dependent. Additional micro-Raman mapping shows that the
clusters in the outer region are not sp2-hybridized (Fig. S6c), which
suggests that the re-deposited material may be re-oxidized, as
observed by others [41]. In contrast, high ratios at the edges of the
depression center indicate that graphitization occurs following
explosive ejection and re-deposition near the irradiated area.

The predicted ratios in Fig. 6c and d shows a decreasing trend



Fig. 4. Progress of G/D ratio optimization for various materials in campaign 1. The box plots show the statistics of the achieved ratios before (iteration <1) and during optimization
(iteration�1); box plots for all campaigns are shown in the supplement (Fig. S4). The results achieved during the optimization are statistically significantly different from the results
achieved before for each sample, as evident from t-tests (Table S1). The G/D ratios are improved by a factor of about 3, 4 and 2 in 9, 13 and 1 optimization iterations for GO/quartz
(GOQ), GO/polyimide (GOPI) and polyimide (PI), respectively. The grey bounds show the uncertainty of the predictions. State-of-the-art literature values are tabled for comparison.

Fig. 5. SEM of the LIG patterned (top) before and (bottom) after optimization for (a),(b) GOQ (c),(d) GOPI and (e),(f) PI. Scale bar is 100 mm.

H. Wahab et al. / Carbon 167 (2020) 609e619 613
with irradiation time. In contrast to pulsed laser systems often used
in the LIG literature [42], the uninterrupted CW laser results
essentially in an infinite ‘‘pulse width”. The LIG mechanism for CW
lasers involves local heat deposition, which deoxygenates the
irradiated surface and reorganizes sp3 to graphene-like sp2 struc-
tures [7]. However, prolonged exposure produced cluster regions



Fig. 6. Partial dependence plots of G/D ratio for different parameters for (a, b) laser power, (c, d) irradiation time, gas (e, f) pressure and (g, h) type of LIG on quartz (LIGQ) and on
polyimides (LIGPI), respectively. In both cases, the best ratios are found at lower irradiation times; between powers of 1We3W for LIGPI; and low and high pressures for LIG on
quartz and polyimide substrate, respectively.
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that increased in diameter with time (Fig. S7). We believe the
extended transfer of energy to the surface induced continuous
material ejection and eventually ablates the regionwithin the beam
diameter of the laser, causing structural damage that disrupts sp2

carbon bonds, resulting in a drop of ratios. The surrogate model has
learned exactly this effect, as seen in the drop of predicted ratios in
Fig. 6c.

Discussions of the partial dependence of laser power and
irradiation time on ratios by themselves are rare to find in the
literature. This is partly due to the fact that laser power is by itself
“time-averaged” and that strong interactions between the two
parameters may elucidate LIG mechanisms via instantaneous en-
ergy transfer onto the material [43]. Bischl et al. have quantified the
post-hoc interpretability of models and show that higher interac-
tion strengths results in less reliable partial dependence analyses
[37]. In our ANOVA tests in Tables S2 and S3 we show that the
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interactions between power and irradiation time are insignificant,
suggesting that our partial dependence analysis is reliable.
3.4. Local environment, plume and thermal effects

A controlled surrounding environment can promote or inhibit
chemical reactions, ablation, melting, etc. that are relevant to the
LIG patterning process. Here, the LIG approaches in inert gas show
the best performance, as seen in Fig. 6g and h. The poor ratios
achieved in air may be due to oxidative burning in thick GO [44],
resulting in consistent preclusion of this gas type from the con-
figurations proposed by the MBO. In Fig. 6e, the ratio in LIGQ is
predicted to increase towards lower pressures, implying that LIG
patterning on quartz in vacuum atmosphere helps to reduce de-
fects. This is in agreement with Sokolov et al., who demonstrated
successful laser reduction of graphite oxide in vacuum or high
purity nitrogen inert gas [41]; our surrogate model has predicted
best performance in both environmental conditions.

The role of the inert gas in LIG may be related to a photothermal
pathway based on the plume formation, i.e. ablated material being
ejected normal to the surface plane that is shaped by pressure
gradients [41,45]. In vacuum, the plume expands freely. In inert gas,
the expansion is restricted until the pressure within the plume
equals the gas pressure. The plume acts as a shield to prevent beam
penetration and that generates heat in the material, which, in turn,
carbonizes the film. Under these conditions, the low-pressure
conditions that are optimal for high ratios in LIGQ suggests large
plume expansions of high temperatures. In contrast, the optimum
in LIGPI at high pressures confines the plume in a small area at
lower temperatures than LIGQ. This is observed clearly by
comparing the heat-affected zones, i.e. darkened region outside the
delineated circular boundary, as observed in the optical micro-
graphs in Fig. S8, Moreover, the high pressure may reduce the PI
substrate from swelling when ablated at increased fluence [45].

The local heating in LIGQ and LIGPI is evident from the Raman
shift in Fig. 7. The incident laser is absorbed by the GO or PI surface,
causing an increase in local temperature that was observed using in
situ Raman spectroscopy. The increase in temperature can be esti-
mated by the shift of the G-band according toT¼ (u�u0)/c, where
u0 is the frequency of the G-band when temperature T is extrap-
olated at 0 K, and the temperature coefficient c is 1.5$10�2 cm�1/K
and 2.2$10�2 cm�1/K for graphene [46] and PI [47], respectively. It is
justified to use the temperature coefficient of graphene for GO here
as the thermal relaxations that govern the laser reduction process is
in the ps-scale [48], which is a negligible fraction of the irradiation
Fig. 7. Position of the G-band at low (<250 psi) and high (>750psi) pressures for (a) LIGQ an
indicate a larger local temperature increase. The quality of LIG depends on the net thermal e
restricted, promoting carbonization. On quartz, high-quality LIG is patterned at low gas pre
times used in this study. For LIGQ, the G-band is downshifted by
14 cm�1 from the base position of the G-peak ~1585 cm�1, at low
pressures (<250 psi), increasing local temperature by ~933 K. For
LIGPI, the G-band shift of 15 cm�1 at high pressures (>750 psi)
increased the local temperature by ~750 K; the position of the G-
band varies widely and overlaps in both pressure environments,
suggesting higher sensitivity to thermal effects, as expected from
soft substrates such as PI. The differences in temperature increase
show that the underlying substrate plays an important role as a
heat sink in graphene formation, as observed by others [44]. As the
thermal diffusivity of quartz is a factor of seven larger than PI [49],
we believe that the net photothermal effect from the plume and the
heat sink promotes LIG patterns to form.
3.5. 2D-band characteristics of LIG

For a rigorous identification of graphene or LIG, the analysis of
the G/D ratio alone may be insufficient as this parameter may be
affected by the amorphization trajectory described by Ferrari and
Robertson [50]. Hence, the characteristics of the 2D-band, partic-
ularly with respect to the G/D ratio that has been optimized in this
study, will be further discussed.

The analysis of the 2D/G parameter presented in Fig. 8 shows
that, apart from some outliers, the 2D-band is mostly present for
both LIGQ and LIGPI with a larger 2D/G distribution for the latter,
presumably due to the substrate-dependent thermal effects dis-
cussed in the previous section. The 2D-band is an overtone of the D-
band, but unlike the latter, it is not activated near defects. As a
result, the 2D-band can be present in LIG even in the absence of the
D-band.

The 2D-band can be analyzed to determine graphene layer
thickness. For monolayer graphene, the 2D-band is observed to be
one symmetrical peak with a FWHM of ~30 cm�1 [51]. With the
addition of successive layers, others report broadening and splitting
of the 2D-band such that the distinct band shape can differentiate
between single and multilayer graphene for layer thickness of less
than 4 layers [51]. Although the FWHM reported here generally
decreases with increasing G/D ratio, the 2D-bands in our samples
are typically twice as broad as those reported for monolayer gra-
phene, as seen in other LIG reports [10,36]; they have a symmetrical
profile (Fig. 8d) more closely related to 2D graphite with its layers
randomly stacked along the c-axis [52].

It is worth pointing out that monolayer graphene can be iden-
tified by analyzing the ratio between the 2D- and the G-band. The
2D/G ratios in Fig. 8a and b generally increase with G/D ratio up to
d (b) LIGPI samples. In contrast to LIGPI, the Raman shift in LIGQ at high gas pressures
ffect and the underlying substrate. At high pressures for LIGPI, the localized heating is
ssure that expands local heating.



Fig. 8. The 2D/G ratio for (a) LIGQ and (b) LIGPI as a function of G/D ratio, which was optimized using MBO. The color bar shows the FWHM(2D) in cm�1; FWHM(2D) and G/D ratios
are negatively correlated (Spearman coefficients: (a) �0.79 and (b) �0.64). (c) Boxplot for the 2D/G ratio distributions and (d) symmetrical 2D-band profile for both LIG substrates.
(A colour version of this figure can be viewed online.)
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G/D ~2 and plateau at medians of 0.32 and 0.38, respectively. The
maximum 2D/G values presented for LIG here are comparable to
those reported in the literature (see Table 2). Note, in comparison to
the G/D parameter, the 2D/G parameter for LIG is not widely re-
ported and the values presented here are roughly estimated. These
values range between a quarter to half of the values typically
observed in defect-free single layer graphene materials (2D/G ~ 2)
[53]. Interestingly, to the best of our knowledge, the D-band does
not diminish through the laser induction process and thus high-
quality LIG are not defect-free. Therefore, it is reasonable to take
the D-band into account during single-objective optimization of G/
D ratios. Nevertheless, through additional analysis of the 2D/G ra-
tio, FWHM(2D) and the 2D-band profile we have deduced high-
quality LIG.
3.6. Related work

The best ratios averaged over the three LIG campaigns are 5.36,
7.13 and 5.38 for GOQ, GOPI and PI, respectively, and were achieved
within 50 optimization iterations. To note, while this has cost a
week of experimentation, prior study without MBO-assistance
required not only over a month’s work but also yielded subopti-
mal results [54]. While the base ratio was measured to be about 1
for unreduced GO films, the characteristic Raman G-, D- and 2D-
features were not found in non-irradiated polyimides. A list of LIG
parameter conditions in the literature with the corresponding ra-
tios are shown in Table 2. To the best of our knowledge, other
groups with comparable experimental setups, i.e. 532 nm CW laser
patterning of GO thin films, demonstrate a maximum ratio of 1.03
[55]. Hawes et al. have carbonized PI substrates using CW CO2 laser
and demonstrated a ratio of 1.38 [11]. While we acknowledge that a
higher ratio of 2.25 has been observed in LIG on PI [10], it is not
trivial to have a direct comparison of our work with that in the
community as the results of laser-material interactions are highly
dependent on the characteristics of the laser system e.g. pulse
width and wavelength. We therefore prioritize and compare
studies using CW lasers, since the underlying mechanism for CW
laser reduction is thermally mediated [7]. The introduction of
automated parameter tuning with surrogate models improves
performance in a small number of iterations with relatively little
experimental effort by a factor of at least four. We emphasize that
the advantage of automated parameter tuning used here is not
limited specifically to our experimental setup but can be applied in
other contexts as well, e.g. pulsed laser systems.
3.7. Discussion

There are several avenues for future studies. First, despite our
reliable model interpretations, we believe that our understanding
of the underlying LIG processes has not necessarily improved. With



Table 2
List of laser-induced graphene (LIG) parameter conditions from various precursor materials and their Raman G/D and 2D/G ratios.

Laser Type Patterning Parameters Precursor Material/Substrate G/D
Ratio

2D/G
Ratio

Ref

Pulsed 790 nm,
120fs

GO/glass 1.10 0.13 [56]

Pulsed 10.6 mm,
2.4W

Hydrated graphite oxide film 1.28 e [57]

Pulsed 355 nm,
20ns

Graphite oxide film 1.15 0.05 [58]

Pulsed 522 nm,
500fs

PI 0.86 0.06 [11]

Pulsed 10.6 mm,
14 ms

PI 2.25 0.95 [10]

Pulsed 10.6 mm,
14 ms

PI 1.03 0.46 [59]

CW 10.6 mm,
4.8W

PI 1.38 0.48 [36]

CW 532 nm,
100 mW

Thin film GO/glass 0.73 e [60]

CW 663 nm,
80 mW

GO/Quartz 0.93 e [61]

CW 788 nm,
5 mW

Graphite oxide/polycarbonate 0.94 0.26 [62]

CW 532 nm, 12 mW Thin film GO/SiO2/Si 1.03 0.13 [55]
CW 532 nm, <5.5W, <1000 psi Thin film GO/quartz

GO/PI
PI

5.36
7.13
5.38

0.49
0.52
0.51

Our MBO approach
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a view to develop explainable artificial intelligence systems,
leveraging these models would allow us to close the scientific loop
and have AI work in tandem with human researchers to not only
achieve better experimental results, but also to develop new the-
ories. More explicitly, the MBO partial dependence analysis has
guided us to find the physical domains to investigate further post-
optimization, and from that we formulated a substrate-dependent
mechanism in LIG formation based on thermal and plume effects in
a local environment. Futurework could includeML approaches that
considers the discrepancies between simulation and experiments,
which is expected to outperform random ML training approaches.
The analysis of the partial dependencies we performed in this pa-
per is a valuable first step to integrate physics within ML.

Second, while we have achieved good ratios, the simultaneous
optimization of other objectives, such as the electric and thermal
properties, can be beneficial to fabricate electronic devices. A
common problem in multi-objective optimizations is that one
property of the material cannot be improved without degrading
another. Instead, an optimal boundary, the so-called Pareto front,
defines the trade-off between configurations that are optimal with
respect to at least one property. Multi-objective optimization has
been demonstrated to be data exhaustive [63,64]. Most materials
discovery studies therefore focus on single-objective optimization,
which can support multi-objective optimization by combining all
objectives into one. Another practical challenge is that often mea-
surements can only be taken at multiple levels. For example, Raman
characterization of a material can happen immediately after a LIG
patterning has been performed, but measurements of electric
conductivity using a four-point probe can only be performed after
an experimental campaign is finished as this requires removal of
the sample from the reaction chamber. The integration of such
multi-level measurements that occur at different frequencies into a
Bayesian optimization process would potentially allow further
improvements.
4. Conclusion

We have demonstrated the application of state-of-the-art
automated parameter optimization techniques to laser-induced
graphene (LIG) patterning and improved the quality of LIG pat-
terns based on Raman G/D ratios reported in the literature by at
least a factor of four. The best LIG ratios were achieved within 50
configurations suggested by the MBO. The initial surrogate models
were trained with random parameter evaluations that are inde-
pendent of the skills and experience of individual researcherse our
method does not rely on skilled operators to “guide” it towards
good results. Further, our system does also not require a back-
ground in machine learning, and the achieved improvements are
demonstrated to be reliable and reproducible. We further demon-
strate how the surrogate model can be used to improve our un-
derstanding of the underlying processes for LIG patterned on
quartz and on polyimide. The partial dependence analysis shows
that the LIG mechanism is governed by substrate-dependent local
thermal effects and plume formations. This conclusion is supported
by optical characterizations.
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