A Hands-On Introduction to Automatic Machine Learning

Lars Kotthoff

University of Wyoming
larsko@uwyo.edu

AutoML Workshop, 28 August 2018, Nanjing
Machine Learning

Data \rightarrow Machine Learning \rightarrow Predictions
Automatic Machine Learning

Data → Hyperparameter Tuning → Machine Learning → Predictions
Grid and Random Search

▷ evaluate certain points in parameter space

Local Search

▷ start with random configuration
▷ change a single parameter (local search step)
▷ if better, keep the change, else revert
▷ repeat, stop when resources exhausted or desired solution quality achieved
▷ restart occasionally with new random configurations
Local Search Example

graphics by Holger Hoos
Local Search Example

Initialisation

graphics by Holger Hoos
Local Search Example

Local Search

graphics by Holger Hoos
Local Search Example

Local Search

graphics by Holger Hoos
Local Search Example

Going Beyond Local Optima: Iterated Local Search (Perturbation)

Animation credit: Holger Hoos

Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA

graphics by Holger Hoos
Local Search Example

Local Search

Graphics by Holger Hoos
Local Search Example

Local Search

graphics by Holger Hoos
Local Search Example

Selection (using Acceptance Criterion)

graphics by Holger Hoos
Model-Based Search

▷ evaluate small number of configurations
▷ build model of parameter-performance surface based on the results
▷ use model to predict where to evaluate next
▷ repeat, stop when resources exhausted or desired solution quality achieved
▷ allows targeted exploration of promising configurations
Model-Based Search Example

Iter = 2, Gap = 1.9909e−01

Model-Based Search Example

![Graph showing Iter = 5, Gap = 1.9992e−01 with various data points and lines indicating different types of data points and sequences.](image)

Model-Based Search Example

Iter = 6, Gap = 1.9996e−01

Model-Based Search Example

Model-Based Search Example

Iter = 8, Gap = 2.0000e−01

Model-Based Search Example

Problems

▷ How good are we really?
▷ How much of it is just random chance?
▷ Can we do better?
Underlying Issues

▷ true performance landscape unknown
▷ resources allow to explore only tiny part of hyperparameter space
▷ results inherently stochastic
Potential Solutions

▷ better-understood benchmarks
▷ more comparisons
▷ more runs with different random seed
Two-Slide MBO ML

```python
# http://www.cs.uwyo.edu/~larsko/mbo.py
params = { 'C': np.logspace(-2, 10, 13),
           'gamma': np.logspace(-9, 3, 13) }
param_grid = [ { 'C': x, 'gamma': y } for x in params['C']
               for y in params['gamma'] ]
# [{'C': 0.01, 'gamma': 1e-09},
#  {'C': 0.01, 'gamma': 1e-08}...]

initial_samples = 3
evals = 10
random.seed(1)

def est_acc(pars):
    clf = svm.SVC(**pars)
    return np.median(cross_val_score(clf, iris.data, iris.target, cv = 10))

data = []
for pars in random.sample(param_grid, initial_samples):
    acc = est_acc(pars)
    data += [ list(pars.values()) + [ acc ] ]
    # [[1.0, 0.1, 1.0],
    #  [100000000.0, 1e-07, 1.0],
    #  [0. 1, 1e-06,0.9333333333333333]]
```
Two-Slide MBO ML

```python
regr = RandomForestRegressor(random_state = 0)
for evals in range(0, evals):
    df = np.array(data)
    regr.fit(df[:,0:2], df[:,2])

    preds = regr.predict([list(pars.values()) for pars in param_grid])
    i = preds.argmax()

    acc = est_acc(param_grid[i])
    data += [list(param_grid[i].values()) + [acc]]
    print("{}: best predicted {} for {}, actual {}"
          .format(evals, round(preds[i], 2), param_grid[i], round(acc, 2)))

i = np.array(data)[:,2].argmax()
print("Best accuracy ({} for parameters {}".format(data[i][2], data[i][0:2]))
```
Two-Slide MBO ML

0: best predicted 0.99 for {'C': 1.0, 'gamma': 1e-09}, actual 0.93
1: best predicted 0.99 for {'C': 1000000000.0, 'gamma': 1e-09}, actual 0.93
2: best predicted 0.99 for {'C': 1000000000.0, 'gamma': 0.1}, actual 0.93
3: best predicted 0.97 for {'C': 1.0, 'gamma': 0.1}, actual 1.0
4: best predicted 0.99 for {'C': 1.0, 'gamma': 0.1}, actual 1.0
5: best predicted 1.0 for {'C': 1.0, 'gamma': 0.1}, actual 1.0
6: best predicted 1.0 for {'C': 1.0, 'gamma': 0.1}, actual 1.0
7: best predicted 1.0 for {'C': 1.0, 'gamma': 0.1}, actual 1.0
8: best predicted 1.0 for {'C': 0.01, 'gamma': 0.1}, actual 0.93
9: best predicted 1.0 for {'C': 1.0, 'gamma': 0.1}, actual 1.0

Best accuracy (1.0) for parameters [1.0, 0.1]
Tools and Resources

iRace http://iridia.ulb.ac.be/irace/
TPOT https://github.com/EpistasisLab/tpot
mlrMBO https://github.com/mlr-org/mlrMBO
SMAC http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
Spearmint https://github.com/HIPS/Spearmint
TPE https://jaberg.github.io/hyperopt/

Auto-WEKA http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
Auto-sklearn https://github.com/automl/auto-sklearn

Available soon: edited book on automatic machine learning
https://www.autml.org/book/ (Frank Hutter, Lars Kotthoff, Joaquin Vanschoren)
I’m hiring!

Several funded graduate/postdoc positions available.